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Abstract
The nuclear receptors REV-ERBα and REV-ERBβ are transcription factors that play pivotal

roles in the regulation of the circadian rhythm and various metabolic processes. The circa-

dian rhythm is an endogenous mechanism, which generates entrainable biological changes

that follow a 24-hour period. It regulates a number of physiological processes, including

sleep/wakeful cycles and feeding behaviors. We recently demonstrated that REV-ERB-spe-

cific small molecules affect sleep and anxiety. The orexinergic system also plays a signifi-

cant role in mammalian physiology and behavior, including the regulation of sleep and food

intake. Importantly, orexin genes are expressed in a circadian manner. Given these over-

laps in function and circadian expression, we wanted to determine whether the REV-ERBs

might regulate orexin. We found that acute in vivomodulation of REV-ERB activity, with the

REV-ERB-specific synthetic ligand SR9009, affects the circadian expression of orexinergic

genes in mice. Long term dosing with SR9009 also suppresses orexinergic gene expres-

sion in mice. Finally, REV-ERBβ-deficient mice present with increased orexinergic tran-

scripts. These data suggest that the REV-ERBs may be involved in the repression of

orexinergic gene expression.

Introduction
The circadian rhythm is an autonomous, 24-hour, self-sustained oscillation regulating the
physiology and behavior of organisms ranging from bacteria to humans [1–7]. The master
clock is located in the suprachiasmatic nucleus (SCN) in the hypothalamus and is maintained
by a negative feedback loop in which a CLOCK-BMAL1 complex activates E-box containing
genes, including Cryptochrome (Cry1 and Cry2), and Period (Per1, Per2, and Per3). In turn, the
CRY-PER complex inhibits the activating action of the CLOCK-BMAL1 heterodimers. The
REV-ERBs have been demonstrated to be an essential part of the accessory loop by inhibiting
the transcription of the core cock genes BMAL1, NPAS2, and CLOCK. [8–13]. The molecular
oscillations that occur in the brain also occur in peripheral organs and are involved in the regu-
lation of metabolic functions [12, 14–16].
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Recent data from our laboratory have demonstrated that the REV-ERBs are also involved in
the maintenance of sleep architecture and anxiety [17, 18]. Using SR9009, a REV-ERB-specific
synthetic agonist, we demonstrated that acute intraperitoneal injections at Zeitgeber time (ZT) 6
induced wakefulness during the subjective night period while chronic agonist administration
reduced anxiety-like behaviors in mice. Conversely, mice deficient in REV-ERBβ displayed
enhanced anxiety in different behavioral paradigms [19]. In a separate study, Jager et al demon-
strated that mice lacking REV-ERBα displayed a hyperactive phenotype and decreased habitua-
tion in novel object paradigms as well as impaired short- and long-term memory. This behavior
was determined to be due to direct regulation of tyrosine hydroxylase by REV-ERBα [20].

Extensive work has highlighted the importance of the lateral hypothalamic area (LHA) in
wakefulness, feeding behavior, and energy metabolism [21, 22]. Prepro-orexin [PPO, (Hcrt)], also
known as hypocretin, is a precursor neuropeptide, which generates orexin-A (hypocretin-1) and
orexin-B (hypocretin-2). Orexin-A and -B peptides are exclusively produced in the lateral (peri-
fornical region) and dorsal hypothalamus [23–28] and bind the G-protein coupled orexin 1 and 2
receptors, (OX1R and OX2R), respectively, also known as Hypocretin-1 Receptor (HCRTR1) and
Hypocretin-2 Receptor (HCRTR2). The orexin peptides have been shown to play key roles in
sleep, energy metabolism and feeding [22, 29–32]. In the brain, orexin signaling, particularly via
OX1R, is involved in reward behavior, related to feeding, and drugs of abuse, while orexinergic
signaling via OX2R is classically involved in wake maintenance [23, 33–39].Hcrt has been previ-
ously shown to display a circadian pattern of expression during a 24h cycle in the hypothalamus
[40]. Hypothalamic orexin neurons receive and extend projections to and receive projections
from various regions in the brain, including the SCN [41]. The orexinergic neurons extending
from the hypothalamus also innervate wake centers in the brainstem, including the locus coeru-
leus and the raphe nuclei, centers for sleep/wake regulation [25], and the peripheral autonomic
nervous system [27]. Strikingly, mice lacking orexin are narcoleptic and develop late-onset obesity
related to decreased energy expenditure [24, 42], supporting a key role for orexin in sleep-wake
cycles and control of metabolic activity. Interestingly, circadian disruptions occurring due to
mutations in core clock components, including the Clock gene, alter day-night expression levels
of hypothalamic peptides including orexin [40], suggesting a link between orexin and the master
clock. Moreover, orexin expression has been demonstrated to be expressed in a circadian manner
[40]. Finally, the orexin pathway is thought to be involved in psychiatric disorders, such as anxi-
ety, panic, depression, and schizophrenia, although very little is still known about its role [43–50].

Given the correlative links between the orexinergic and REV-ERB systems, specifically the
regulation of circadian behaviors and metabolism, we investigated whether these two signaling
pathways may converge and interact to regulate physiological processes. We demonstrate that
REV-ERBs influence the transcription of the orexinergic genes in the hypothalamus and other
centers in the brain. Given the intrinsic negative side effects associated with excessive motivation
for food and lack of sleep, including anxiety, obesity, diabetes, and low self-esteem, our experi-
ments suggest that the REV-ERB regulation of the orexin pathway may hold utility in ameliorat-
ing the detrimental effects of imbalanced circadian behavior via orexinergic pathways.

Materials and Methods

Mice
Male C57BL/6 mice, 8–10 weeks old, were obtained from Jackson laboratories (Bar Harbor,
ME). REV-ERBβ KOmice were generated by breeding REV-ERBβ floxed mice (Nr1d2fl/fl) with
EIIa-Cremice obtained from Jackson Laboratories, Bar Harbor, ME.

Mice were housed under a standard 12h:12h Light:Dark cycle and fed Ad libitum with nor-
mal mouse chow (Harlan 2920X). Food was removed 4–5 hours prior to CO2 induced narcosis

REV-ERBRegulates Orexin and Orexin Receptor Expression

PLOS ONE | DOI:10.1371/journal.pone.0151014 March 10, 2016 2 / 12



(method of euthanasia). All procedures were approved and conducted in accordance to the
Scripps Florida Institutional Animal Care and Use Committee.

Compound Administration
The formulation of REV-ERB agonists was performed as previously described [17]. SR9009
was formulated in a 10mg/ml solution of 15% cremophor, 85% purified water, and pH’d to 7.0.
Injections of 100mg/kg, (volume: 10μl/gram) were performed intraperitoneally (i.p.) for all ani-
mal studies.

General Mouse Studies
For acute injections, SR9009 was injected one time at either ZT0 (lights on) or ZT6, corre-
sponding to the middle of the lights on period. ZT0 injections—groups of animals (n = 6) were
sacrificed every six hours at ZT0, ZT6, ZT12 and ZT18. ZT6 injections- groups of animals
(n = 6) were sacrificed one hour later at ZT7. For chronic studies, mice were administered
SR9009 (100mg/kg, twice a day) for 10 consecutive days. Injections occurred at ZT0 (lights on)
and ZT12 (lights off) in order to try and maintain exposure of SR9009 over a 24-hour period
and be consistent with previously published dosing regimens of chronic SR9009 administration
[17]. Animals (N = 5) were sacrificed at ZT6 after last injection. For REV-ERBβ KOmice,
groups of animals (n = 5) were sacrificed at ZT6.

RNA isolation and real time PCR
RNA was extracted from brain by homogenizing the tissue in 800 μL of RNA STAT-60, using a
rotor tissue homogenizer (OMNI International). Chloroform was added after complete nucleo-
protein complex dissociation at a 1:5 chloroform:STAT-60 ratio. Samples were vortexed for 15
minutes, kept at room temperature for 3 minutes and later centrifuged for 15min at 14,000rpm
at 4°C. The supernatant was transferred to a new tube and half volume of isopropanol to that
of STAT-60 was added. The samples were placed at room temperature for 5 to 10 minutes and
centrifuged at 13,000 rpm, at 4°C for 10 min. The remaining pellet was washed twice with 75%
ethanol, speed-vacuum-dried, and re-suspended in 20 μL of water. cDNA was synthesized
using a qScript cDNA synthesis kit (Quanta BioSciences), using 1μg per sample in thermocyler
(BioRad T100). Quantitative RT-PCR was performed using a 7900HT Fast RT-PCR (Applied
Biosystems). Primers were designed using Primer3 (primer3.sourceforge.net). Specificity and
validation of the primers were determined using an In silico PCR software program (genome.
ucsd.edu) and melting curve analysis to eliminate the possibility of primer-dimer artifacts and
check reaction specificity. Primer sequences for mouse REV-ERBα (Nr1d1), PPO (Hcrt), OX1R
(Hcrtr1), OX2R (Hcrtr2), and Bmal1 (Arntl) genes are as follows:

Nr1d1 forward: 5’-ATGCCAATCATGCATCAGGT-3’
Nr1d1 reverse: 5’-CCCATTGCTGTTAGGTTGGT-3’
Hcrt forward: 5’-AACCACGCTGCGGGTATCCT-3’
Hcrt reverse: 5’-CCCTCCCCGGGGTGCTAAAG-3’
Hcrtr1 forward: 5’-GACTCTCAGCTTCATCGCCCT-3’
Hcrtr1 reverse: 5’-ACGCTGCTGCACTCCATGAC-3’
Hcrtr2 forward: 5’-GAGGATTCCCTCTCTCGTCG-3’
Hcrtr2 reverse: 5’-GGTGTAGGTATTCCCTCCACA-3’
Arntl forward: 5’-CAGGCTAGCTTGATAGGACAGA-3’
Arntl reverse: 5’-CCAGTGTAGGGGTGACTGTAAAC-3’
All data was normalized to Cyclophilin B (Ppib) based on stability and consistency of

expression across all conditions analyzed:
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Ppib forward: 5’-GCAAGTTCCATCGTGTCATCAAG-3’
Ppib reverse: 5’-CCATAGATGCTCTTTCCTCCTG-3’

Statistical analysis
All data are expressed as mean ±S.E.M. All statistical analysis was performed using GraphPad
Prism6 software. A two-way analysis of variance (ANOVA) was performed to determine sig-
nificant differences between Time of day x treatment. One-way ANOVA was used to analyze
intra-gene differences across several time points. All other analysis was performed using a Stu-
dent’s t-test. (N is indicated in the figure legends). Significance was assessed as follows: �

p<0.05, �� p< 0.01, ���p< 0.001.

Results
In order to determine whether modulation of REV-ERB activity affected expression of PPO
(Hcrt), OX1R (Hcrtr1), and OX2R (Hcrtr2), we administered SR9009 to mice at ZT0 and col-
lected brain tissue every six hours to monitor gene expression changes (Fig 1A). Fig 1B shows

Fig 1. Administration of the REV-ERB agonist, SR9009, at ZT0 affects expression of orexinergic genes in the brain over a 24-hour period. A.Mice
were injected at ZT0 with the REV-ERB agonist SR9009 [100mg/kg, i.p.] and tissue was collected every six hours for a twenty-four hour period. The brain
was dissected into hypothalamus or reticular formation and processed for mRNA levels at the different time points, ZT0, ZT6, ZT12, and ZT18.B.Mice
administered with SR9009 or vehicle control were assessed for expression of PPO (Hcrt), Bmal1 (Arntl), and REV-ERBα (Nr1d1) in the hypothalamus and
OX1R (Hcrtr1) and OX2R (Hcrtr2) in the brainstem. N = 6. One way analysis was used to determine intra-gene variation across time. Two-way ANOVA was
used to assess differences between groups (time of day x treatment). *P<0.05, **P<0.01, and **P<0.001, n.s. = not significant.

doi:10.1371/journal.pone.0151014.g001
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that, consistent with published data, the mRNA expression of Hcrt fluctuates over a 24-hour
period, peaking at ZT6 [40]. Surprisingly, SR9009 suppressed this peak inHcrt expression at
ZT6 relative to vehicle controls. Furthermore, SR9009 also affected the expression ofHcrtr1
transcripts, inhibiting the initial upregulation of its expression at ZT6 relative to vehicle con-
trol. Similar effects were observed with SR9009 on Hcrtr2, although to a lesser degree.
REV-ERBα contains a REV-ERB response element (RevRE) in its promoter region and has
been shown to modulate its own expression. We also characterized the 24-hour expression pat-
tern of the Bmal1 (Arntl) and REV-ERBα (Nr1d1) genes after ZT0 injections with SR9009 and
observed repression of Arntl at ZT6 and little to no change in the expression of Nr1d1 relative
to vehicle control, which is consistent with our previously published data (Fig 1B) [17]. Thus,
modulation of REV-ERB activity using a synthetic REV-ERB agonist affects expression of orex-
inergic genes over a 24-hour period.

We recently demonstrated that acute injections at ZT6, which corresponds to peak
REV-ERB mRNA expression, results in increased wakefulness and locomotion as well as
reduced rapid-eye movement (REM) and slow-wave sleep (SWS) [51]. Since orexin is impli-
cated in wake and alertness maintenance [33–36, 38, 52–58], we evaluated the effects of acute
injections of SR9009 at ZT6 on orexinergic transcripts, as a possible mechanistic pathway
mediating REV-ERB agonist wake-inducing effect. Mice were injected at ZT6 and sacrificed at
ZT7, the time point where SR9009 has maximal wake-inducing effects, to collect brain tissue
(Fig 2A). SR9009 suppressed Hcrt and Bmal1 (Arntl) in the hypothalamus (Fig 2B and 2C) and
Hcrtr1 and Hcrtr2 transcript levels in the brainstem of mice (Fig 2D and 2E). Arntl was used as
a positive control (Fig 2B).

To determine how chronic administration of REV-ERB ligands affects expression ofHcrtr1
andHcrtr2, we administered SR9009 to mice for 10 days [100mg/kg, i.p., twice a day] after
which time mice were sacrificed at ZT6 to collect brains for mRNA analysis. We assessed the
expression of orexinergic genes in the hypothalamus, and the brainstem. In the hypothalamus,
SR9009 inhibited Hcrt expression, with suppression of Arntl used as a control. (Fig 3A and 3B).
Similarly, in the brainstem, mRNA expression of Hcrtr1 and Hcrtr2 were also reduced (Fig 3C
and 3D respectively). These results indicate that the REV-ERBs may be repressing orexinergic
transcription in these brain areas.

To determine how loss of REV-ERB expression affects orexin gene expression, we used full-
body REV-ERBβ deficient mice to assess Hcrt and Arntl levels in the hypothalamus, and
Hcrtr1 and Hcrtr2 levels in the brainstem ([51] and upublished data). Consistent with
REV-ERBβ being a transcriptional repressor, we observed increased expression of Hcrt and
Arntl in the hypothalamus (Fig 4A and 4B) and of Hcrtr1 and Hcrtr2 in the brainstem (Fig 4C
and 4D). These data suggest that REV-ERBβmay act as a transcriptional repressor ofHcrt,
Hcrtr1, andHcrtr2.

Discussion
The REV-ERBs and orexin signaling regulate various aspects of food intake [23, 57, 59, 60],
energy expenditure [23, 52, 58, 60–65], and sleep [33, 35, 36, 51, 53–56]. Orexinergic genes are
expressed in a circadian manner [40] and the REV-ERBs have been shown to be critical regula-
tors of the circadian rhythm [66]. Given the overlap in functions, we sought to determine
whether the REV-ERBs may regulate orexinergic gene expression.

Our results show that modulation of REV-ERB activity affects transcription of the orexiner-
gic genes [PPO (Hcrt), OX1R (Hcrtr1), and OX2R (Hcrtr2)]. Acute pharmacological manipula-
tion of REV-ERB activity resulted in alterations of orexinergic genes over a 24-hour period
after single injections at ZT0, relative to vehicle control. Similar results were observed with
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chronic pharmacological manipulation of REV-ERB activity (Fig 3). Delayed/repressed tran-
scription of the orexinergic genes suggests that they may be REV-ERB target genes (Fig 1).
Alternatively, orexin is also regulated by peripheral nutrient signaling, directly affecting the
hypothalamus [52, 58, 62–65] as well as the nucleus of the solitary tract (NTS) [67]. These sig-
naling macronutrients and peptides may be activated by REV-ERB agonist administration,
thus indirectly affecting orexinergic expression. Finally, modulation of orexigeneric gene
expression may be due to post-translational effects at the genes, effects incited by nutrient sig-
naling. Future studies examining this phenomenon are warranted in order to definitively deter-
mine whether this is the case.

Consistent with the REV-ERBs actively repressing orexinergic genes, mice deficient in
REV-ERBβ demonstrate de-repression of orexinergic transcripts at ZT6, which would appear

Fig 2. REV-ERB agonist SR9009 administration at ZT6 causes decreased transcript expression of orexinergic genes in the brain. A. Hypothalamic
sections were analyzed for transcript levels of PPO (Hcrt) at ZT7.B. Hypothalamic sections were analyzed for transcript levels of Bmal1 (Arntl) at ZT7.C.
Reticular formation sections were analyzed for transcript levels of OX1R (Hcrtr1) at ZT7.D. Reticular formation sections were analyzed for transcript levels of
OX2R (Hcrtr2) at ZT7. N = 6. Student’s t-test was used to assess differences between groups. *P<0.05, **P<0.01, and ***P<0.001.

doi:10.1371/journal.pone.0151014.g002
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to further corroborate direct regulation of Hcrt,Hcrtr1, and Hcrtr2 by the REV-ERBs. How-
ever, recently published ChIP-seq data generated by the Lazar laboratory determining
REV-ERBα binding sites in the brain do not support this as no REV-ERBα binding to any
regions in or surrounding orexigenic genes was observed [68]. However, in this data set,
REV-ERBα does bind in the promoter region of the Nur77 gene (Nr4a1), along with other
transcription factors that have been demonstrated to regulate orexin expression, which may
account for the changes in orexinergic transcription observed in our studies [69]. REV-ERBα
and REV-ERBβ are thought to bind to the same DNA response element and regulate similar
genes [18, 70, 71]. In fact, REV-ERBβ is thought to be a redundant protein to REV-ERBβ [18,
71]. Therefore, the ChIP-seq data would suggest that the effects observed with SR9009 treat-
ment and in the absence of REV-ERBβ are indirect effects. However, ChIP-seq studies deter-
mining the REV-ERBß cistrome in the brain, coupled with RNA-seq studies are warranted to
definitively determine any direct/indirect effects of the REV-ERBs on orexin.

Orexin signaling via OX1R in the striatum and nucleus accumbens is associated with reward
feeding and addictive behavior toward nicotine and other drugs [72–74]. In line with this, our

Fig 3. Chronic administration of SR9009 represses orexinergic transcription. Chronic administration of SR9009 results in decreased mRNA levels of A.
PPO (Hcrt) andB. Bmal1 (Arntl) in the hypothalamus at ZT6. Chronic administration of SR9009 results in decreased mRNA transcript levels of C.OX1R
(Hcrtr1) andD.OX2R (Hcrtr2) in the brainstem at ZT6. N = 6. Student’s t-test was used to assess differences between groups. *P<0.05, **P<0.01, and
***P<0.001.

doi:10.1371/journal.pone.0151014.g003
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lab recently demonstrated that administration of SR9009 injection decreased the addictive phe-
notypic properties of cocaine [19]. Suppression of reward behavior by the REV-ERBs may
occur in part via orexinergic signaling. Future mechanistic studies may aid in describing the
method of action of the REV-ERBs in reward. Therefore, pharmacological modulation of the
REV-ERBs may be a viable therapeutic option to treat addiction, anxiety, and depression via
regulation, at least in part, of the orexinergic pathway at the transcriptional level.

Conclusions
Modulation of REV-ERB activity and expression leads to changes in expression of the orexiner-
gic genes Hcrt, Hcrtr1, and Hcrtr2. Our laboratory recently published REV-ERB ligands effects
on sleep, anxiety, and metabolism. Given the overlap in REV-ERB pathways with the orexiner-
gic system, our data suggests there may be an interplay between the orexin and REV-ERB sig-
naling pathways. However, further studies exploring this overlap are warranted. Collectively,
our data indicate that REV-ERB ligands may be a means to regulate orexin expression and
could be a potential therapeutic avenue for disorders associated with aberrant orexin signaling.

Fig 4. Loss of REV-ERBβ leads to de-repression of orexinergic genes A. PPO (Hcrt), B. Bmal1 (Arntl) in the hypothalamus, andC.OX1R (Hcrtr1) D.
and OX2R (Hcrtr2) transcript levels in the brainstem were assessed using RT-PCR. Increased orexinergic and Bmal1 (Arntl) transcripts were observed at
ZT6 in REV-ERBβ-deficient versus wild-type mice. N = 8. Student’s t-test was used to assess differences between groups. *P<0.05, **P<0.01, and
***P<0.001.

doi:10.1371/journal.pone.0151014.g004
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