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A B S T R A C T

Human age-related diseases, including obesity and type 2 diabetes (T2DM), have long been associated to
mitochondrial dysfunction; however, the role for adipose tissue mitochondria in these conditions remains
unknown. We have tackled the impact of aging and T2DM on adipocyte mitochondria from obese patients by
quantitating not only the corresponding abundance changes of proteins, but also the redox alterations
undergone by Cys residues thereof. For that, we have resorted to a high-throughput proteomic approach based
on isobaric labeling, liquid chromatography and mass spectrometry. The alterations undergone by the
mitochondrial proteome revealed aging- and T2DM-specific hallmarks. Thus, while a global decrease of
oxidative phosphorylation (OXPHOS) subunits was found in aging, the diabetic patients exhibited a reduction of
specific OXPHOS complexes as well as an up-regulation of the anti-oxidant response. Under both conditions,
evidence is shown for the first time of a link between increased thiol protein oxidation and decreased protein
abundance in adipose tissue mitochondria. This association was stronger in T2DM, where OXPHOS
mitochondrial- vs. nuclear-encoded protein modules were found altered, suggesting impaired mitochondrial
protein translocation and complex assembly. The marked down-regulation of OXPHOS oxidized proteins and
the alteration of oxidized Cys residues related to protein import through the redox-active MIA (Mitochondrial
Intermembrane space Assembly) pathway support that defects in protein translocation to the mitochondria may
be an important underlying mechanism for mitochondrial dysfunction in T2DM and physiological aging. The
present draft of redox targets together with the quantification of protein and oxidative changes may help to
better understand the role of oxidative stress in both a physiological process like aging and a pathological
condition like T2DM.
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1. Introduction

The mitochondrion harbors crucial cellular processes including
ATP supply, metabolites generation for cytosolic processes, amino acid
catabolism, ketogenesis and urea cycle, ion homeostasis, calcium
cycling, oxygen sensing and other cell signaling pathways such as
autophagy/mitophagy and apoptosis [1], and therefore it is considered
a central integrator of the homeostatic signals in the organism [2].
Additionally, mitochondria enclose main cellular generators of reactive
oxygen species (ROS), such as the components of the respiratory chain,
a number of redox enzymes and potent anti-oxidative defense systems
[1,3] which make this organelle a key player in cellular redox home-
ostasis.

Obesity and obesity-associated pathologies have long been related
to mitochondrial dysfunction [4]. Obesity is the most prevalent
metabolic disease worldwide and is caused by an augmentation of
the body fat due to a disproportion between energy uptake and
expenditure [5]. White adipose tissue, the main adiposity regulator,
is not merely a fat reservoir, but also a complex, essential endocrine
organ [6]. Detrimental accumulation of the major intra-abdominal fat
depot, the visceral adipose tissue (VAT), significantly increases the risk
for metabolic comorbidities, like insulin resistance (IR) and type 2
diabetes mellitus (T2DM) [7].

Obesity-driven IR clinical manifestations initiate when insulin
target cells, such as adipocytes, inadequately respond to insulin, and
over time T2DM pathology emerges [8]. Some of the key factors
contributing to IR are: i) excessive nutrient supply to adipocytes, which
leads to ROS production; ii) pro-inflammatory processes; iii) endo-
plasmic reticulum stress; iv) cell aging; and v) altered mitochondrial
dynamics (such as fusion and fission events) [9–11]. Thus, mitochon-
drion is both the origin and target of multiple metabolic signals whose
integration maintains insulin sensitivity. Importantly, it has been
suggested that mitochondrial redox signaling has a key role in white
adipose tissue, regulating different processes such as adipocyte differ-
entiation or adiponectin secretion through the modulation of redox-
sensitive transcriptional factors [12,13]. Not surprisingly, given that
white adipose tissue is the greatest endocrine organ in the human body
any alteration in adipocyte mitochondria could result in significant
homeostatic disturbances.

Although most mitochondrial functions are ubiquitous to all
tissues, tissue-specific functions and tissue-specific control of mito-
chondrial capacity have been extensively reported [14]. Despite that
adipose tissue in involved in regulating energy expenditure and insulin
signaling [15], there is limited understanding of the relevance of
mitochondria in this organ, mainly due to the scarcity of this organelle
in white adipocytes [16].

We have linked obesity to the down-regulation of mitochondrial
functions [17]. In this work we have extended our previous results,
exploring the adipocyte mitochondrial proteome to further investigate,
in obesity, the influence of a physiological process, aging, and a
pathological process, T2DM. For that, we have relied on a high-
throughput multiplexed proteomic approach with isobaric labeling
followed by liquid chromatography coupled to mass spectrometry
(LC-MS) analysis, which allows the simultaneous identification and
quantification of proteins. It is noteworthy that very few proteomic
studies based on human mitochondria have been reported [18–21].
Using visceral adipocytes, Lindinger et al. [20] identified 62 mitochon-
drial proteins associated with obesity. Similarly to our study, the
authors resorted to MS for protein identification, although the quanti-
fication relied on immunoblot analysis.

Since oxidation and reduction of thiol proteins are one of the major
mechanisms by which reactive oxidants integrate into cellular signal
pathways [22], a number of proteomic technologies have been recently
developed for the enrichment, identification, and characterization of
thiol-based redox modifications, what is known as redox proteomics
[23,24]. Cys is considered the most important redox-responsive amino

acid due to its chemical properties and the range of its different
oxidation states, together with its involvement in highly conserved
functional positions in proteins. Additionally, due to their relevance
and specificity, reversible Cys modifications have been suggested to
play a main role in the regulation of protein activity and signal
transduction [25,26]. In spite of their enormous potential, the function
of oxidative modifications under physiological and pathophysiological
conditions remains largely unknown. For these reasons, in this work we
have further coupled our proteomic analysis with the study of dynamic
alterations of oxidized Cys residues (oxCys) using a GELSILOX-based
method [27].

Here, the application of state-of-the-art redox proteomics ap-
proaches to obese adipose tissue has uncovered a significant increase
of Cys oxidation levels in oxidative phosphorylation (OXPHOS) sub-
units and, remarkably, an inverse correlation between Cys oxidation
levels and protein abundance in both aging and T2DM conditions. Our
results suggest impaired assembly of mitochondrial complexes together
with defective import of nuclear-encoded proteins to the mitochon-
drion in diabetic patients. As far as we know, this work constitutes the
most comprehensive depiction of the human mitochondrial proteome
to date, as well as the first assessment of redox changes in adipocyte
mitochondria.

2. Material and methods

2.1. Ethic statement

The study was conducted according to the recommendations of the
Declaration of Helsinki and was approved by the Ethics Committees of
Hospital Clínico San Carlos and Hospital Gregorio Marañón (Madrid,
Spain). Signed informed consent was obtained from all subjects.

2.2. Biological samples

VAT samples were collected from 32 obese women (Body Mass
Index, BMI≥40 kg/m2) who underwent bariatric surgery. All the
patients were of Caucasian origin. The surgeon aimed to obtain the
samples at the beginning of the surgery and from the same anatomical
location (omentum) in all patients. None of the non-diabetic patients
suffered T2DM or other obesity-associated comorbidity (hypertension,
dyslipidemia, obstructive sleep apnea syndrome or cardiovascular
disease). Inclusion criterion for the diabetic group was suffering
T2DM for at least two years. T2DM was defined by fasting plasma
glucose > 7 mmol/L and HbA1c > 6.5%. All T2DM subjects were being
treated with oral anti-diabetic drugs and in one case with insulin in
order to control the comorbidities. Exclusion criteria encompassed: i)
clinically significant hepatic, neurological, or other major systemic
disease, including malignancy; ii) history of drug or alcohol abuse,
defined as > 80 g/day, or serum transaminase activity more than twice
the upper normal range limit; iii) elevated serum creatinine concentra-
tions; iv) acute illnesses and current evidence of chronic inflammatory
or infectious diseases; and v) mental illness rendering the subjects
unable to understand the scope of the analysis.

2.3. Separation protocol

After sample collection, fresh VAT was suspended in Hank's
Balanced Medium 199 (Cat. 22350, GIBCO®-Life Technologies) and
immediately processed for adipocytes and stromal-vascular fraction
(SVF) separation according to standard procedures. Briefly, 6g of
adipose tissue were washed three times with PBS and minced until
1–2 mm3 pieces were obtained. Digestion was carried out in 0.2%
Collagenase type I (M0A3689, Worthington Biochemical Corp.) solu-
tion in PBS for 60 min in water bath at 37 °C. The enzyme was
inactivated with fetal bovine serum (FBS) and the suspension was
centrifuged at 1,000 rpm for 10 min. Three different phases could be
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recognized: the upper phase with the adipocytes; the middle phase with
the digestion solution, and a red pellet which constitutes the SVF.
Adipocytes were collected and suspended in PBS for filtering through a
500 µm steel mesh. Three washing steps were performed for adipocytes
at 800 rpm for 3 min to remove SVF particles. Different volumes of
adipocytes (250 μL up to 1 mL) were separated and stored at −80 °C
for subsequent analyses.

2.4. Preparation of mitochondrial protein extracts and tryptic
digestion

For proteome profiling, mitochondrial enrichment was carried out
with the Mitochondria Isolation Kit (Cat. 130-094-532, Miltenyi
Biotec.) adapting the manufacturer's instructions to our sample.
Frozen adipocytes (1 mL) were thawed and suspended in the Lysis
Buffer provided by the kit, supplemented with a protease inhibitor
cocktail (Halt Protease Inhibitor Cocktail, Thermo Scientific) and
homogenized on ice for 15 min with a douncer homogenizer using 25
strokes (pestle type B). After homogenization, the adipocyte sample
was suspended in the Separation Buffer provided by the kit and
magnetically labeled with human anti-TOM22 microbeads. After the
application of a magnetic field, the retained mitochondria were eluted
and centrifuged at 16,000 rpm during 2 min. The mitochondria-
enriched pellets were dried and frozen at −80 °C until protein extrac-
tion. Mitochondrial isolation was verified by electron microscopy
(Supplementary Fig. 1). The mitochondrial pellets were treated with
radioimmunoprecipitation assay buffer (RIPA) (25 mM Tris-HCl pH
7.6, 150 mM NaCl, 1% NP-40, 1% sodium deoxycholate, 0.1% SDS)
supplemented with 50 mM iodoacetamide (IAA). Sample pooling (n=4
per group) was performed prior to digestion. Protein concentration was
measured by the Pierce BCA Protein Assay (Life Technologies, Thermo
Scientific). All samples were assayed in triplicate with less than 1%
variation. For each pool, a total of 60 µg of proteins were digested with
trypsin following a GELSILOX-based approach [27]. Experimental
proteomic procedures are summarized in Supplementary Fig. 2.

2.5. iTRAQ labeling and peptide fractionation

For iTRAQ (isobaric Tags for Relative and Absolute Quantification)
labeling, the dried peptides were taken up in 30 μL of 0.5 M triethy-
lammoniumbicarbonate (TEAB) buffer and labeled with the corre-
sponding iTRAQ reagent in 70% (v/v) ethanol for 1 h at room
temperature. Then, 100 μL of 0.5% (v/v) trifluoroacetic acid (TFA)
was added to stop the labeling reaction. The peptide samples were
mixed, vacuum concentrated and diluted in 200 μL of 1% (v/v) TFA for
desalting on Oasis HLB C18 cartridges (Waters). One-fourth of the
tagged peptides were directly analyzed by LC-MS, and the remaining
three-fourths were subject to mixed-mode cationic exchange (MCX)
fractionation. The iTRAQ-labeled peptides were suspended in 5 mM
ammonium formate with 25% (v/v) acetonitrile (ACN), pH 3.0, and
separated into 5 fractions using MCX Oasis cartridges (Waters). The
so-obtained peptide fractions were desalted using MicroSpin Columns
C18 (The Next Group), vacuum-dried and kept at 4 °C for later LC-MS
analysis.

2.6. LC-MS analyses and protein identification

High-resolution LC-MS analysis of iTRAQ-labeled peptides was
carried out on an Easy nLC 1000 nano-HPLC apparatus (Thermo
Scientific) coupled to an Orbitrap Fusion tribrid mass spectrometer
(Thermo Scientific). Peptides were suspended in 0.1% formic acid and
then loaded onto an PepMap100 C18 LC pre-column (75 µm I.D.,
2 cm, Thermo Scientific) and eluted on line onto an analytical
NanoViper PepMap™ 100 C18 LC column (75 µm I.D., 50 cm,
Thermo Scientific) with a continuous gradient consisting of 8–31% B
in 240 min (B=90% ACN, 0.1% formic acid) at 200 nL/min. Peptides

were ionized using a Picotip emitter nanospray needle (New Objective).
Each MS run consisted of enhanced FT-resolution spectra (120,000
resolution) in the 390–1,200 m/z range followed by data-dependent
MS/MS spectra of the 20 most intense parent ions acquired along the
chromatographic run. The AGC target value for the survey scan was set
to 106. Fragmentation in the Orbitrap was performed at 33% normal-
ized collision energy with a target value of 10,000 ions. The full target
was set to 30,000, with 1 microscan and 100 ms injection time, and the
dynamic exclusion was set to 0.5 min. A total of 5 MS data sets, two
from unfractionated material and three from the corresponding MCX
fractions, were registered with 25 h total acquisition time. For peptide
identification the MS/MS spectra were searched with the SEQUEST HT
algorithm implemented in Proteome Discoverer 1.4.0.29 (Thermo
Scientific). Database searching against human protein sequences from
the UniProt database (September 2014, 147,615 entries) was per-
formed with the following parameters: trypsin digestion with 2
maximum missed cleavage sites; precursor and fragment mass toler-
ances of 2 Da and 0.02 Da, respectively; carbamidomethyl and
methylthio Cys and Met oxidation as dynamic modifications; and N-
terminal and Lys iTRAQ modifications as fixed modifications. The
results were analyzed using the probability ratio method [28] and the
FDR (False Discovery Rate) for peptide identification was calculated
based on the search results against a decoy database using the refined
method [29].

2.7. Western-Blot analyses

A second cohort of patients (n=20) was independently considered
for orthogonal validation analyses. Mitochondria were obtained from
mature frozen adipocytes using the Mitochondria Isolation Kit (Cat.
ab110171, Abcam), according to the manufacturer's instructions.
Concentration of mitochondrial suspension was determined by Pierce
BCA Protein Assay. Ten μg of protein extracts were loaded, resolved on
SDS-PAGE and transferred to Hybond ECL nitrocellulose membranes
which were stained with 0.15% Ponceau red to ensure proper transfer
and then blocked with 5% (w/v) BSA in TBS buffer with 0.1% Tween
20. The primary antibodies used for protein validation were 1:2000
rabbit anti-SOD2 (ADI-SOD-111, Enzo Life Sciences); 1:5000 rabbit
anti-CS (C5498, Sigma-Aldrich); 1:2000 mouse anti-COX5B (sc-
374417, Santa Cruz Biotechnology); 1:2000 mouse anti-VDAC1
(ab14734), 1:1000 rabbit anti-TFAM (ab47517), 1:1000 mouse anti-
NDUFA9 (ab14713), 1:1000 rabbit anti-SDHC (ab155999) and 1:1000
mouse Total OXPHOS Human WB Antibody Cocktail (ab11041)
including anti-UQCRC2 (ab14745), anti-MTCO2 (ab110258) and
anti-ATP5A1 (ab14748) (Abcam). Blots were incubated with the
appropriate IgG-HRP-conjugated secondary antibodies. The immunor-
eactive bands were visualized with Amersham ECL Western Blotting
Detection Reagent (GE Healthcare). Blots were exposed for different
times. Exposures in the linear range of signal were selected for
densitometric evaluation with Image J analysis software.
Additionally, infrared-labeled secondary antibodies were also used
(Li-Cor Biosciences). The bands were detected using the Odyssey
Infrared Imaging System (Li-Cor Biosciences), and the images were
analyzed with Odyssey Application Software.

2.8. Mitochondrial activity assays

Mitochondria were obtained using the Mitochondria Isolation Kit
(Abcam). Complex IV activity was measured using a microplate assay
kit (Cat. ab109909, Abcam). Briefly, mitochondria were mildly digested
and complex IV was immunocaptured within the wells. Bovine Heart
Mitochondria (ab110338, Abcam) was used as a positive control. As
negative control, the experiment was performed in the absence of
substrate (reduced cytochrome C). All samples were assayed in
triplicate. Activity was determined by measuring the changes in
absorbance at 550 nm due to the oxidation of reduced cytochrome C.
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Fig. 1. The human adipocyte mitochondrial proteome. (A) Representative images showing critical steps during sample preparation. Fresh VAT samples were obtained from
obese patients (BMI ≥40) and processed to separate adipocyte and SVF components. Mitochondria-enriched pellets were obtained from mature adipocytes and proteins were extracted
from each individual sample. (B) Selection of obese patients and comparative proteomic studies. Three clinical groups (n=4 each) were constituted as follows: diabetic women over 45
years, non-diabetic women over 45, and non-diabetic women under 35 years. Proteins from each individual sample were pooled into their corresponding group and digested. The
peptide pools were tagged with iTRAQ labels (indicated with different colors) and mixed accordingly to achieve two differential expression studies: T2DM differences in obese women
(114 vs. 116) and age differences in non-diabetic obese women (116 vs. 117). (C) Protein identification refinement workflow. After matching the measured MS/MS spectra against the
whole human UniProt database most of the proteins reliably identified were filtered out as no evidence for their mitochondrial origin was found. This led to the final set of 706 bona fide
mitochondrial proteins finally considered for the quantitative proteomic analysis of mitochondria-enriched samples. (D) Relative distribution of bona fide mitochondrial proteins across
major organelle compartments.
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2.9. Blue native electrophoresis

To prepare native mitochondrial proteins, pellets were solubilized
in 30–100 μL buffer containing 1.5 M aminocaproic acid, 50 mM Bis-
Tris, pH 7.0. Mitochondria were extracted with a digitonin:protein
ratio of 4g/g. Solubilized samples were incubated on ice for 20 min and
centrifuged for 30 min at 13,000 rpm at 4 °C . Then the supernatant
was suspended in 750 mM aminocaproic acid, 50 mM Bis-Tris, 0.5 mM
EDTA and 5% Serva Blue G-250 prior to loading. Thirty μg of protein
were loaded in Native PAGE™ Novex® 3–12% Bis-Tris Protein Gels
(Invitrogen). Duplicate gels were used for second-dimension (2D) 10%
SDS-PAGE gels. Proteins were transferred at 1.3A constant for 10 min
and probed with 1:1000 mouse anti-COX5A (ab110262), 1:1000
mouse anti-NDUFA9 (ab14713) and 1:2000 mouse anti-VDAC1
(ab14734) (Abcam). Blots were incubated with the appropriate IgG-
HRP-conjugated secondary antibodies. The immunoreactive bands
were visualized with Cheluminate-HRP PicoDetect Kit for Western
Blotting (Panreac AppliChem).

2.10. Statistical analyses

Descriptive results of continuous variables are expressed as mean ±
standard deviation (SD). Statistical analyses were performed using the
Statistical Package for Social Science software (v. 22, SPSS, Inc). One-
way ANOVA (using Bonferroni's post hoc test) was used to compare the
anthropometrical and clinical data from the patients. The relation
between variables was evaluated by Pearson's Correlation Coefficient.
Unpaired Student's t-test was used for direct comparisons between two
groups of samples. Statistical significance was set at p < 0.05 in all
cases. A 1% peptide FDR threshold was considered. Peptide and
protein abundance changes were assessed using the iTRAQ reporter
ion intensities retrieved from MS/MS scans by QuiXoT software
[30,31] as inputs to the WSPP model [32]. This model circumvents
the statistical issues reported for protein quantitation from iTRAQ-
labeled peptides [33] and, by decomposing the different variance
components, takes into account variance non-homogeneity and the
highly unbalanced structure of this kind of data [32]. The model also
provides a robust framework for the full integration of quantitative and
error information from a given level to a superior level (e.g. peptide to
protein); thus, the standardized variable, Zq, is defined as the mean-
corrected log2 ratio expressed in units of standard deviation at the
protein level. For the quantitation of Cys oxidation, oxCys peptide
abundance was evaluated by the corresponding standardized log2ratio,
Zp, therefore avoiding biased calculations due to changes in the
abundance of the proteins from which these peptides originated [27].
The threshold for differential protein and peptide abundance was set at
|Zq|≥2 and |Zp|≥2, respectively. For the analysis of coordinated
protein responses [34] a standardized log2 ratio, Zc, was calculated
for each functional protein category. Categories with at least 5 protein
components and FDR< 0.05 were considered significantly differential

and were subjected to cluster analysis.

2.11. Annotation databases and electronic resources

The database used for ontological protein classification contained
ca. 2.3·106 functional categories with relevance to adipose tissue and
obesity. These categories were retrieved from the DAVID database
(https://david.ncifcrf.gov/) [35] including information from KEGG,
PANTHER and GO_FAT annotations. Mitochondrial protein terms
were obtained from both the GO Mitochondrion annotation
(GO:0005739, http://www.geneontology.org/) and Human MitoCarta
v2.0 [36]. Enrichment analyses were performed using DAVID software
[37].

3. Results & discussion

3.1. Mitochondrial proteome of human adipocytes

Our recent findings unveiled different patterns of mitochondrial
remodeling in the aging and T2DM processes when studying whole
adipose tissue in obese patients [38]. To further define the hallmarks of
aging and T2DM in obese adipocyte mitochondria, we have resorted to
a high-throughput proteomic procedure based on peptide iTRAQ
labeling and LC-MS analysis (Supplementary Fig. 2). Mitochondrial
samples were obtained from adipocytes previously isolated from VAT
biopsies from 32 obese subjects (Fig. 1A). For proteome profiling, a
subgroup of 12 obese women was selected according to the most
homogeneous clinical features, and split in three different groups:
diabetic over 45 years (n=4); non-diabetic over 45 years (n=4) and
non-diabetic under 35 years (n=4) (Fig. 1B, Table 1). This facilitated
two differential proteomic studies in a single experiment: diabetic vs.
non-diabetic women over 45 years (T2DM differences), and older
(mean age 50 years) vs. younger (mean age 32 years) non-diabetic
women (age differences). For orthogonal validation analyses, a second
cohort of patients (n=20) was independently considered.

LC-MS analysis allowed the identification of 27,578 unique pep-
tides at 1% FDR, corresponding to 3,542 proteins codified by 3,306
human genes (Supplementary Table 1). Of note, 841 out of 1,158
proteins currently annotated in Human MitoCarta [36,39] were
identified (Fig. 1C), covering 88% of the adipose tissue-specific proteins
detected in mouse [36]. Co-isolated non-mitochondrial proteins were
excluded from statistical analysis based on GO mitochondrion annota-
tion (GO:0005739) and the Human MitoCarta database. Furthermore,
since protein functional categories often result from non-experimental
annotations [40], several additional proteins were filtered out based on
their canonical functions and other sources of evidence such as The
Human Protein Atlas [41]. Thus, 706 bona fide mitochondrial proteins
were finally subjected to quantitative statistical analysis. The distribu-
tion of protein content across the main organelle compartments
revealed a consistent and reliable mitochondrial proteome, as expected

Table 1
Clinical characteristics of obese patients considered for mitochondrial proteome profiling. Clinical variables are expressed as mean ± SD. One-way ANOVA was used to
compare clinical variables. Significance was set at p < 0.05.

Non-diabetic women under 35 years (n=4) Non-diabetic women over 45 years (n=4) Diabetic women over 45 years (n=4) p

Age (years) 32 ± 4 51 ± 5* 50 ± 6* 0.00
Body Mass Index, BMI (kg/m2) 43.65 ± 3.37 44.75 ± 6.85 46.63 ± 6.05 0.76
Waist circumference (cm) 117.25 ± 8.77 120.50 ± 8.23 127.25 ± 2.99 0.19
Fasting glucose (mmol/L) 5.29 ± 0.27 5.64 ± 0.63 8.78 ± 4.12 0.13
HbA1c (%) 5.55 ± 0.24 5.60 ± 0.14 7.50 ± 2.00 0.07
Fasting triglycerides (mmol/L) 1.31 ± 0.32 1.65 ± 0.53 2.08 ± 1.18 0.40
Total cholesterol (mmol/L) 4.95 ± 0.67 5.28 ± 0.52 4.46 ± 1.46 0.52
cLDL (mmol/L) 2.91 ± 0.30 3.11 ± 0.43 2.31 ± 1.01 0.26
cHDL (mmol/L) 1.44 ± 0.38 1.40 ± 0.15 1.20 ± 0.14 0.37

* p < 0.01, significant differences as compared to non-diabetic obese women under 35 years by Bonferroni's post hoc test.
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[42] (Fig. 1D). Worth mentioning, 12 out of the 13 mitochondrial DNA
(mtDNA)-encoded proteins were successfully detected (Supplementary
Table 1). To our knowledge, our study has unveiled the largest number
of mitochondrial proteins from a human sample, despite the stringent
criteria applied to peptide identification (1% FDR), together with the
carefully selected and manually curated functional database annota-
tions considered.

3.2. Quantitative proteomic analysis in aging and T2DM

LC-MS data obtained from the mitochondrial adipocyte samples
were subjected to comprehensive statistical analysis using the WSPP
model [32]. Proteins with |Zq|≥2 (corresponding to p < 0.05) were
considered differentially abundant proteins (DAPs) in each compar-
ison. Out of the 706 bona fide mitochondrial proteins considered, a
total of 63 and 62 DAPs were identified in the age and T2DM
assessments, respectively (Supplementary Table 2). The occurrence of
shared features between aging and T2DM explains that 37% of DAPs
were found common to the two comparisons. Thus, cytochrome c
oxidase subunit 6B1 (COX6B1), a key player in cytochrome c oxidase
activity [43,44], was found down-regulated in the age (Zq=−2.75) and
T2DM (Zq=−5.06) comparisons.

Since cellular processes are accomplished by proteins working
together in complexes or functional pathways, we have also resorted
to a systems biology model [45] to assess whether the protein

abundance changes took place in a coordinated manner, a biological
event that is well-known [46]. These analyses revealed that global
OXPHOS down-regulation is a key hallmark of age progression in
adipocyte mitochondria (Fig. 2 A, Supplementary Table 3). These
results were confirmed by Western Blot (WB) in an independent set
of mitochondria samples using selected OXPHOS markers
(Supplementary Fig. 3A). Additionally, the up-regulation of Vitamin
D metabolism was also found associated with aging. In the T2DM
comparison, protein-coordination analyses highlighted an up-regula-
tion of Response to oxygen levels process, among other protein
functional categories (Fig. 2B, Supplementary Table 3). The Response
to oxygen levels is illustrated by a significant increase of relevant
components of the cellular antioxidant machinery like mitochondrial
thioredoxin (TXN2) or mitochondrial superoxide dismutase (SOD2),
which were found up-regulated in the T2DM assessment (Zq=4.02 and
Zq=4.45, respectively). SOD2 is a key scavenging enzyme that converts
superoxide to hydrogen peroxide and molecular oxygen in the mito-
chondrial matrix. SOD2 levels were also found increased in diabetic
compared to non-diabetic patients by WB, using a second cohort of
patients (Supplementary Fig. 3B), in agreement with earlier studies
[47,48]. To further illustrate the above-described degree of coordinated
behavior in aging and T2DM comparisons, the cumulative frequency
distribution of protein changes (Zq) was plotted for the least redundant
categories within the aging and T2DM clusters (Fig. 2C, D). Altogether,
the coordinated responses highlight that the proteome alterations

Fig. 2. Coordinated protein responses in adipocyte mitochondria in aging and T2DM. (A-B) Protein functional categories differentially modulated in the age (A) and T2DM
(B) comparisons. A color scale was used to represent the overlapping frequency of protein terms among categories that were up- (yellow) or down-regulated (purple). Category terms and
clusters are fully described in Supplementary Table 3. (C-D) Coordinated protein regulation in the age (C) and T2DM (D) comparisons. The cumulative frequency of changes (Zq values)
for the least redundant category in each of the clusters is represented together with the theoretical curve, showing a normal distribution of data, as well as the experimental curve,
representing Zq for the whole set of proteins quantified in this study (n=706). An up- or down-wards shift from the theoretical curve means a coordinated up- or down-regulation,
respectively. (For interpretation of the references to color in this figure legend, the reader is referred to the web version of this article).
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follow well-differentiated patterns of adipocyte mitochondrial dysfunc-
tion in both conditions, supporting our previous studies based on
whole VAT [38].

3.3. Regulation of mitochondrial complexes

Mitochondrial ATP is produced by the OXPHOS machinery cou-
pling two set of reactions: first, the electron transfer of reducing
equivalents to molecular oxygen through an exclusive assemblage of
protein complexes, the electron transport chain (ETC); and second, the
ADP phosphorylation through ATP synthase thanks to the proton-
motive force previously generated. OXPHOS subunits have dual genetic
origin, nuclear and mitochondrial, with the exception of complex II
subunits that are exclusively nuclear-encoded. Our study has success-

fully identified the majority of protein components of mitochondrial
complexes (Figs. 3, 4): 49 structural and assembly factors for
NADH:ubiquinone oxidoreductase (complex I); 3 for succinate oxidor-
eductase (complex II); 11 for ubiquinol-cytochrome c reductase (com-
plex III); 23 for cytochrome c oxidase (complex IV) and 20 ATP
synthase subunits and related proteins (also referred as complex V).
This work represents the largest number of OXPHOS proteins identi-
fied in human fat cells to date. This has enabled us to pinpoint
quantitative protein changes in each of the OXPHOS complexes in
both the aging and T2DM assessments.

Although, as described above, the proteins belonging to Oxidative
phosphorylation function were coordinately down-regulated in the
aging comparison (Fig. 2C), the individual analysis of each mitochon-
drial complex demonstrated that complex I, II, III and IV were indeed

Fig. 3. ETC mitochondrial complexes, OXPHOS subunits and related proteins in aging. (A) Heat-map representing protein abundance changes within the mitochondrial
complexes. For each protein gene symbols are displayed together with the corresponding Zq (standardized log2 ratio) values in a color scale (yellow means up-regulated and purple
down-regulated). Color proportion resembles the global regulation tendency in the complex. Sigmoidal curves representing the cumulative frequency of changes for each mitochondrial
complex are shown in Supplementary Fig. 4A. (B-C) Protein changes within mitochondrial complex I and IV naïve structures. (B) Schematic representation of mitochondrial complex I
subunits along its structure modules: the membrane proton pumping arm (P module) and the matrix arm composed by the electron transferring element (Q module) and the NADH
binding and oxidizing part (N module). (C) Schematic representation of monomeric cytochrome c oxidase (complex IV). Some cytochrome c oxidase subunits are not represented due to
lack of information. Boxes are colored according to the relative protein abundance change in each comparison. Three-dimensional colored structures emphasize the global behavior of
modules. Proteins containing oxCys residues are in red color. Assembly factors are not represented. Further information about specific Zq values can be found in Supplementary Table 2.
(For interpretation of the references to color in this figure legend, the reader is referred to the web version of this article).
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significantly reduced, whilst ATP synthase was not regulated (Fig. 3A,
Supplementary Fig. 4A). Protein changes in two of the most well-
known ETC complexes, I and IV, were studied in detail (Fig. 3B, C).
Complex I is the largest enzyme complex of the respiratory chain
encompassing 45 different subunits and requiring at least 13 specific
assembly factors, and its activity facilitates the main entry of reducing
power (through NADH) into the oxidative machinery [49,50]. Its L-
shaped structure is made up of a peripheral arm containing two
functional blocks, the N (NADH binding) and the Q (ubiquinone
binding) modules, and a membrane arm consisting of the P (proton
pumping) element [51]. Complex IV is the terminal oxidase set of ETC
enzymes, where the electrons are transported by four redox-active
centers to molecular oxygen [52]. Complex IV relies on a dimeric
structure where the three core components (MT-CO1, MT-CO2 and
MT-CO3), translated within the organelle, must be assembled with the
rest of nuclear-encoded components to reach an active form [53]. The

schematic representation of protein abundance along complex I and IV
structures, according to up-to-date information [49,50,53,54], clearly
evidenced the down-regulation of most of the protein components of
these complexes as obese patients age (Fig. 3B, C). Interestingly, this
effect is more pronounced in the N module of complex I, involved in
NADH binding (Fig. 3B), as well as in the two core proteins (MT-CO1
and MT-CO2) and two peripherally localized subunits (COX6B1 and
COX6C) of complex IV (Fig. 3C). Since the decreased level of these
proteins could contribute not only to the instability of both complex
structures but also to their activity decline, our data could suggest an
impairment of the electron flux within the mitochondrial ETC in the
adipocytes from older compared to younger obese subjects.

On the other hand, our results have shown a strong down-
regulation of mtDNA-encoded proteins associated with aging progres-
sion (Supplementary Fig. 5A). Notably, the mitochondrial transcription
factor A (TFAM), the main player in the regulation of mtDNA copy

Fig. 4. ETC mitochondrial complexes, OXPHOS subunits and related proteins in T2DM. (A) Heat-map representing protein abundance changes within the mitochondrial
complexes. For each protein gene symbols are displayed together with the corresponding Zq (standardized log2 ratio) values in a color scale (yellow means up-regulated and purple
down-regulated). Sigmoidal curves representing the cumulative frequency of changes for each mitochondrial complex are shown in Supplementary Fig. 4B. (B-C) Protein changes within
mitochondrial complex I and IV naïve structures. (B) Schematic representation of mitochondrial complex I subunits along its structure modules as described in Fig. 3B. (C) Schematic
representation of complex IV as described in Fig. 3C. Boxes are colored according to the relative protein abundance change in each comparison. Three-dimensional colored structures
emphasize the global behavior of modules. Proteins containing oxCys residues are in red color. Assembly factors are not represented. Further information about specific Zq values can be
found in Supplementary Table 2. (For interpretation of the references to color in this figure legend, the reader is referred to the web version of this article).
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number [55], and involved in mtDNA stability, replication and
transcription [56], was also found significantly diminished in older
compared to younger obese patients (Zq=−3.05). These results were
confirmed by WB analyses (Supplementary Fig. 3A). The involvement
of TFAM in aging is tissue-specific [57] and has been mainly
investigated in several rodent tissues. Remarkably, an aged-related
decrease in TFAM amount in muscle and liver tissues of rats has been
reported [57,58], further validating our results. Noteworthy, we pre-
viously described nuclear-encoded mitochondrial protein reduction in
whole VAT biopsies with aging [38]. Altogether, our data support the
decrease of ETC complexes with aging progression in adipocyte
mitochondria.

In the T2DM study, the detailed analysis of individual mitochon-
drial complexes revealed a normal distribution for complex I, whilst
complex III, IV and V were slightly decreased (Fig. 4A, Supplementary
Fig. 4B). Earlier studies in subcutaneous adipose tissue also reported
the down-regulation of mitochondrial complex III, IV and V in obesity-
associated IR [59], in agreement with our results. Protein changes in
the different complex I modules are illustrated in the schematic
representation shown in Fig. 4B. Results highlighted a distinctive
protein expression pattern depending on the complex modules. Thus,
the P module was found up-regulated while the Q and N modules were
mostly down-regulated. Moreover, a pronounced increase of succinate
dehydrogenase cytochrome b560 protein (SDHC) was uncovered.
SDHC is the membrane-anchoring subunit C of complex II in charge
of transferring electrons from succinate to ubiquinone, and also
participates in the tricarboxylic acid cycle (TCA). On the other hand,
complex II is the minor site of entry of reducing equivalents into the
ETC (from FADH2). Our data suggest that complex II increase could be
a compensatory response for the reduction of the oxidative capacity in
diabetic compared to non-diabetic patients, due to the down-regulation
of complex III, IV and V. In consonance with our results, complex II
increased activity together with complex I, III and IV deficiencies, have
been reported in the adipose tissue from a mouse model [60]. These
authors also reported an enhancement of citrate synthase (CS) activity.
Similarly, our results revealed that CS, a key enzyme of TCA, was up-
regulated in the T2DM comparison (Zq=3.28; Supplementary Fig. 3B,
Supplementary Table 2), suggesting a metabolic shift favoring succi-
nate (complex II)-driven respiration in the adipose tissue of our
diabetic patients.

Noteworthy, and in contrast with the results found in the age
comparison, the mtDNA-encoded proteins were mostly found up-
regulated in T2DM (Supplementary Fig. 5B). This may be accounted
for by the alteration of mtDNA-encoded protein translation [61] and/
or underline the impairment of complex assembly owing to abnormal
accumulation of specific modules. Our hypothesis about defective
complex assembly is in agreement with the protein changes observed
for complex I and IV structures, where clear differences between
modules are observed in the relative abundance of nuclear vs.
mtDNA-encoded proteins (Fig. 4B, C). Thus, the P module from
complex I, which contains the highest number of mtDNA-encoded
proteins, is up-regulated while the N module, which is exclusively made
up of nuclear-encoded subunits, was found down-regulated (Fig. 4B).
Likewise, in complex IV data revealed differences in the relative
abundance between mtDNA (core module) and nuclear-encoded
proteins (Fig. 4C). Of note, both the P module in complex I and the
core module in complex IV are gathered in the first steps of the
complex assembly process [49,53], strengthening our premise about
defects in the accumulation of specific modules during complex
assembly. This defective accumulation of mtDNA-encoded protein
modules may be due, in part, to an impaired translocation of
nuclear-encoded subunits to the mitochondrion in diabetic compared
to non-diabetic subjects that would consequently lead to deficient
complex assembly. Nuclear-encoded proteins are synthesized in the
cytosol and transported to the mitochondrion mainly via chaperones
like heat shock protein 70 (HSP70), and into the mitochondrion via

mitochondrial membrane transporters (mostly TOM and TIM com-
plexes) [62,63]. Interestingly, we have previously reported significantly
lower levels of HSP70 in diabetic compared to non-diabetic patients
[17], and in the present study we have found a down-regulation of
several TOMM proteins, like TOMM70A (Zq=−3.31) and TOMM20
(Zq=−2.07) (Supplementary Table 2), further supporting our hypoth-
esis.

Previous studies addressing changes in mtDNA copy number have
shown inverse correlation between mtDNA content and T2DM [64,65],
in contrast with our results. Nevertheless, these studies were carried
out in whole tissue samples and, therefore, could be affected by
differences in the mitochondrial mass. It has to be noted that the
current work is based on samples containing the same amount of
mitochondria, thus avoiding such kind of differences.

3.4. Quantitation of cysteine oxidation in mitochondrial adipocytes

For several years, ROS production was considered unregulated and
their targets were thought to be randomly distributed leading to the
accumulation of damaged biological molecules, which were in turn
pointed out as potential contributors to several pathologies [66].
Currently, there are clear evidences that ROS production has also
favorable effects due to their implication in several signal transduction
pathways involving reversible reduction and oxidation of specific
amino acids [26].

To gain insight into mitochondrial redox signaling in obesity, we
have carried out a large-scale identification and quantitation of
reversible thiol oxidative modifications in adipocyte mitochondria

Fig. 5. Cys oxidation levels in OXPHOS proteins. Cumulative frequency of
changes in oxCys peptides (Zp) and OXPHOS oxidized proteins (Zq) in the age (upper
panel) and T2DM (lower panel) comparisons. Changes in oxCys peptides (red line)
are represented together with their corresponding oxidized protein changes (dashed grey
line). An up- or down-wards shift from the theoretical curve means a coordinated
tendency to up- or down-regulation, respectively. (For interpretation of the references to
color in this figure legend, the reader is referred to the web version of this article).
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Table 2
Differentially abundant oxCys peptides in the age and T2DM comparisons. Protein name, UniProt accession code and oxCys peptide sequences are shown. The position of the
oxCys residues in each protein is specified together with the structural observations reported by UniProt. Zp corresponds to the standardized log2 ratio at the peptide level; the red-blue
scale means increased or decreased oxidation, respectively. FDRp refers to FDR at the peptide level. M#, Methionine oxidation; C*, Cysteine methylthio modification (referring to
oxidation site); K^, Lysine iTRAQ 4-plex tag. The iTRAQ modified N-terminal residues are shown in lower case.
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based on a proteomic procedure that enables to independently
ascertain quantitative changes at both the protein and the oxCys
abundance levels. Our aim has been to evaluate the dual role of ROS

as secondary messengers vs. stress molecules through the analysis of
Cys oxidative modifications in aging (a physiological condition) and
T2DM (a pathological or stressful condition), respectively. To our
knowledge, this study constitutes the first description of reversible Cys
oxidation in human adipose tissue, particularly in adipocyte mitochon-
dria.

A total of 229 oxCys peptides were identified at 1% FDR, corre-
sponding to 244 oxCys sites within a set of 116 proteins
(Supplementary Table 4). The oxCys proteins were mainly oxidoreduc-
tases involved in Antioxidant activity or Nucleotide binding functions
representing key mitochondrial processes such as Oxidative phosphor-
ylation, Tricarboxylic acid cycle or β-oxidation among others
(Supplementary Table 5). Of note, 44 of the oxCys peptides identified
(about 20%) pertained to OXPHOS subunits. Some of these oxCys-
containing proteins belonged to complex I and IV, as shown in red
color in Figs. 3B-C and 4B-C. It is noteworthy that no oxCys sites were
identified in mtDNA-encoded proteins (intra-membrane subunits);
only proteins located in the inter-membrane or the matrix spaces
exhibited these modifications (Figs. 3B-C, 4B-C). The WSPP statistical
model revealed 21 and 30 oxCys peptides differentially abundant in the
aging and the T2DM comparisons, respectively (Table 2,
Supplementary Table 4). Remarkably, a considerable number of the
altered oxCys sites corresponded to known disulfide bonds or to C-X9-C
type motifs (e.g. Cys 30 and Cys 65 of COX6B1 and Cys 36 of NADH
dehydrogenase [ubiquinone] 1 alpha subcomplex subunit 8, NDUFA8)
(Table 2). These C-X9-C domains are localized in nuclear-encoded
proteins that are imported into the mitochondrion through the evolu-
tionary conserved redox-active MIA (Mitochondrial Intermembrane
space Assembly) pathway [67]. This minor pathway depends on redox-
regulated folding events that stabilize, trap and finally import into the
mitochondrion the C-X9-C domain-carrying proteins like NDUFA8,
NDUFS5 and COX6B1. NDUFA8, NDUFS5 are important accessory
molecules that take part in the last stages of complex I assembly [68],
whereas COX6B1 is a key protein involved in the biogenesis [69] and
the stabilization of complex IV subunits [43]. Noteworthy, our redox
proteomics data revealed that in T2DM comparison Cys-peptides from
the aforementioned C-X9-C domain-carrying proteins were signifi-
cantly oxidized; likewise, in the aging comparison several oxCys-
containing peptides from COX6B1 were significantly increased
(Table 2). Altogether, these data suggest an inadequate import of
nuclear-encoded proteins into the mitochondria through the MIA
pathway, with consequent compromised complex assembly. Since
aging has long been associated to IR progression [70,71], the alteration
of MIA pathway emerges as a connecting link between the pathology
(i.e. IR) and the physiological aging. To our knowledge, this is the first
time that defective protein transport alongside the organelle is pointed
out as a hallmark of mitochondrial dysfunction in aging and T2DM.

3.5. Linking Cys oxidation to protein function in adipocyte
mitochondria

Taking advantage of the deep mitochondrial proteome coverage
reached in this study we have further investigated the association
between Cys oxidation levels (as measured by the corresponding Zp

Fig. 6. OxCys modifications in OXPHOS proteins. Heat maps representing oxCys
peptide changes and oxidized protein abundance changes in the OXPHOS complexes
regarding aging (A) and T2DM (B) differences. The yellow-purple columns represent
protein abundance changes according to Zq scale. The red-blue scale represents the
oxCys-peptide abundance changes (Zp values) and the position of the oxCys residues in
each protein is specified. Note that yellow-purple scale means up- or down-regulation
and red-blue scale means increased or decreased oxidation. Further information about
Zp values of oxCys-peptides is shown in Supplementary Table 4. (For interpretation of
the references to color in this figure legend, the reader is referred to the web version of
this article).
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values) and protein abundance (assessed by Zq) in the aging and T2DM
assessments. Correlation analyses revealed that the changes in abun-
dance of oxCys were inversely associated to protein abundance levels,
both in the aging (R=−0.26, p < 0.0001) and T2DM comparisons
(R=−0.38, p < 0.0001) (Supplementary Fig. 6 A). Noteworthy, this
inverse correlation was more pronounced considering only OXPHOS
proteins in aging (R=−0.35, p < 0.05) and, particularly, in the T2DM
assessment (R=−0.64, p < 0.0001) (Supplementary Fig. 6B). In addi-
tion, the analysis of the cumulative frequency of changes in oxCys
peptides and OXPHOS oxidized proteins in both assessments showed
that most of the oxCys peptides identified in these proteins tended to be
up-regulated, whereas the corresponding proteins showed the opposite
trend (Fig. 5).

Although the role of reversible Cys modifications in redox signaling
has been well appreciated [72], to date little is known about the
biological implications of these modifications. Our data have revealed
that oxCys abundance follows distinctive patterns concerning OXPHOS
complexes in the two comparisons. In aging, the oxidation was mainly
localized in complex III and IV, which also comprised the most down-
regulated proteins (Fig. 6A). In T2DM, however, the oxidation was
restricted to complex I and IV (Fig. 6B), where most oxidized proteins
showed down-regulated and oxCys peptides were significantly more
abundant. This outcome is particularly pronounced in COX6B1, where
oxidative changes in the C-X9-C domains could lead to its defective
import into the mitochondrion through the MIA pathway, as earlier
pointed out. Accordingly, our data suggest that COX6B1 oxidation
could contribute to complex IV dysfunction. To further investigate this
issue, we examined complex IV activity in a different set of mitochon-
drial samples. Interestingly, our data showed a significant decrease of
complex IV activity in diabetic compared to non-diabetic patients
(Fig. 7A). Remarkably, previous studies had evidenced that resveratrol,
an anti-oxidant metabolite, improves complex IV activity [43], thus
strengthening our results. In addition, Blue Native (BN)-PAGE ana-
lyses of digitonin-solubilized adipocyte mitochondria revealed that
complex IV was found significantly decreased in diabetic compared

to non-diabetic patients (Fig. 7B), potentially accounting for the
reduction of complex IV activity in T2DM. Consequently this alteration
may support the respiratory dysfunction postulated for T2DM, since
complex IV is associated to complex I and III in the different super-
complexes (SCs) [73]. Thus, 2D BN-PAGE assays revealed a trend
toward the down-regulation of these SCs in diabetic patients (Fig. 7C).
In agreement with these observations, impaired SCs assembly has been
reported in muscle mitochondria from diabetic subjects [74].

4. Conclusions

In the current work we have used adipose tissue from obese
patients to address two different events previously related to oxidative
stress and mitochondrial dysfunction: aging, a physiological situation,
and T2DM, a severe obesity-associated disorder. In these two compar-
isons Cys oxidation levels correlated negatively with protein abun-
dance, notably in T2DM, where a greater number of these proteins
were OXPHOS subunits. In diabetic patients the proteomic signature of
mitochondrial dysfunction comprises: i) a decrease of specific OXPHOS
subunits together with reduced complexes and SCs; ii) an increase of
the antioxidant response; iii) adjustment of mitochondrial- vs. nuclear-
encoded protein modules suggesting a dysfunctional protein transloca-
tion into the mitochondria; and iv) oxidative Cys modifications related
to defects in protein import through the MIA pathway. We have
demonstrated an impaired activity of complex IV, which brings
together the most down-regulated and, at the same time, the most
oxidized OXPHOS protein components. Oxidative damage and protein
changes undergone by the OXPHOS system may compromise the
metabolic status of the adipocyte due to an imbalance of NADH/
NAD+ and/or ATP/ADP levels. In addition, the modifications of
proteins related to mitochondrial transport could also impact intra-
and inter-organelle crosstalk, severely disrupting adipocyte home-
ostasis and therefore leading to aberrant insulin sensitivity. The
hallmark of age progression on mitochondrial remodeling also includes
down-regulation of OXPHOS components together with increased Cys
oxidation levels, albeit to a lesser extent as compared with the T2DM
condition. It is not surprising that ROS and oxidative modifications
play a more relevant role in a pathological condition like T2DM as
compared to a physiological event like aging. In this sense, Complex IV
emerges as a common target connecting the oxidative hallmarks of
T2DM and aging progression, potentially accounting for the progres-
sion of insulin resistance over time in obese individuals.

Setting aside the analysis of individual proteins we have resorted to
an innovative combination of redox proteomics and systems biology
approaches. The unprecedented capacity of this methodology has
generated a vast amount of biologically relevant information, produ-
cing a molecular picture of the complex interplay between mitochon-
drial dysfunction and aging, obesity and T2DM. Furthering our knowl-
edge about reversible oxidative modifications and their implications
would help to develop advanced integrative models of proteome
regulation and redox signaling pathways, providing a basis for im-
proved redox-based therapeutics in obese patients.
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Fig. 7. Adipocyte mitochondrial function in T2DM. (A) Complex IV activity in
T2DM. Results represent the distribution of average activities of adipocyte mitochondria
from diabetic (n=5, grey box) and non-diabetic (n=7, white box) patients. All samples
were assayed in triplicate. Statistical significance was set at * p < 0.05. (B) Results
represent adipocyte mitochondria from diabetic (n=4, black bars) and non-diabetic (n=3,
white bars) patients analyzed by 1D BN-PAGE. Complex IV bands were revealed by
COX5 A. Graph bars represent the optical density means ± SD from two independent
experiments. Statistical significance was set at * p < 0.05. (C) Representative 2D BN/
SDS-PAGE analysis from diabetic and non-diabetic mitochondrial samples. Membranes
were incubated with antibodies against NDUFA9 and COX5 A to reveal supercomplexes
(SCs) associations. Db, diabetic; Non-db, non-diabetic.
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