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Anti-emetic drug maropitant induces intestinal motility disorder but not  
anti-inflammatory action in mice
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ABSTRACT.	 Maropitant is a neurokinin 1 receptor (NK1R) antagonist that is clinically used as a new anti-emetic drug for dogs. Substance P 
(SP) and its receptor NK1R are considered to modulate gastrointestinal peristalsis. In addition, SP works as an inflammatory mediator in 
gastrointestinal diseases. Aim of this study is to clarify the effects of maropitant on intestinal motility and inflammation in mice. Ex vivo 
examination of luminal pressure-induced intestinal motility of whole intestine revealed that maropitant (0.1–10 µM) increased frequency 
of contraction, decreased amplitude of contraction and totally inhibited motility index in a concentration-dependent manner. We measured 
intestinal transit in vivo by measuring transportation of orally administered luminal content labeled with phenol red. Our results demon-
strated that maropitant (10 mg/kg, SC) delayed intestinal transit. Geometric center value was significantly decreased in maropitant-treated 
mice. Anti-inflammatory effects of maropitant against leukocytes infiltration into the intestinal smooth muscle layer in post-operative ileus 
(POI) model mice were measured by immunohistochemistry. In POI model mice, a great number of CD68-positive macrophages or MPO-
stained neutrophils infiltrated into the inflamed muscle region of the intestine. However, in the maropitant treated mice, the infiltration of 
leukocytes was not inhibited. The results indicated that maropitant has ability to induce disorder of intestinal motility in mice, but has no 
anti-inflammatory action in the mouse of a POI model. In conclusion, in mice, maropitant induces disorder of intestinal motility in vivo.
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Maropitant is a selective neurokinin 1 receptor (NK1R) 
antagonist that is clinically used as anti-emetic drugs (Cere-
nia® by Pfizer Animal Health, Madison, NJ, U.S.A.) for dog 
[12]. NK1R is expressed in emetic center and chemoreceptor 
trigger zone (CTZ). Maropitant blocks the binding of sub-
stance P (SP), a ligand of NK1R, to the receptor in emetic 
center and CTZ, resulting in the prevention of emesis.

NK1R is also expressed in many types of cells in intestine. 
NK1R has been identified on smooth muscle cells, ascend-
ing and descending neurons, interstitial cells of Cajal (ICC) 
at deep muscular plexus and myeloid cells of the villi [14, 
19]. In mice, it has been reported that SP / NK1R signaling is 
involved in non-adrenergic and non-cholinergic neuronally 
mediated contractions in circular smooth muscle in intestine 
[4]. On the other hand, SP also stimulates ICC pacemaker 
activity via NK1R [2, 19]. It is possible that pharmacological 
substrates for NK1R can modulate gastrointestinal motility.

Ligands for NKRs are tachykinin peptides, including SP, 
neruokinin A-B, hemokinin-1 and endokinins A-D. SP is 

primarily found in enteric neuron, but SP is also secreted 
by inflammatory stimuli from many kinds of immune reac-
tive cells, such as lymphocytes, eosinophils, macrophages 
and dendritic cells [8]. Secreted SP from neuronal cells and 
immune cells is considered to accelerate inflammation in an 
autocrine and/or paracrine manner [6, 15]. So, tachykinin 
peptides are considered as important inflammatory media-
tors in gastrointestinal and inflammatory diseases.

Taken together, it is hypothesized that maropitant may 
inhibit gastrointestinal motility and inflammatory responses. 
Based on these backgrounds, we investigated the effects of 
maropitant on intestinal motility in ex vivo and in vivo assays 
and leukocytes infiltration into the inflamed muscle layer in 
post-operative ileus (POI) model mice.

MATERIALS AND METHODS

Measurement of luminal pressure-induced neurogenic 
contraction of whole intestine in ex vivo: Luminal pressure-
induced neurogenic contraction of whole intestine was 
measured as described previously [10]. Briefly, the mid 
colon and terminal ileum (about 3 cm) were isolated from 
C57BL/6 mice and flushed of luminal contents. The samples 
were cannulated and placed in water-jacked organ bath in 
modified physiological salt solution (PSS; containing NaCl 
136.9 mM, KCl 5.4 mM, MgCl2 1.0 mM, CaCl2 1.5 mM, 
NaHCO3 23.8 mM, glucose 5.5 mM and EDTA 0.01 mM at 
PH 7.4) at 37°C in a 95% O2–5% CO2 atmosphere. The con-
traction was measured using a MDL 1401 magnetic blood 
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flow meter (SKALAR, Breda, The Netherlands) equipped 
with computerized PowerLab system (AD Instruments, 
Colorado Springs, CO, U.S.A.). Frequency of peristalsis like 
neurogenic motility, maximum amplitude of peristalsis like 
neurogenic motility and total motility index (total luminal 
flow) for 15 min were analyzed. Total motility index was 
estimated by calculating the area under the curve (AUC) of 
one neurogenic motility by luminal pressure.

Measurement of intestinal transit in vivo: Intestinal tran-
sit in vivo was measured by luminal content labeled with 
phenol red [13, 17]. Briefly, after 18 hr of fasting, the mice 
(C57BL/6, male, 8–12 weeks age, 12 light-dark cycles) were 
orally administered 0.25% (w/v) phenol red in 5% (w/v) 
glucose via a gastric tube. One hour after administration, the 
gastrointestinal tract was isolated and divided into 15 (stom-
ach; Sto, small intestine; Si1-Si10, cecum; Sec and colon; 
Co1-Co3) segments at equal intervals. Maropitant was given 
30 min before administration of phenol red. The volume of 
phenol red in each segment and the geometric center of dis-
tribution were calculated as previously described [13, 17].

Model mice of POI: POI is one of major diseases of gas-
troenterological surgery with gastrointestinal motility disor-
der [9, 16, 20]. Recent works revealed that inflammation of 
intestinal smooth muscle layer is pathogenesis of POI [13, 
17]. Recruited monocyte derived macrophages, neutrophils 
and activated resident macrophages are considered important 
causal agents for generating POI. In the present study, we 
used model mice of POI to analyze anti-inflammatory action 
of maropitant. The mice were anesthetized with pentobarbi-
tal sodium 40 mg/kg i.p. (Somnopentyl; Kyoritsu Seiyaku 
Corp., Tokyo, Japan). After median section, the distal ileum 
was exteriorized and then gently scraped three times with a 
sterile moist cotton applicator (intestinal manipulation; IM). 
The mice were sacrificed, and the ilea were isolated 24 hr 
after IM. Maropitant (1, 3, 5 or 10 mg/kg) was administered 
subcutaneously 1 hr before IM.

Immunohistochemistry and histochemistry: Whole mount 
ileal muscularis preparations were prepared as described 
previously [13]. For immunohistochemistry analysis, 
samples were washed twice with TBS for 30 min and then 
permeabilized with 0.2% Triton-X-100 at room temperature 
for 90 min followed by blocking with 2% BSA in TBS at 
room temperature for 30 min. The samples were then in-
cubated with primary antibody (rabbit anti-human PGP9.5 
polyclonal antibody, 1:1,000; Cosmo Bio Co., Ltd., Tokyo, 
Japan; and rat anti-mouse CD68 antibody, 1:500; Serotec, 
Dusseldorf, Germany) overnight at 4°C. After washing, the 
samples were incubated with secondary antibody (Alexa568 
goat anti-rabbit IgG, 1:500; Invitrogen, Carlsbad, CA, 
U.S.A.; and Alexa488 donkey anti-rat IgG, 1:500; Molecular 
Probes Inc., Eugene, OR, U.S.A.) at room temperature for 
1.5 hr. After washing secondary antibody, the samples were 
examined with a confocal microscope (ECLIPSE Ti; Nikon, 
Tokyo, Japan). In histochemistry analysis, myeloperoxidase 
(MPO) histochemical staining was performed as described 
previously [13]. Observation was performed with an ACT-
1C for DXM1200C microscope (Nikon). The number of 
CD68 positive cells and MPO positive cells were counted 

in four randomly selected areas of each preparation, and the 
average number of these cells was calculated.

Statistical analysis: Data were statistically evaluated 
with an unpaired Student’s t-test for comparisons between 
two groups and with one-way ANOVA followed by Tukey’s 
test for comparisons among three or more groups. Values of 
P<0.05 were considered statistically significant.

RESULTS

Effect of maropitant on luminal pressure-induced neuro-
genic motility of whole intestine in ex vivo: As shown in Fig. 
1A, luminal pressure (5 cm H2O) elicited rhythmic luminal 
flow in a reflection of contraction and relaxation of mid 
colon. This rhythmic motility was completely abolished by 
tetrodotoxin (100 ng/ml; n=4, data not shown), suggesting 
that the luminal pressure-induced intestinal motility is neu-
rogenic motility via submucosal / myenteric plexus neural 
system as previously reported [10]. In the mid colon of con-
trol mice, slow and big waves of luminal flow were observed 
based on fast and small waves of luminal flow. Maropitant 
(100 nM–10 µM) modulated the neurogenic motility in a 
concentration-dependent manner (Fig. 1B–1D). Maropitant 
decreased the big waves of luminal flow and also decreased 
amplitude, resulting in increased frequency of the neurogenic 
motility (Fig. 1B and 1C). To reflect these changes, total mo-
tility index assessed by AUC was inhibited (Fig. 1D). In the 
terminal ileum, luminal pressure induced rhythmic luminal 
flow in a reflection of contraction and relaxation. Maropitant 
also decreased the rhythmic luminal flow, resulting in the 
decreased total motility index as shown in Fig. 1E.

Effect of maropitant on intestinal transit in mice: We mea-
sured transportation of luminal contents labeled with phenol 
red within 1 hr after oral administration. In control healthy 
mice, approximately 5% of luminal content remained inside 
the stomach, whereas, approximately 75% was transported 
down the distal ileal part (Si7-Si10) as shown in Fig. 2A. On 
the other hand, in maropitant (10 mg/kg, SC)-treated mice, 
approximately 15% of luminal content remained inside the 
stomach, and the 85% was transported down the intestine. 
However, the transported luminal content inside the small 
intestine showed a wide distribution with several peaks (Si4, 
Si8 and Si10). Maropitant significantly decreased geometric 
center value, indicating average distribution of luminal con-
tent as shown in Fig. 2B (Control; 8.29 ± 0.55, Maropitant; 
5.78 ± 0.80, P<0.05). These results suggest that maropitant 
delays intestinal transit in vivo.

Effect of maropitant on leukocytes infiltration in POI 
model mice: In model mice of POI, muscularis inflammation 
with motility disorder is main symptom [18]. CD68-positive 
macrophages and MPO-stained neutrophils infiltrated into 
myenteric plexus and serosal regions in the inflamed intesti-
nal smooth muscle layer [13]. In this experiment, we could 
confirm the leukocytes infiltration at 24 hr after IM (Neu-
trophils: control; 0 ± 0, IM; 803.04 ± 58.76, P<0.01. Mac-
rophages: control; 533.51 ± 55.53, IM; 3173.72 ± 446.30, 
P<0.01). Maropitant (1 mg/kg–10 mg/kg) had no effect on 
neutrophils infiltration by IM (Fig. 3A). Maropitant (1 or 3 
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mg/kg) tended to decrease cell number of infiltrated mac-
rophages, but these effects were not significantly different 
(Fig. 3B). Maropitant (5 or 10 mg/kg) had no effect on the 
macrophages infiltration by IM.

DISCUSSION

Maropitant is a selective NK1R antagonist, which is a new 
anti-emetic drug for dogs. Recommended dosage of maropi-
tant is 1 mg/kg SC or 2 mg/kg orally once daily for up to 5 
consecutive days for acute emesis and 8 mg/kg orally once 
daily for up to 2 consecutive days for motion sickness of 
dogs [12]. Another pharmacokinetics study by using gerbil 
estimated that plasma concentration ranges of maropitant at 
2 or 4 hr after the administration (1 mg/kg SC) are 10.0–25.5 
ng/ml [3], that are calculated to 14.7 µM−37.6 µM. In this 
study, dosages of maropitant we used are 1 to 10 mg/kg SC 
in in vivo and 1 to 10 µM in ex vivo, indicating that concen-

trations used in this study are dosages within clinical use.
NK1R is expressed in various kinds of cells in murine 

intestine [4, 19]. NK1R is located on cholinergic neurons, ni-
trergic neurons, ICC and smooth muscle cells. In general, all 
NKRs, especially NK1R, are involved in non-adrenergic and 
non-cholinergic neuronally mediated contractions of circular 
muscle layer of the intestine. In contrast, it was reported that 
SP inhibited intestinal peristalsis and gastric activity through 
nitrergic inhibitory myenteric neuron by stimulating NK1R 
[7]. In this study, the luminal pressure-induced neurogenic 
motility in ex vivo was measured by using isolated mid colon 
and terminal ileum. Submucosal / myenteric nervous system 
is important to detect luminal pressure, which in turn induced 
neurogenic peristalsis like motility [10]. Maropitant inhibited 
the neurogenic motility elicited by luminal pressure, suggest-
ing that maropitant induced motility disorder in whole intes-
tine in ex vivo. We further investigated the effect of maropitant 
on intestinal transit in in vivo by measuring transportation of 
luminal content labeled with phenol red. Results indicated 
that maropitant delayed geometric center value. In the ex vivo 
experiment to measure the luminal pressure-induced neuro-
genic motility, maropitant increased frequency of motility 
whereas decreased the amplitude, indicating hyperactivity 
of the neurogenic motility. The segmented luminal content 
labeled with phenol red in maropitant-treated mice in in vivo 
may be caused as the results of hyperactivity. Taken together, 
maropitant caused motility disorder relatively at high con-
centration range in mice ileum and colon, although detailed 
mechanism of maropitant to induce intestinal dysmotility in 
in vivo was not identified in this study.

Another function of SP / NK1R signaling is pro-inflam-
matory effects on various inflammatory diseases [15, 21]. 
SP produced from T cells, macrophages, dendritic cells and 
eosinophils can activate NK1R on T cells, which in turn 
produce IFN-γ to lead to mucosal inflammation in the gas-
trointestinal tract. NK1R antagonist ameliorates the inflam-
mation in trinitrobenzene sulfonic acid-induced colitis [5] 
and the non-steroidal anti-inflammatory medication-induced 
intestinal inflammation in IL-10 null mice [1, 22]. These 
reports lead to a hypothesis that maropitant may have an anti-
inflammatory action to prevent gastrointestinal inflammatory 
diseases. However, in the murine model of POI, maropitant 
did not prevent leukocytes infiltration by IM, concluding 
that maropitant does not have an anti-inflammatory action 
in mice.

Leffler and colleague reported that NKRs differ to a large 
degree among animal species with respect to their affinities 
for antagonists [11]. They cloned NKRs from gerbil, mice, 
rat, dog and human and transfected those receptors into 
CHO cells to compare affinity of NKRs antagonists. They 
concluded that dog NK1R had similar pharmacological char-
acteristics for NK1R antagonists with NK1R of human and 
gerbil, but different characteristics compared with NK1R of 
mice and rat. In this report, a selective NK1R antagonist, an 
aprepitant, that is an anti-emetic drug for human, is clearly 
less potent at rat NK1R than at NK1R from dog, human and 
gerbil. As maropitant is a potent anti-emetic drug for dogs, it 
will be possible that maropitant may have weak affinity for 

Fig. 1.	 Effect of maropitant on the luminal pressure-induced neuro-
genic motility of whole intestine in ex vivo. A: Typical result out of 
5 independent experiments in mid colon. Left or right panel showed 
a typical result in the absence or presence of maropitant (1 µM), 
respectively. Whole colon tissue was treated with maropitant for 15 
min before measurement of the motility. B: Frequency of peristalsis 
like neurogenic motility for 15 min in mid colon. C: Maximum 
amplitude of peristalsis like neurogenic motility for 15 min in mid 
colon. D: Total motility index calculated from AUC for 15 min. E: 
Total motility index in terminal ileum. Each column showed mean ± 
SEM. *and **showed P<0.05 and P<0.01 vs vehicle, respectively.
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mice NK1R rather than dog, human and gerbil NK1Rs. As 
emesis has not been observed in common laboratory animals 
including mice, we could not evaluate anti-emetic efficacy 
of maropitant to mice by using substitute methods. So, it still 
remained as unsolved issues whether motility disorder medi-
ated by maropitant is adverse effect or not in mice. Further 
detailed investigation will be necessary to clarify effects of 
maropitant on gastrointestinal motility and inflammation by 
using another laboratory animals and/or dogs.

In conclusion, maropitant induced motility disorder in 
ileum and colon ex vivo and in vivo in mice. Maropitant did 
not show significant anti-inflammatory action assessed by 
using model mice of POI.
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