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Abstract

Snail, also called Snai1, is a key regulator of EMT. Snail plays crucial roles in cancer pro-

gression, including resistance to anti-tumor drugs and invasion by various cancer cells.

Slug, also known as Snai2, is also involved in the aggravation of certain tumors. In this

study, we examined the roles of Slug in human oral squamous cell carcinoma (OSCC) cells.

Slug is highly expressed in these cells, and Slug siRNA effectively represses anti-tumor

drug resistance and invasive properties. In addition, transforming growth factor (TGF)-β
upregulates the expression of Snail and Slug and promotes resistance to anti-tumor drugs

in OSCC cells. Surprisingly, Slug siRNA appears to upregulate Snail expression consider-

ably in OSCC cells. Snail siRNA also appears to upregulate Slug expression. Thus, either

Slug or Snail siRNA alone partially mitigates malignant phenotypes in the presence of TGF-

β, whereas both Slug and Snail siRNAs together dramatically suppress them. Therefore,

Slug and Snail in tandem, but not alone, are potential therapeutic targets for nucleic acid

medicines to treat oral cancer.

Introduction

The epithelial–mesenchymal transition (EMT) is an essential biological process during embry-

onic development, as well as during wound healing and tissue regeneration in adult tissues [1].

During embryonic development, EMT involves the complete loss of expression of epithelial

marker proteins, including E-cadherin and keratins, in epithelial cells. Instead, the expression

of mesenchymal marker proteins, including N-cadherin and vimentin, is induced to complete

EMT [2,3]. However, the pathological significance of EMT in cancer remains controversial

because partial, rather than complete, EMT is crucial for promoting invasion and metastasis

[2,4]. It is clear, however, that EMT transcription factors (EMT-TFs) promote cancer
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progression by promoting invasion and drug resistance, but not tumorigenesis, as recently

determined by numerous in vitro and in vivo studies using mouse cancer models [5–8]. The

EMT-TFs include Twist, Snail, Slug, ZEB1 (a.k.a. δEF1), and ZEB2 (a.k.a. SIP1). The expres-

sion of these TFs is regulated transcriptionally and translationally by secreted factors, extracel-

lular matrices, and exosomes in cancer cells [1]. The mRNA and protein levels of ZEBs

correlate positively with the aggressive phenotypes and stem cell properties of breast cancer

cells, whereas Snail protein, but not mRNA, was recently reported to be closely linked to them

[9–11].

Snail, which is encoded by the SNAI1 gene, and Slug, which is encoded by the SNAI2 gene,

are zinc-finger transcription factors belonging to the Snail family [12]. Both Snail and Slug are

reportedly expressed in skeletal stem/stromal cells (SSCs) during the pre- and post-natal states.

Moreover, targeting either Snail or Slug alone exerts only subtle effects on developmental pro-

grams, whereas simultaneous knockout of both markedly impairs SSC self-renewal, differenti-

ation, and bone formation [13]. Thus, both proteins function redundantly during embryonic

bone development in mice. In addition, the expression of both SNAI1 and SNAI2 is downregu-

lated because their protein products occupy each other’s promoter during chondrogenesis,

which provides an explanation for their genetic redundancy [14]. During EMT programs asso-

ciated with development as well as cancer progression, Snail and Slug repress E-cadherin tran-

scription by binding directly to E2 box–type elements (CAGGTG/CACCTG) found in its

promoter [12]. Compared to the roles of Snail in EMT, those of Slug are not as well under-

stood, particularly in cancer progression. Slug, which is aberrantly upregulated in pro–B cell

acute leukemia, functions as an anti-apoptotic factor in normal hematopoietic progenitor cells

[15]. Additionally, Slug specifically rescues hematopoietic progenitor cells from lethal doses of

radiation [16]. Apart from blood cells, Slug is highly expressed in accordance with lymph node

metastasis and poor survival in gastric cancer [17], and regulates the stemness status of colo-

rectal cancer [18]. Thus, Slug as well as Snail is aberrantly expressed in some types of cancers

and regulates many kinds of fundamental processes, including cell proliferation, apoptosis,

and cell motility.

The roles of cytokines in EMT have been studied in many kinds of cancer cells [2]. Among

these, transforming growth factor (TGF)-β is a well-known inducer of EMT, and often overex-

pressed in some cancer tissues [19]. Indeed, mice that lack TGF-β3, a TGF-β family member,

exhibit a high frequency of cleft palate formation [20], probably due to absence of apoptosis

and EMT in the medial edge epithelium during fusion of both upper jaws [21]. We previously

reported that cancer cells express TGF-β abundantly in the bone-invading area as determined

by immunohistochemical analyses using human specimens from oral cancer patients [22]. IL-

6 is a multifunctional cytokine known to regulate immune and inflammatory responses [23].

Higher expression levels of IL-6 have also been observed in various human cancer tissues, and

IL-6 is known to induce EMT through STAT3 activation in human breast cancer cells [24]. IL-

8 is a pro-inflammatory chemokine identified as a potent neutrophil activator and chemotactic

factor secreted from monocytes and macrophages [25]. Similarly to IL-6, IL-8 also promotes

EMT and invasiveness through unknown mechanisms in lung cancer cells [26, 27].

In this study, we measured the expression of Slug in various oral squamous cell carcinoma

(OSCC) cell lines. We found that Slug is highly expressed in OSCC cells, and that both Slug

and Snail are upregulated by TGF-β. In addition, we found that Slug siRNA appears to cause

an increase in Snail expression, whereas Snail siRNA appears to increase the level of Slug

expression in these cells. Thus, the knockdown of Slug and Snail in tandem, but not either

alone, efficiently suppresses invasive properties and chemo-resistance against anti-tumor

drugs induced by TGF-β. These findings suggest that Slug and Snail, which are regulated
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reciprocally in cancer cells, are redundantly responsible for the malignant phenotype of oral

cancer cells.

Materials and methods

Cell culture

Human oral squamous cell carcinoma (OSCC) cell lines (Ca9-22, HOC313, HSC2, HSC3,

HSC4, OBC, OSC19, OSC20, OTC20, SAS, and TSU) were used in this study. Ca9-22, HSC2,

HSC3, HSC4, and SAS were described previously [28]. HOC313, OBC, OSC19, OSC20,

OTC20, and TSU were gifts from Dr. Yoshizawa (Oral and Maxillofacial Surgery, University

of Yamanashi, Yamanashi, Japan). All cells were cultured in DMEM (Nacalai Tesque, Kyoto,

Japan) supplemented with 4.5 g/L glucose, 10% FBS, 50 U/mL penicillin, and 50 μg/mL strep-

tomycin at 37 ˚C under a 5% CO2 atmosphere.

Reagents, antibodies, and plasmid construction

Recombinant human TGF-β1 was obtained from R&D Systems (Minneapolis, MN). Rabbit

monoclonal anti–Slug, anti-STAT3, anti–phospho-STAT3 (705), and rat monoclonal anti-

Snail antibodies were from Cell Signaling (Danvers, MA). Mouse monoclonal anti–α-tubulin

and rat monoclonal anti–HA antibodies were from Sigma-Aldrich (St. Louis, MO). Docetaxel

and Erlotinib were from Pepro Tech (Rocky Hill, NJ) and Wako (Osaka, Japan), respectively.

The human Slug and human Snail expression plasmids were described previously [29].

Immunoblot analysis

Cells were lysed in lysis buffer (20 mM Tris–HCl [pH 7.5], 150 mM NaCl, 1% Nonidet P-40,

protease and phosphatase inhibitors). The protein concentration was measured using BCA

protein assay reagent (Thermo Fisher Scientific, Waltham, MA). The harvested proteins sepa-

rated by SDS-PAGE were transferred on to polyvinylidene difluoride membranes, followed by

immunodetection with the ECL blotting system (GE Healthcare, Piscataway, NJ) on a Lumi-

nescent Image Analyzer (LAS400, Fujifilm, Tokyo, Japan).

Quantitative real-time PCR (qRT-PCR)

Total RNA was extracted using the RNeasy mini kit (Qiagen, Venlo, Netherlands) and cDNAs

were synthesized using the PrimeScript First Strand cDNA synthesis kit (TaKaRa Bio, Kusatsu,

Japan). Quantitative RT-PCR analyses were performed using the Power SYBR Green PCR

Master Mix (Applied Biosystems, Foster City, CA). The relative expression level of each

mRNA was normalized using GAPDH. The following primers were used:

human Slug, forward, 5’-GCCTCCAAAAAGCCAAACTACA-3’, reverse, 5’-GAGGATCTCTG
GTTGTGGTATGACA-3’;

human Snail, forward, 5’-TTCTCACTGCCATGGAATTCC-3’, reverse, 5’-GCAGAGGACAC
AGAACCAGAAA-3’;

human IL-6, forward, 5’-CCAGGAGCCCAGCTATGAAC-3’, reverse, 5’-CCAGGGAGAAGGC
AACTG-3’;

human IL-8, forward, 5’-AAGGAAAACTGGGTGCAGAG-3’, reverse, 5’-ATTGCATCTGGC
AACCCTAC-3’;

human GAPDH, forward, 5’-CGACCACTTTGTCAAGCTCA-3’, reverse, 5’-CCCTGTTGCT
GTAGCCAAAT-3’.

Reciprocal expression of Slug and Snail in human oral cancer cells
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RNA interference

Transfection of siRNAs was performed in six-well tissue culture plates using Lipofectamine

RNAiMAX transfection reagent (Invitrogen). The final concentration of siRNA was 10 nM.

The Stealth RNAi siRNA sequences used in this study were as follows:

human Slug#1, 5’-CCGUAUCUCUAUGAGAGUUACUCCA-3’;

human Slug#2, 5’- GAUGCAUAUUCGGACCCACACAUUA-3’;

human Snail#1 5’-AGACCCACUCAGAUGUCAAGAAGUA-3’;

human Snail#2, 5’-CCUGUCAGAUGAGGACAGUGGGAAA-3’.

Cell proliferation assay

Cells were seeded on six-well plates, reverse-transfected with the siRNAs, and cultured for 24

h. Cells were subsequently seeded in triplicate in 96-well tissue culture plates. After exposure

to docetaxel for 24 h, cell count assays were carried out using Cell Count Reagent SF (Nacalai

Tesque).

Invasion assay

Transwell inserts with an 8 μm pore size (BD Falcon, Franklin Lakes, NJ) were coated with

type I collagen gel (KOKEN, Tokyo, Japan). Suspended cells were seeded on the inner chamber

and cultured for 24 h. Invaded cells were fixed and stained with Trypan Blue solution (Sigma-

Aldrich) before being counted under an inverted microscope.

Statistical analyses

The data are presented as the mean ± SD. Statistical analyses were performed using Student’s

t-test between any two groups.

Results

Slug and Snail expression in OSCC cells

Snail is known to regulate EMT in various kinds of cancer cells and to protect some cells from

cellular senescence in response to various stimuli [1]. Because of the similar primary structures

of the Snail and Slug proteins, Slug is thought to have similar functions to those of Snail [14].

As our pilot studies, we observed that Slug mRNA is expressed at relatively high levels in head

and neck cancer cells, compared to cancer cells from other tissues, whereas Snail mRNAs are

ubiquitously expressed in the cells from almost all tissues according to qRT-PCR analyses

(unpublished data). In addition, in cohort study of oral tongue squamous cell carcinoma

(GSE75538), increased expression level of SNAI2, but not SNAI1, was found in OSCC tissues

compared with that in adjacent normal tissues (S1 Fig). To determine specific roles of Slug in

OSCC cells, we first determined Slug and Snail protein levels in several OSCC cells by immu-

noblotting (Fig 1A). Under the same experimental conditions, Slug protein was easily detected

in most of the OSCC cell lines we tested, whereas Snail protein was not detected in some of

them. Additionally, it appears that the cells that express Slug at high levels expressed lower lev-

els of Snail. Next, we transfected HSC4 cells, in which Slug is expressed at relatively high levels,

with siRNAs against Slug. Slug siRNAs successfully reduced Slug mRNA and protein levels

(Fig 1B and 1C). Based on previous reports describing that, during bone development,
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Fig 1. Slug and Snail expression in various OSCC cell lines. (A) Slug and Snail protein levels in OSCC cell lines were determined

by immunoblotting with α-tubulin as a loading control. (B and C) Following the knockdown of either Slug alone, or of Slug and

Snail in tandem, in HSC4 cells, mRNA and protein levels of Slug and Snail were examined by qRT-PCR (B) and immunoblot

analysis (C), respectively. mRNA levels measured were normalized to the amount of GAPDH mRNA (B) while α-tubulin was used

as a loading control for immunoblotting (C). long exp., long exposure. (D) Invasion assays were performed on HSC4 cells

transfected with either Slug siRNA alone or both Slug and Snail siRNAs. After photos were taken (bottom panels), cell invasion

was quantified (top panel). The value of the cells transfected with control siRNA is indicated as “1”. (E) After the knockdown of

either Slug alone, or of Slug and Snail in tandem, in HSC4 cells, the cells were exposed to docetaxel (DTX; 3 μM) for 24 h. Cell

viability was evaluated by cell count assay. The value of the control cells is indicated as “1”. NC, non-specific negative control

siRNA. Slug siRNA (#1) and Snail siRNA (#1) were used. Each value represents the mean ± s.d. of triplicate determinations from a

representative experiment. Similar results were obtained in at least three independent experiments p values were determined by

Student’s t-test. �p< 0.05; n.s., not significant.

https://doi.org/10.1371/journal.pone.0199442.g001
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expression levels of Snail and Slug are increased in the cells derived from Slug and Snail knock-

out mice, respectively (13,14), we sought to examine the expression of Snail and Slug in cancer

cells upon transfection with the siRNAs. Slug siRNAs caused a slight increase in endogenous

Snail mRNA and protein levels (Fig 1B and 1C). This finding was also confirmed in HOC313

cells (S2 Fig). Invasion assays in cells transfected with Slug siRNA showed suppressed invasion

of HSC4 cells (Fig 1D), which is not significantly affected in combination with Snail siRNA.

Similar to invasion assays, Slug knockdown significantly reduced chemo-resistance against

docetaxel (DTX), a chemotherapeutic agent widely used in oral cancer patients, whereas com-

bination of Snail siRNAs did not further affect it (Fig 1E). These findings suggested that, under

normal culture conditions, Slug regulates invasiveness and chemo-resistance against anti-

tumor drugs in HSC4 cells, and the increase in Snail levels following Slug knockdown may

only negligibly affect these cellular phenomena.

Upregulation of Slug and Snail in HSC4 cells following TGF-β treatment

We previously reported that cancer cells express TGF-β, a key inducer of the EMT, abundantly

in the bone-invading area in human specimens from oral cancer patients [22]. It is well known

that repression of E-cadherin, a representative EMT marker, is frequently observed in the cells

only at the invasion front, but not the center of tumor, suggesting that TGF-β regulates EMT

in this region in vivo. We thus examined expression of Slug and Snail in the presence of TGF-

β. TGF-β caused an increase in the levels of both Slug and Snail mRNA and protein in HSC4

cells (Fig 2A, 2B and 2C). In addition, TGF-β increased the number of invaded cells as deter-

mined by invasion assays in HSC4 cells (Fig 2D). Just as previous reports have indicated that

TGF-β increases chemo-resistance towards various anti-tumor drugs in many kinds of cancer

cells [30], TGF-β increased chemo-resistance to DTX in HSC4 cells (Fig 2E). siRNAs against

Slug successfully silenced their endogenous target mRNA even in the presence of TGF-β, and

also caused a considerable upregulation of Snail expression (Fig 2F and 2G).

Interestingly, when Snail upregulated by TGF-β was silenced by its specific siRNA, the level

of both Slug mRNA and protein increased slightly in HSC4, SAS, and HOC313 cells (Fig 2F

and 2G and S2 Fig). Indeed, the invasiveness induced by TGF-β was considerably inhibited by

either siRNA alone, and further inhibited by a combination of Slug and Snail siRNAs (Fig 2H).

In addition, chemo-resistance to DTX induced by TGF-β was not significantly affected by

either siRNA alone, but dramatically reduced by combined transfections with both siRNAs in

HSC4 cells (Fig 2I) and SAS cells (S2 Fig). Thus, these findings indicate that aggressive cellular

phenotypes, particularly chemo-resistance, induced by TGF-β are ameliorated by the knock-

down of Snail and Slug in tandem, but not of either alone. Moreover, these findings suggest

that, in the presence of TGF-β, Slug and Snail together regulate invasiveness and chemo-resis-

tance in OSCC cells.

Enhancement of chemo-resistance towards anti-tumor drugs in SAS cells

overexpressing either Slug or Snail

Since SAS cells exhibited better transient transfection efficiency than HSC4 cells (data not

shown), expression plasmids encoding HA-tagged full-length human Slug or Snail were trans-

fected into the cells. After transfection, Slug protein levels were lower compared to those of

Snail (Fig 3A). By contrast, we detected increases of approximately 8- and 2.5-fold in the

mRNA levels of transfected-Slug and -Snail, respectively. These results were obtained with

almost similar transfection efficiency for the Slug and Snail expression plasmids as determined

by immunohistochemistry using anti-HA antibody (data not shown), suggesting that the levels

of ectopically expressed Snail protein are more stable than those of Slug in the transfected cells.

Reciprocal expression of Slug and Snail in human oral cancer cells
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Fig 2. Slug and Snail induction in HSC4 cells in response to TGF-β. (A, B, and C) Slug and Snail mRNA and protein levels in HSC4 cells that had

either been treated with 1 ng/ml TGF-β for 24 h or left untreated were determined by qRT-PCR (A and B) and immunoblot analyses (C),

respectively. Values were normalized to the amount of GAPDH mRNA (A and B) while α-tubulin was used as a loading control for immunoblotting

(C). (D) Invasion assays were performed in HSC4 cells treated with or without 1 ng/ml TGF-β, followed by quantification analyses. The value of the

control cells is indicated as “1”. (E) HSC4 cells were treated with 1 ng/ml TGF-β for 24 h, the cells were exposed to docetaxel (DTX; 10 μM). The

viable cells were trypsinized and counted using a hemocytometer. The value of the control cells is indicated as “1”. (F and G) Following the siRNA-

mediated knockdown of either Slug, Snail, or both in HSC4 cells, the cells were treated with 1 ng/ml TGF-β for 24 h. The levels of Slug and Snail

mRNA and protein were determined by qRT-PCR (F) and immunoblotting (G), respectively. mRNA levels were normalized to the amount of

GAPDH mRNA (F) while α-tubulin was used as a loading control for immunoblotting (G). (H) After the siRNA-mediated knockdown of either Slug,

Snail, or both in HSC4 cells treated with 1 ng/ml TGF-β, the cells were subjected to invasion assays, followed by taking photos and quantification.

The value of the control cells is indicated as “1”. (I) After siRNA-mediated knockdown of either Slug, Snail, or both in HSC4 cells treated with 1 ng/

ml TGF-β for 24 h, the cells were exposed to docetaxel (DTX) for 24 h. The viable cells were trypsinized and counted using a hemocytometer. The

value of the control cells is indicated as “1”. Slug siRNA (#1) and Snail siRNA (#1) were used. Each value represents the mean ± s.d. of triplicate

determinations from a representative experiment. Similar results were obtained in at least three independent experiments. NC, non-specific negative

control siRNA. p values were determined by Student’s t-test. �p< 0.05, ��p< 0.01; n.s., not significant.

https://doi.org/10.1371/journal.pone.0199442.g002
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Fig 3. Overexpression of Slug and Snail in SAS cells. (A, B, and C) SAS cells transfected with plasmids encoding

either HA-tagged Slug or Snail were subjected to immunoblot (A) and qRT-PCR analyses (B and C). α-tubulin was

used as a loading control (A). mRNA levels were normalized to the amount of GAPDH mRNA (B and C). (D and E)

SAS cells transfected with plasmids encoding either HA-tagged Slug or Snail were exposed to docetaxel (DTX; 10 μM)

(D) or Erlotinib (5 μM) (E) for 24 h. The viable cells were trypsinized and counted using a hemocytometer. The value

Reciprocal expression of Slug and Snail in human oral cancer cells
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However, Slug overexpression was sufficient to significantly reduce endogenous Snail mRNA,

and vice versa (Fig 3B and 3C). Next, we examined chemo-resistance against anti-tumor

drugs, such as DTX or Erlotinib, a small molecular agent that specifically targets EGFR tyro-

sine kinase, in SAS cells overexpressing either Slug or Snail. Overexpression of either Slug or

Snail increased invasive properties and the number of viable cells in response to treatment

with both anti-tumor drugs (Fig 3D, 3E and 3F). These findings suggest that overexpression of

Slug or Snail regulates mutual expression, and enhances chemo-resistance against anti-tumor

drugs in SAS cells.

IL6 and IL8 mRNA levels in OSCC cells transfected with siRNAs against

Slug or Snail

To determine the mechanism by which Slug and Snail siRNAs upregulate Snail and Slug,

respectively, in human OSCC cells, we examined several signaling molecules including AKT,

ERK, p38MAPK, JNK, NF-κB/IκB, HMGA2, and STAT3, which are reported to regulate tran-

scription of Snail, by immunoblot analyses with specific antibodies and anti-phospho antibod-

ies. Of these, STAT3 phosphorylation at tyrosine 705 was increased by both Slug and Snail

siRNAs in SAS cells (Fig 4A and 4B). STAT3 phosphorylation is inhibited by inhibitory mole-

cules for STAT3, PIAS3, and SOCS3, but their expression levels were not significantly changed

by both siRNAs (data not shown). Next, we performed qRT-PCR and analyzed the mRNA lev-

els of several cytokines and growth factors. Among them, IL-6 was increased by Slug siRNA in

the absence or presence of TGF-β in HSC4 and SAS cells (Fig 4C, 4D, 4F and 4G). In addition,

Snail siRNA also upregulated IL-8 expression in both cells treated with TGF-β, but not in cells

that were not treated with TGF-β (Fig 4E and 4H, and data not shown). Thus, Slug siRNA and

Snail siRNA enhanced STAT3 phosphorylation probably due to the upregulation of both IL-6

and IL-8, which regulate each other’s expression. Therefore, the combination of siRNAs target-

ing both Snail and Slug, rather than either alone, would be much more useful for nucleic acid

medicine to treat human oral cancer patients.

Discussion

In this study, we found that Slug protein levels are relatively high in human OSCC cells, and

that cells in which Slug expression has been silenced exhibit increased sensitivity to anti-tumor

drugs and reduced motile properties. Thus, Slug may play important roles in cancer progres-

sion in human OSCC cells. On the other hand, TGF-β is thought to be a well known inducer

of EMT in cancer cells at invasion front of cancer tissues [31]. Under conditions of TGF-β
stimulation, Slug and Snail were upregulated in human OSCC cells, as previously reported

[32]. Molecular mechanisms of TGF-β–induced Snail expression have been proposed in sev-

eral reports; Snail is directly upregulated by the TGF-β–Smad pathway in mouse normal mam-

mary gland epithelial NMuMG cells, as demonstrated by treatment with cycloheximide [33].

HMGA2, induced by the TGF-β–Smad pathway, increases Snail expression in the same cells,

indicating that Snail is also an indirect target for the TGF-β–Smad pathway [34]. Taken

together, Snail induction by TGF-β in NMuMG cells is rapidly upregulated by Smad pathway

of the control cells is indicated as “1”. (F) Invasion assays were performed on SAS cells transfected with either HA-

tagged Slug or Snail. The value of the control cells is indicated as “1”. Each value represents the mean ± s.d. of triplicate

determinations from a representative experiment. Similar results were obtained in at least three independent

experiments. Cont., negative control plasmid. p values were determined by Student’s t-test. ��p< 0.01.

https://doi.org/10.1371/journal.pone.0199442.g003
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and sustained by HMGA2, leading to the biphasic manner of the cellular response to TGF-β.

In addition, we found that TGF-β–Smad pathway engages in crosstalk with the STAT3 path-

way in cancer cells harboring a KRAS mutation [35]. However, the molecular mechanisms of

TGF-β–induced Snail expression are not fully understood in OSCC cells. Interestingly, we

found that Slug knockdown increases Snail expression and vice versa. Snail and Slug function

redundantly in various kinds of cells and reciprocal regulation of gene expression between

Fig 4. Slug and Snail siRNAs regulate mRNA expression of IL-6 and IL-8. (A and B) Phosphorylation of STAT3 at

Y705 residue were determined by immunoblotting following transfection with either Slug or Snail siRNA in SAS

cells treated with TGF-β. α-tubulin was used as a loading control. (C–H) After the knockdown of either Slug or Snail

in HSC4 (C, D, and E) and SAS (F, G, and H) cells, the cells were treated with 1 ng/ml TGF-β for 24 h. mRNA levels

of IL-6 (C, D, F, and G) and IL-8 (E and H) were analyzed by qRT-PCR. mRNA levels were normalized to the

amount of GAPDH mRNA. Slug siRNA (#1 and #2) and Snail siRNA (#1 and #2) were used. Each value represents

the mean ± s.d. of triplicate determinations from a representative experiment. Similar results were obtained in at

least three independent experiments. NC, non-specific negative control siRNA.

https://doi.org/10.1371/journal.pone.0199442.g004
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them is observed in at least palate, bone and cardiac formation. These compensatory regula-

tion of Snail and Slug could be indispensable for EMT in embryonic development as well as

cancer progression. However, the underlying molecular mechanism has not been elucidated

yet, but the involvement of miRNA has not been ruled out in these processes. miR-34 and

Snail negatively regulate each other [36], as do miR-203 and Slug [37]. Thus, it is possible that

Slug and Snail downregulate miR-34 and miR-203, respectively, in OSCC cells. Furthermore,

we found weak negative correlation between SNAI1 and SNAI2 expression in cohort study of

oral tongue squamous cell carcinoma (S1 Fig). Taken together, our findings suggest that, in

terms of nucleic acid medicine, silencing only one of the two genes is not sufficient for chemo-

resistance against anti-tumor drugs and invasiveness in OSCC cells. Snail family–targeted

therapy for oral cancers will require the development of anti-tumor drugs that target both pro-

teins simultaneously.

siRNAs against Slug and Snail upregulate levels of IL-6 and IL-8, cytokines known to

enhance STAT3 phosphorylation and to be involved in EMT. However, it is unclear how siR-

NAs against Slug and Snail upregulate IL6 and IL8 mRNA, and promote STAT3 phosphoryla-

tion. Since the expression of SOCS3 and PIAS3, negative regulators for STAT3, was not altered

by either siRNA (data not shown), STAT3 activation is dependent on autonomous IL-6 or IL-

8 secretion. Additionally, we found that the STAT3 inhibitor, Stattic, repressed the induction

of Snail by Slug siRNA and Slug by Snail siRNA (data not shown). Stattic also inhibited Slug

expression even without Snail siRNA, suggesting that STAT3 activation is fundamentally

required for Slug expression in OSCC cells. However, the phosphorylation levels of STAT3

were not completely consistent with the expression levels of Slug in OSCC cells used in Fig 1A

(data not shown), which suggests a requirement for the additional signals. Therefore, Slug and

Snail could reciprocally regulate each other’s expression probably through, at least in part,

STAT3 activation induced by autonomously secreting IL-6 and IL-8.

Snail undergoes post-transcriptional modifications through the consensus phosphorylation

motif of GSK-3β [38]. As in the case of β-catenin, GSK-3β–mediated phosphorylation in Snail

provokes its cytoplasmic export and subsequent ubiquitin-mediated proteasome degradation

by β-TrCP [38]. Recently, it is reported that GSK-3β–mediated degradation is inhibited by the

binding of A20, also known as TNFAIP3, to Snail [11]. A20 monoubiquitinates Snail at three

lysine residues at its C-terminus, which fails to associate with and be phosphorylated by GSK-

3β, leading to the stabilization of Snail [11]. Although these phosphorylation sites are not con-

served in Slug, other post-translational modifications of Slug could exist to regulate transcrip-

tion of the genes that mediate cancer progression. Indeed, Slug protein levels do not always

reflect its mRNA levels in OSCC cells (Fig 1A and data not shown). Moreover, overexpression

of Snail enhances expression of ZEB1, another key molecule for EMT induction, and in turn

promotes the aggressiveness of cancer cells [39]. Previous reports indicated that the upregula-

tion of ZEB1 by TGF-β or other cytokines/growth factors is accompanied by ZEB2 upregula-

tion [40], and that both ZEB1 and ZEB2 are highly expressed in breast cancer cells with

aggressive phenotypes [9]. Because ZEB1 and ZEB2 are reportedly to be reciprocally controlled

by TGF-β in endothelial cells [41], the simultaneous knockdown of ZEB1 and ZEB2, rather

than knockdown of either alone, would be useful for potential therapeutic strategy, as previous

report [33,42]. Therefore, diagnosis and therapy, which target EMT-TFs, including those of

the Snail and ZEB families, will require the development of methods that can recognize both

proteins simultaneously as well as anti-tumor drugs that can target both proteins simulta-

neously. Therefore, EMT-TFs regulate their function at both transcriptional and post-transla-

tional levels by other member of EMT-TFs, leading to a sophisticated machinery of EMT

induction and cancer progression.
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Supporting information

S1 Fig. SNAI1 and SNAI2 expression in oral tongue squamous cell carcinoma. (A) SNAI1

and SNAI2 expression levels in noncancerous (adjacent normal tissuues) and cancerous tissues

from OSCC patients (n = 14). (B) Correlation between SNAI1 and SNAI2 expression in

cancerous tissues from OSCC patients (n = 14). Publicly available dataset from OSCC patients

(GSE75538) was used.

(PDF)

S2 Fig. Slug and Snail expression in HOC313 and SAS cells. (A) After knockdown of only

Slug alone or of both Slug and Snail tandem in HOC313 cells, mRNA levels of Slug and Snail

were examined by qRT-PCR. (B, C, D, and E) After transfection with the indicated siRNAs in

SAS (B and C) and HOC313 (D and E) cells, the cells were treated by 1 ng/ml TGF-β for 24 h.

Slug and Snail mRNA and protein levels were determined by qRT-PCR (B and D) and immu-

noblot analysis (C and E), respectively. Values were normalized to the amount of GAPDH

mRNA (A, B, and D). α-tubulin was used as a loading control (C and E). (F) After transfection

with the indicated siRNAs, SAS cells were exposed to docetaxel (DTX; 10 μM) for 24 h. The

viable cells were trypsinized and counted using a hemocytometer. The value of the control

cells is indicated as “1”. NC, non-specific negative control siRNA. Slug siRNA (#1) and Snail

siRNA (#1) were used. p values were determined by Student’s t-test. ���p< 0.001; n.s., not sig-

nificant.

(PDF)
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