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Acute kidney injury (AKI) is a serious disease characterized by a rapid decline in kidney
function. Oxidative stress is the primary pathogenesis of AKI. Salvianolic acid B (SalB), a
water-soluble compound extracted from Salvia miltiorrhiza, possesses a potent
antioxidant activity. Here, we investigated the protective effect of SalB against renal
ischemia-reperfusion injury (I/R) in mice. Briefly, by analyzing renal function, oxidative
stress markers and inflammatory biomarkers, we found that SalB could improve kidney
damage, reduce oxidative stress and inflammatory factor levels. Interestingly, the
expression of the NLR family pyrin domain-containing 3 (NLRP3), caspase-1,
pyroptosis related proteins gasdermin D (GSDMD) and interleukin (IL)-1b, which were
significantly upregulated in the kidney tissues of I/R group, was effectively reversed by
SalB. Meanwhile, renal tubular epithelial cells hypoxia and reoxygenation model was used
to explore pyroptosis of caspase-1-dependent. Further mechanism study showed that
the SalB pretreatment could promote the increase of nuclear factor erythroid-2 related
factor 2 (Nrf2) nuclear accumulation, which significantly suppressed oxidative stress,
proinflammatory cytokines, NLRP3 inflammasome activation and pyroptosis. These
results indicate that SalB can inhibit caspase-1/GSDMD-mediated pyroptosis by
activating Nrf2/NLRP3 signaling pathway, resulting in alleviating I/R injury in mice.

Keywords: acute renal injury, Salvianolic acid B, pyroptosis, Nrf2/NLRP3 signaling pathway, NLRP3 inflammasome
INTRODUCTION

Acute kidney injury (AKI) is a severe disease that has a high prevalence and can even cause death in
hospitalized patients (Velez et al., 2020). It is a clinical syndrome characterized by a sudden decline
in renal function accompanied by cumulative nitrogenous compounds (urea nitrogen and
creatinine) with reduced urine output. If not treated properly, it can lead to the occurrence of
acute renal failure (ARF) (Kanagasundaram, 2015). Although the pathogenesis of AKI remains
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unclear, injury or death of renal tubular epithelial cells and
inflammation have been identified as key causative factors of
AKI (Andrade-Oliveira et al., 2019; Guzzi et al., 2019). In AKI,
renal tubular epithelial cells are damaged or perished due to
different etiologies. These cells may secrete a signal that triggers a
nephritic response, which ultimately leads to the development of
ARF (Rabb et al., 2016).

Several studies have shown that signals associated with
pyroptosis have a central role in the occurrence and development
of AKI (Krautwald and Linkermann, 2014; Kers et al., 2016).
Pyroptosis is a proinflammatory programmed cell death different
from apoptosis and necrosis (Liu and Sun, 2019), characterized by
the release of proinflammatory cytokines and intracellular content
(Fernandes-Alnemri et al., 2007; Shi et al., 2017). Pyroptosis is
rapidly achieved through two pathways: the classical caspase-1
dependent pathway (Schneider et al., 2017), and the caspase-11–
dependent nonclassical secretory pathway (Kayagaki et al.,
2015). Specifically, in the classical caspase-1 dependent pathway,
caspase-1, also known as pyrophosphate, is a large cysteine-
dependent protease. Active caspase-1 has a specific structure of
heterotetramers that mediate proteolytic processes of inflammatory
and inflammatory cytokines, including interleukin-1b (IL-1b) and
IL-18 (Vanaja et al., 2015). Gasdermin D (GSDMD) is cleaved into
two fragments by active caspase-1: GSDMD N-terminal fragment
(GSDMD-N) and GSDMD C-terminal fragment (GSDMD-C) (Shi
et al., 2015). The cell membrane formsmembrane pores through the
insertion and permeabilization process of GSDMD-N, thereby
inducing higher inflammatory cytokine release (Liu X. et al., 2016;
Rogers and Alnemri, 2019). Pyroptosis has been reported to act
primarily on phagocytic cells, macrophages, monocytes and
dendritic cells (Miles et al., 2013; de Almeida et al., 2015; Martinet
et al., 2019), as well as various other cell types in inflammatory
diseases such as T cells (Luo et al., 2019). Previous studies have
shown an enhanced expression of GSDMD in the serum of patients
with rheumatoid arthritis (RA) and emphasized pyroptosis in
association with RA (Wu et al., 2020). Moreover, Wang Y. et al.
(2019) found that chemical GSDMD-related pyroptosis of tubular
cells in diabetic kidney disease is dependent on the TLR4/NF-kB
signaling pathway. At the same time, studies have emphasized that
the loss of renal tubular epithelial cells leads to an increase in renal
tubular damage in kidney disease. These findings collectively
implicate an important pathogenesis of pyroptosis in AKI,
indicating that the improvement of pyroptosis may serve as a
potential therapeutic target for AKI.

Reactive oxygen species (ROS) accumulation and inflammation
are the key factors causing AKI. Growing evidence has indicated
that the expression of inflammatory bodies and ROS in AKI is
significantly increased (Sun T. et al., 2019; Yu et al., 2020). With
the development of AKI, a large amount of ROS are produced,
which leads to the activation of The NLR family pyrin domain-
containing 3 (NLRP3) inflammasome and the cleavage of
caspase-1, thereby promoting the maturation of inflammatory
cytokines and promoting the release of interleukin (IL)-1b and
IL-18 (Kim et al., 2019; Zahid et al., 2019). The activation of cl-
caspase-1 will induce caspase-1–mediated pyroptosis and
aggravate renal injury (Wang et al., 2020; Zhu et al., 2020).
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Nuclear factor erythroid-2 related factor 2 (Nrf2), which is a
well-known transcription factor with an important role in
cytoprotection, is activated under stress conditions when
excessive ROS are detected (Ungvari et al., 2019; Tsushima
et al., 2020). Previous studies have shown that the Nrf2/NF-kB
pathway improves acute lung injury (Xu et al., 2019).
Interestingly, a recent study has reported that the activation of
Nrf2 negatively regulates NLRP3 inflammasome activation in
kidney injury (Shahzad et al., 2016; Li et al., 2019). In other
pathways, Nrf2 dissociates from the Kelch-like ECH-associated
protein 1 (Keap1) under oxidative stress, and modulates the
thioredoxin-interacting protein-thioredoxin1 (TXNIP-TRX1)
complex formation [TXNIP is considered an upstream partner
protein to NLRP3 by Bai et al. (2019)], while exerting the
regulation effect of NLRP3 inflammasome (Wang C. Y. et al.,
2019). ROS is closely related to the activation of NLRP3
inflammasome. Therefore, Nrf2 activation can inhibit ROS-
induced activation of NLRP3 inflammasome.

Salvianolic acid B (SalB) is a water-soluble component of the
traditional Chinese medicine Salvia miltiorhiza Bge, which has
various biological activities such as antioxidant, antiinflammatory,
antitumor and renal protection (Zhang et al., 2017; Zhao et al.,
2017; Huang et al., 2019). Previous studies have suggested that
SalB reduces various organ injuries, and maintains the redox
homeostasis, especially the balance of ROS (Tang et al., 2014). It
has been reported that SalB provides protection by upregulating
the Nrf2 antioxidant signaling pathway in animal model (Liu B.
et al., 2016; Liu M. et al., 2018; Zhang et al., 2018; Liao et al., 2020).
However, there is still no evidence confirming whether SalB
protects against AKI through the Nrf2/NLRP3 mechanism.
Though pyroptosis may be an essential mechanism underlying
the development of AKI in renal tubular cells, it has been
addressed by only a few studies, and the data on the relationship
between SalB and AKI pyroptosis is even scarcer. Therefore, the
aim of this study was to investigate the potential role of pyroptosis
during I/R-induced mouse model of AKI and explore the
molecular mechanism related to Nrf2/NLRP3 pathway
underlying the effects of SalB.
MATERIALS AND METHODS

Animals
Sixty male Balb/c mice, 8–10 weeks old, weighing 18–22 g,
were obtained from the Guangzhou University of Chinese
Medicine Research Center (License number: SCXK (Guangdong)
2018-0034; Guangzhou, China) and were housed in an SPF animal
laboratory (License number: SYXK (GZ) 2018-0085). All
the animals were housed in an environment with a room
temperature (RT) of 25 ± 1°C, a relative humidity of 65 ± 1%,
and a light/dark cycle of 12/12 h. All animal studies (including the
mice euthanasia procedure) were done in compliance with the
regulations and guidelines of the animal ethics committee of
Guangzhou University of Chinese medicine institutional
animal care and conducted according to the AAALAC and the
IACUC guidelines.
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Renal Ischemia-Reperfusion Model and
SalB Treatment
After 1 week of acclimatization, the mice were divided into five
groups: sham operation control group (Sham), model group (I/R),
the SalB high-dose group (SalB-H), the SalB medium-dose group
(SalB-M), and the salB low-dose group (SalB-L); there was no
difference in food consumption between the five groups. Except for
the sham group, all other groups were surgically modeled. One week
before the modeling, the high, medium and low doses of SalB
(purity>98%; 358153; Nanjing DASF Biotechnology Co.Ltd.) were
intragastrically administered at a dose of 200 mg/kg, 100 mg/kg, 50
mg/kg, respectively, and the sham operation group was given
appropriate physiological saline. The dose of SalB was decided
according to the previous study (Huang et al., 2016; He et al., 2020)
Mice were anesthetized with 1.5% pentobarbital sodium (0.1 ml/
100 g weight) and unilateral renal ischemia was induced by
microvascular forceps around the left renal pedicle for 45 min,
including contralateral nephrectomy. Sham-operated control mice
were subjected to an abdominal incision but did not undergo
clamping of the renal pedicles. The abdominal incision was closed
with suture. After 24 h of surgery, the mice were euthanized, serum
and kidney tissue was harvested for analysis.

Renal Function Tests
The renal function was analyzed by measuring blood urea
nitrogen(BUN) and serum creatinine (Scr) using the assay
kits (Jiancheng Biotech, Nanjing, China), according to the
manufacturer’s instructions.

Oxidative Stress Analysis
To analyze intracellular oxidative stress, the malondialdehyde
(MDA), superoxide dismutase (SOD) and glutathione (GSH)
was detected according to the manufacturer’s instructions
(Jiancheng Biotech, Nanjing, China).

Western Blot
Renal tissue and renal tubular epithelial cells were lysed in RIPA
lysis buffer on ice, total proteins were quantified by BCA protein
quantitative kit (CW0130S; CWBIO) to obtain the protein
concentration. Samples were then transferred to polyvinylidene
fluoride membrane by 8%–15% SDS-PAGE. The resulting blots
were blocked with 5% nonfat milk dissolved in PBS for 3 h and
incubated with anti-GSDMD antibody (96458S; CST and sc-
393656; Santa Cruz), anti-caspase-1 antibody (ab1872; Abcam),
anti-NLRP3 antibody (15101S; CST), anti-IL-1b antibody
(12242; CST), anti-Nrf2 antibody (ab137550; Abcam), anti-
Keap1 antibody (8047; CST), anti-HO-1 antibody (ab13248;
Abcam), anti-TXNIP antibody (14715; CST), at 4°C overnight.
The next day, after the blots were washed three times with PBS,
and then incubated in horseradish peroxidase-conjugated
secondary antibodies for 1 h. The specific proteins were
detected by the chemiluminescence (ECL) system.

Cell Model
Human renal tubular epithelial cells (HK-2) was purchased from
the Cell Bank of the Chinese Academy of Sciences. The cells were
Frontiers in Pharmacology | www.frontiersin.org 3
cultured in DMEM/F12 (SH30023.01B,HyClone) medium
containing 10% fetal bovine serum (10099141; Gibco) and 1%
penicillin-streptomycin(15140122; Gibco) in a humidified
atmosphere containing 5%CO2/95% air at 37°C. After two–four
passages, cells were cultured for 24 h and then were randomly
divided into three groups: Control group: cells were cultured
under normal conditions (5% CO2, 21% O2, 74% N2); Model
group: the cells were incubated with different concentrations of
SalB(purity>98%; 358153; Nanjing DASF Biotechnology Co.Ltd.)
for 24 h; Positive control group: cells were incubated in certain
concentration of NLRP3 inhibitor MCC950(S7809;Selleck),
caspase-1 specific inhibitor VX-765(S2228;Selleck) for 2 h, and
were then placed in a hypoxia incubator chamber (27310,
stemcell) hypoxia (5% CO2, 95% N2) for 6 h and then
reoxygenated for an additional 1 h (5% CO2, 21% O2, 74% N2).
The model establishment was decided according to the previous
studies (Liu et al., 2019; Yuan et al., 2019).

Immunofluorescence
After incubation in hypoxia condition for 6 h, cells were fixed
with 4% buffered paraformaldehyde for 10 min, permeabilized
with 0.5% TritonX-100 for 20 min at RT, rinsed with PBS three
times, and blocked with goat serum for 30 min. Cell slides
were then incubated with primary antibody against caspase-1,
ASC (sc-271054; Santa Cruz) and Nrf2 at 4°C overnight.
Consequently, the slides were washed with PBS and incubated
with AlexaFluor 555 (4413S; CST) and 488-labeled (4408S; CST)
secondary antibodies for 1 h at RT in the dark. All samples were
then incubated with DAPI for 5 min and blocked with an
antifluorescence quencher. Images were captured using a laser
scanning confocal microscope (LSM800;ZEISS).

Immunohistochemical Staining
The slides were blocked with 3% hydrogen peroxide at RT for
10 min, and the primary antibody anti-caspase-1 was placed in a
wet box at 4°C for 16 h. The cells were washed three times with
PBS, followed by incubated with horseradish peroxidase at RT
for 10 min. The caspase-1 positive staining was visualized with
diaminobenzidine (DAB) and the cell nucleus was stained with
hematoxylin. After dehydration, slides were mounted using the
Rhamsan gum and observed under a microscope.

Hematoxylin and Eosin Staining
The kidney tissues were collected and embedded in 4%
paraformaldehyde. After 48 h, they were embedded in paraffin,
cut into 4 mm sections, stained with hematoxylin and eosin
(H&E) reagent, and observed under a microscope.

RNA Extraction and Quantitative Real-
Time Polymerase Chain Reaction
Total RNA was extracted from renal tissue using RNAiso Plus
(9108,Takara), and its concentration was measured by a nucleic
acid-protein analyzer after purification. The RNA was reverse
transcribed into cDNA using Takara RT-PCR kit (RR047A;
Takara), and then cDNA was mixed with Takara SYBRq PCR
kit (RR820A;Takara) to quantify mRNA levels of IL-1b, TNF-a.
September 2020 | Volume 11 | Article 541426
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The RT-PCR reaction was performed for 40 cycles in the ABI
7500 system, with GAPDH as an internal reference and mRNA
levels calculated by the 2-DDCT method.

Scanning Electron Microscope
HK-2 cells were seeded into six-well plates. After reaching 70%
confluence, cells (except the Sham group) were pre-treated with
SalB, followed by the H/R treatment. Cells were then fixed with
ice-cold 2.5% glutaraldehyde at 4°C for 24 h. After elution in a
series of concentrations of ethanol and desiccation by isoamyl
acetate, cells were sputtered coating with lon-sputtering
instrument. Specimens were detected using a scanning electron
microscope (SU8010; Hitachi, Tokyo, Japan).

Detection of the Frequency of Annexin
V+/PI+ by Flow Cytometry
Cell death was analyzed by flow cytometry (BD FACSCanto II,
USA) using the Annexin V-FITC/PI Apoptosis Detection Kit
(Beyotime, JiangSu, China). In brief, the cells from six groups
were harvested and washed twice with PBS. Cells were then stained
with 10ml Annexin V-FITC and 10 ml propidium iodide in the
dark. Consequently, cells were detected with flow cytometry and
analyzed with FlowJo 7.6 software (FlowJo, Ash-land, OR, USA).

Measurement of Cellular ROS Levels
Cell superoxide level was determined by DCFH-DA (BestBio,
Shanghai, China). HK-2 cells were exposed with different
stimulations and incubated with DCFH-DA for 60 min in a light-
protected humidified chamber and washed. The fluorescence
intensity of DCFH-DA was measured by the laser scanning
confocal microscope.

Small Interfering RNA Transfection
Small interfering RNA transfection Nrf2 siRNA was transformed
by ribo FECTTM CP reagent (Ribobio, Shanghai, China)
according to the manufacturer’s protocol. The sequence of
Nrf2 siRNA was 5′- GAGAAAGAATTGCCTGTAA -3′.

Statistical Analyses
Statistical Analysis Continuous variables are presented as the
mean ± S.E.M. Analysis of variance (ANOVA) and post hoc
Bonferroni analysis was conducted for multiple comparisons by
SPSS software-version 20.0. A P-values<0.05 indicated a
statistically significant difference.
RESULTS

The Renoprotective Effects of SalB on I/R
Mice
SalB is one of the effective medicinal ingredients of Salvia
miltiorrhiza Bge, which is formed by the condensation of three
molecules of Danshensu and one molecule of caffeic acid (Figure
1A). To investigate the possible effects of SalB on AKI, a mouse
model of AKI was induced by I/R (Figure 1B). The levels of
serum Scr and BUN were assessed and HE staining was
Frontiers in Pharmacology | www.frontiersin.org 4
performed. Compared with the sham group, the Scr and BUN
levels were significantly increased in the I/R group, which
indicated a decrease in renal function in I/R mice (Figures 1C,
D). It was improved after treatment with SalB, and the difference
between the doses is not obvious. HE staining showed that I/R
surgery resulted in severe AKI, which was characterized by
vacuolization of the renal tubules, transparent tube type in the
lumen and red-stained cytoplasmic granules in I/R mice (Figure
1E). Significantly, renal tubular damage was reduced in the mice
treated with SalB. The damage index analysis shows that there is
a dose-dependent relationship after SalB treatment. Besides, the
improvement effect is significant in the high-dose group. These
results indicated that SalB improves AKI in I/R mice.
SalB Inhibits Pyroptosis In Vivo
and In Vitro
Next, we assessed whether pyroptosis contributed to the progression
of AKI and had an important role in this process. The protein
expression levels of pyroptosis related proteins GSDMD, caspase-1
and IL-1b in the kidney tissues were measured. Protein expression
of active cleaved form of caspase-1 (Cl- casp1), proform of caspase-1
(Pro-casp1), active cleaved form of IL-1b (Cl- IL1b), proform of IL-
1b (Pro-IL-1b), GSDMD, GSDMD-N terminal segment (Cl-
GSDMD) were strongly upregulated in the I/R group, which was
effectively reversed by SalB (Figures 2A–D). Immunohistochemical
staining of caspase-1 produced another evidence of pyroptosis in the
renal tubule, and histological analysis of the kidney showed a
significant increase in caspase-1 activation (Figures 2E, F).
Besides, the I/R group significantly increased the expression of
pyroptosis, which was reflected by a sustained increase in IL-1b and
TNF-amRNA levels (Figures 2G, H). Therefore, SalB significantly
inhibited the expression of pyroptosis in I/R mice.

Renal tubular cells were identified as the primary site of AKI,
and data indicated that lesion death occurred in renal injury
induced by I/R. To further determine the mechanism of SalB in
AKI, HK-2 was used for H6h/R1h treatment to induce
pyroptosis. Cell viability was significantly inhibited after H/R
treatment compared to control (Figure 3A). In addition, the cell
viability was significantly improved at the concentrations of
20mM, 40mM and 80mM, (Figure 3B), based on which these
three concentrations were chosen for subsequent experiments.
Moreover, H/R treatment increased LDH content in HK-2 cell
supernatants compared to control (Figure 3C). Also, we found
that H/R treatment significantly increased the PI double positive
rate of HK-2 cells (Figure 3D). Besides, both of ASC (an
apoptosis-associated speck-like protein containing CARD) and
caspase-1 are the components of the inflammasome. The
immunofluorescence results showed that the expression of
caspase-1 and ASC protein in HK-2 cells after H/R treatment
was significantly enhanced (Figure 3E). Consistent with these
findings, H/R treatment significantly increased the protein levels
of HK-2 cells cl-caspase-1, caspase-1, cl-GSDMD, GSDMD
(Figures 3F–I). A scanning electron microscope confirmed the
presence of pyroptosis. H/R-induced pyroptosis in HK-2 cells
was identified, through the formation of pores on the cell
membrane, which leads to loss of its integrity. In addition, the
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https://www.frontiersin.org/journals/pharmacology
http://www.frontiersin.org/
https://www.frontiersin.org/journals/pharmacology#articles


Pang et al. SalB Ameliorates Pyroptosis Through Nrf2
contents were released, causing an inflammatory reaction
compared with the control group. At this time, the nucleus
was located in the center of the cell (Figure 3J). These results
showed that pyroptosis was similarly induced in renal tubules
HK-2 cells by simulating I/R with H/R model.

Nrf2/NLRP3 Signaling Pathway Is Involved
in the Inhibition of Pyroptosis in AKI by SalB
We next used immunoblotting to determine the expression levels
of NLRP3 in the kidneys. We found that the NLRP3 protein
levels were significantly upregulated in the kidneys of I/R mice,
which were reversed by SalB treatment. Interestingly, we found
that TXNIP protein was also upregulated considerably in I/R
(Figures 4A–C). Liu et al. have recently reported that the
inhibition of TXNIP-TRX1 complex dissociation by Nrf2
activation prevents TXNIP from activating NLRP3 protein. We
tried to explore the possible action proteins of SalB that
inhibit the expression of TXNIP and NLRP3. Results of
immunofluorescence staining and Western blotting showed
that SalB could activate Nrf2 nuclear expression and activate
HO-1 protein by inhibiting Keap1 protein expression, which
Frontiers in Pharmacology | www.frontiersin.org 5
indicated that SalB could significantly improve the antioxidant
capacity of I/R mice (Figures 4D–H). Consistent with these
results, the levels of oxidative stress indicators SOD, GSH and
MDA were examined, and the results showed that SalB could
effectively inhibit oxidative stress levels in vivo (Figures 4I–K).
Consistent with in vivo results, SalB inhibited TXNIP and
NLRP3 protein expression of HK-2 after H/R treatment
(Figures 5A–C) and increased Nrf2 nuclear import and
activated expression of downstream antioxidant components
(Figures 5D–H). The signal of fluorescence was blunted in
cells subjected to H/R but was markedly increased by SalB
treatment present throughout the process of H/R (Figure 5I).
In conclusion, SalB activates Nrf2 nuclear expression and
inhibits TXNIP and NLRP3 protein expression.

The Effect of Nrf2 Knockdown on the
Antioxidative Stress and Antipyroptosis
Effects of SalB in H/R
In order to explore the mechanism by which SalB regulates cell
oxidative stress and pyroptosis, siNrf2 was used. Specific
knockdown of Nrf2 in HK-2 cells was confirmed at the mRNA
A B

D

E

C

FIGURE 1 | SalB treatment ameliorates renal function and renal tubule pathological injury induced by ischemia-reperfusion (I/R). (A) The chemical structure of
Salvianolic acid B (SalB). (B) Experimental design. (C, D) Serum creatinine and blood urea nitrogen levels. The data show means ± SEM (n = 6).*P < 0.05, **P < 0.01
vs. sham group; #P < 0.05, ##P < 0.01 vs. I/R group. (E) Kidney tissue sections were subjected to histological examination by hematoxylin and eosin staining (H&E)
to evaluate renal tubule injury; protein casts are shown with the red arrow. Tubular damage was scored in a double-blind manner method based on the percentage
of injury included tubular dilation and intertubular hemorrhage: 0, no damage; 1, < 25%; 2, 25 ~ 50%; 3, 50 ~ 75%; 4, > 75%) Magnification: 400×.
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and protein expressions (Figures 6A–C). Knockdown of Nrf2
significantly increased the oxidative stress induced by H/R, and
the addition of SalB still cannot reduce the fluorescence intensity
of DCFH-DA, indicating that the antioxidant effect of SalB is
impaired (Figure 6D). After siNrf2 transfection, the protein
levels of cl-GSDMD/GSDMD in H/R-induced HK-2 cells
Frontiers in Pharmacology | www.frontiersin.org 6
increased, indicating an increase in pyroptosis. As expected,
compared with the treatment group without siNrf2, SalB
treatment scarcely changed the expression of these pyroptosis
markers in cells pretreated with siNrf2 (Figures 6E–G).
Therefore, these data proved that SalB exerts an antipyroptosis
effect by regulating the Nrf2 pathway in HK-2 cells.
A

B

D

E

F

G H

C

FIGURE 2 | SalB treatment reversed the effect of pyroptosis related genes in ischemia-reperfusion (I/R) mice. (A–D) Western blot analysis of the active cleaved form
of caspase-1 (Cl-casp1), proform of caspase-1 (Pro-casp1), active cleaved form of interleukin-1b (IL-1b) (Cl-IL-1b), proform of IL-1b (Pro-IL-1b), gasdermin D
(GSDMD), GSDMD-N terminal segment (Cl-GSDMD). The data are presented as the mean ± SEM (n = 3), *P < 0.05, **P < 0.01 vs. sham group; #P < 0.05,
##P < 0.01 vs. I/R group. (E, F) Immunohistochemical staining and quantitative analysis for caspase-1 was shown (n = 6, magnification: 400×). (G, H) mRNA levels in
renal tissues of IL-1b and TNF-a determined by real-time polymerase chain reaction (PCR). The data are means ± SEM (n = 6).*P < 0.05, **P < 0.01 vs. sham group;
#P < 0.05, ##P < 0.01 vs. I/R group.
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DISCUSSION

In this study, we investigated the effect of SalB on kidney injury
through the I/R animal model and H/R cell culture system. SalB
exerts its protective effects by reducing the levels of BUN and
SCr. In addition, SalB mediated the inhibition of pyroptosis,
which is associated with the activation of NLRP3. Further study
demonstrated that SalB inhibited the release of ROS by activation
of Nrf2 nuclear translocation, resulting the reduction of
inflammation and pyroptosis during kidney injury. our results
provided a rational for the use of SalB as a potential supplemental
treatment to attenuate kidney injury.
Frontiers in Pharmacology | www.frontiersin.org 7
Previous studies have shown that I/R-induced tubular cell
death is a major cause of the development and progression of
ARF. Necrosis and apoptosis is the main pathway leading to
tubular cell death after I/R (Linkermann et al., 2014), but caspase
inhibitors that inhibit apoptosis as a target did not completely
prevent the AKI process, indicating that there must be other
forms of death involved. However, I/R induces a large number of
inflammatory reactions and renal tubular cell death, for which
the molecular and signaling mechanisms of inflammation
remain largely unknown (Tajima et al., 2019). Therefore, it is
of significant importance to search for the mechanisms of I/R-
induced inflammatory response. Pyroptosis is a type of
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FIGURE 3 | Salvianolic acid B (SalB) down-regulation the expression of pyroptosis in H/R-induced HK-2 cells. (A) HK-2 cells treated with 6 h of hypoxia and 0.5, 1,
2, 4, and 6 h of reoxygenation was measured using an MTT kit. (B) Different concentrations of SalB (1, 5, 10, 20, 40, and 80 mM) was measured using an MTT kit.
(C) The level of LDH release. (D) The frequency of caspase-1+PI pyroptotic of HK-2 cells was analyzed by flow cytometry. (E) Immunofluorescence staining results of
the expression of caspase-1 and ASC (magnification ×400). Blue: nuclear staining (DAPI); green: ASC; red: Capsase-1. Scale bar: 20 mm. (F–I) Protein levels the
cleaved form of caspase-1 (Cl- casp1), proform of caspase-1 (Pro-casp1), GSDMD, GSDMD-N terminal segment (Cl-GSDMD). Data from three separate experiments
are represented as images or are expressed as the mean ± SEM of each group (n = 3 per group for in vitro assay) **P < 0.01 versus control group; #P < 0.05 ##P <
0.01 versus H/R group. (J) After SalB treatment, representative scanning electron micrographs of the HK-2 cells obtained sections of control and H/R group. Scale
bars: 2 mm (upper) and 0.5 mm (lower).
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inflammatory cell death, which depends on inflammatory
caspase-mediated cleavage of GSDMD (Jorgensen et al.,
2016b). The rapid inflammatory response induced by the
occurrence of pyroptosis directly promotes the development of
the disease (Liu and Lieberman, 2017). Previous study
has revealed that caspase-1 is a key enzyme that could
mediate the process of pyroptosis, which means that caspase-1
overexpression may be a hallmark of pyroptosis (Fink and
Cookson, 2006; Miao et al., 2011). Activation of caspase-1 not
only produces IL-1b a mature inflammatory cytokine (Karmakar
et al., 2015; Jorgensen et al., 2016a; Kim et al., 2019), but also
causes cell membrane perforation, resulting in the production
and release of a large number of inflammatory factors that aggravate
pyroptosis. It is reported that GSDMD protein, which critically
Frontiers in Pharmacology | www.frontiersin.org 9
determines pyroptosis has been identified (Aglietti and Dueber,
2017). Our study showed that the expression of the cleaved-
caspase1 and GSDMD-N-terminal fragment protein increased
significantly, indicating the occurrence of pyroptosis. Meanwhile,
pyroptosis in AKI is accompanied by the inflammatory response,
manifesting as the release of inflammatory cytokines (IL-1b and
TNF-a).

In our results, the cell viability of HK-2 decreased and LDH
content increased, indicating that LDHwas released and abundantly
present in the extracellular matrix. Besides, SalB significantly
restored renal function in I/R mice and inhibited pyroptosis in
both I/R andHK-2 cell models. Previous studies used the annexin V
and propidium iodide double-positive stage and an LDH-release
assay to confirm pyroptosis (Liu W. et al., 2018; Jia et al., 2019);
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FIGURE 4 | Salvianolic acid B (SalB) promotes Nrf2 nuclear activation and inhibits NLR family pyrin domain-containing 3 (NLRP3)/thioredoxin-interacting protein-
thioredoxin1 (TXNIP) expression in ischemia-reperfusion (I/R) mice. (A–C) The expression of NLRP3 and TXNIP. (D) Immunofluorescence images (magnification ×200)
showing the nuclear expression and localization of Nrf2 in the Sham, I/R, SalB-L, SalB-M, SalB-H groups. Blue: nuclear staining (DAPI); red: Nrf2; staining. Scale bar:
20 mm. (E) Representative western blots and (F–H) quantification of relative protein expression for nuclear Nrf2, keap1 and HO-1. (I–K) Superoxide dismutase (SOD),
glutathione (GSH), and malondialdehyde (MDA) detected by a microplate reader. Data are represented as images or expressed as the mean ± SEM of each group
from three separate experiments. *p < 0.05, **p < 0.01 vs. sham group; #p < 0.05, ##p < 0.01 vs. I/R group.
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however, the specific cell morphology evidence of pyroptosis was
lacking. Over recent years, different studies have recorded the
morphology of the cells of pyroptosis by electron microscopy,
despite pyroptosis occurring in different cells (HeLa cells (Wang
et al., 2017) and raw-asc cells), which all have the similar
morphology of pyroptosis. The dying cells showed evident
swelling with characteristic bubbling from the plasma membrane,
where corpses of pyroptotic cells were described as resembling fried
egg (Chen et al., 2016). A large number of pores were mediated by
GSDMD-N in pyroptosis, and because of the nonselectivity of
GSDMD-formed pores, the intracellular osmotic pressure did not
undergo a substantial increase, thus preventing the early pyroptotic
cell from bursting. Our data are consistent with those published in
previous studies arguing that pyroptosis was triggered in H/R-
induced HK-2 cell damage, which resembled the fried egg as shown
by electron microscopy in Figure 3K, and which occurred at late
Frontiers in Pharmacology | www.frontiersin.org 10
stage of pyroptosis. Pyroptotic morphology was also improved after
treatment with SalB. Further investigation on pyroptosis in AKI will
provide a new mechanism for SalB to resist AKI.

NLRP3 inflammasome has been considered to be the link
between pyroptosis and inflammation in AKI (Qiu Z. et al., 2019;
Sun W. et al., 2019). It has been reported that TXNIP triggers the
activation of NLRP3 by binding to NLRP3 after dissociation of
the TXNIP-TRX1 complex (Jin et al., 2019). In the inflammatory
response of AKI, TXNIP is also considered as a critical link in
inflammation (Wen et al., 2018). Our study has demonstrated
that SalB can alleviate the proinflammatory effects of NLRP3 and
TXNIP. In addition, activation of Nrf2 induces the expression of
HO-1 and downstream antioxidant protein, suggesting that Nrf2
is essential for the regulation of HO-1. Previous studies have
indicated that the Nrf2 signaling pathway plays a key role in
inflammatory responses and oxidative stress during I/R. Nrf2
September 2020 | Volume 11 | Article 541426
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knockout increases the level of oxidative stress in AKI and
exacerbates the ischemic injury, which, when activated, inhibits
ROS levels and reduces AKI kidney damage (Rubio-Navarro
et al., 2019). Consistently, the increased expression of MDA,
SOD and GSH in I/R mice reflects the increase in oxidative stress
levels, and SalB treatment has a significant improvement effect,
especially in the high-dose group. Normally Nrf2 is captured by
Keap1 in the cytoplasm. After being attacked by signals from
reactive oxygen species or nucleophiles, Nrf2 dissociates from
Keap1, and then the stable Nrf2 translocates into the nucleus.
Consistent with our cell experiment, when H6R1, the expression
of Nrf2 and Keap1 were inversely proportional. SalB treatment
can significantly increase the nuclear expression of Nrf2 and the
expression of related antioxidant markers in the H/R model,
which indicated that SalB might play a role in improving
pyroptosis especially in the high-dose group. According to
Frontiers in Pharmacology | www.frontiersin.org 11
reports, the expression of Nrf2 will increase after I/R (Li et al.,
2018; Qiu Y. et al., 2019). In our study, the expression of Nrf2
increased after modeling. This may be the spontaneous
protective activation of the body under stress conditions, and
the specific mechanism needs further study. It is worth noting
that SalB pretreatment more significantly increased the nuclear
expression level of Nrf2, which indicates the antioxidant function
of SalB. At the same time, we found that siNrf2 could eliminate
the protective effect of SalB. This result further confirms that the
participation of Nrf2 plays a key role in the antipyroptosis effect
of SalB in AKI.

Collectively, our results revealed that the primary mechanism
through which SalB improves AKI is by inhibiting the activation of
NLRP3 by direct activation of nuclear expression of Nrf2, thereby
inhibiting pyroptosis. These findings illustrated a previously
unknown pathway for the SalB in the treatment of AKI, which
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FIGURE 5 | Nuclear factor erythroid-2 related factor 2 (Nrf2) nuclear expression is upregulated and NLR family pyrin domain-containing 3 (NLRP3)/thioredoxin-
interacting protein-thioredoxin1 (TXNIP) is down-regulated after SalB treatment in H/R (A–C) NLRP3 and TXNIP expression were examined by western blot.
(D) Immunofluorescence results (magnification ×400) showing the expression of Nrf2 under normal conditions (control), SalB treatment and H/R-treated HK-2 cells.
Blue, nuclear staining (DAPI); red, Nrf2 staining. Scale bar: 20 mm. (E) Representative western blots and (F–H) quantification of relative protein expression for nuclear
Nrf2, keap1 and HO-1. (I) Representative images of fluorescence of ROS probed by DCFH-DA. Data are represented as images or expressed as the mean ± SEM of
each group from three separate experiments. **p < 0.01 vs. control group; #p < 0.05, ##p < 0.01 vs. H/R group.
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FIGURE 6 | Effects of nuclear factor erythroid-2 related factor 2 (Nrf2) knockdown on H/R induced renal tubular cell damage. HK-2 cells were transfected with
siNrf2 for 48 h before treating with Salvianolic acid B (SalB) (80 mM) stimulation for 24 h. (A–C) The transfection efficiency of siNrf2 was determined by Q-PCR and
western blot. (D) Represented images showing the superoxide anions detected by DCFH-DA staining. (E–G) The expression of Nrf2, gasdermin D (GSDMD), cl-
GSDMD were detected. The data are means ± SEM (n = 3). *P < 0.05, **P < 0.01 versus control group; ##P < 0.01 versus H/R group.
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involves the modulation of Nrf2/NLRP3 signaling and pyroptosis.
Yet, it is undeniable that in addition to the Nrf2/NLRP3 signaling
pathway, the role of SalB in AKI can be mediated through other
mechanisms, which need to be addressed by further research. This
study confirmed the existence of pyroptosis in I/R and greatly
elucidates the role of SalB can significantly reduce pyroptosis. At
the same time, it also reveals the new mechanism of SalB in
the treatment of AKI, thus providing a basis for further
clinical research.
CONCLUSIONS

In this study, we found that SalB improved AKI by alleviating
pyroptosis in vivo and in vitro. Our results suggested that SalB
inhibit the dissociation of TXNIP by activating Nrf2 and
preventing the activation of NLRP3, thereby improving
pyroptosis in AKI (Figure 7). However, this study focused on
pyroptosis and confirmed its mechanism. The proportion or
time window of pyroptosis and other forms of death during AKI
can be discussed and subdivided in future research.
Frontiers in Pharmacology | www.frontiersin.org 13
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FIGURE 7 | The pyroptosis of acute kidney injury (AKI) signaling and protective effect of SalB through the nuclear factor erythroid-2 related factor 2 (Nrf2)/NLR family
pyrin domain-containing 3 (NLRP3) pathway. I/R and H/R trigger pyroptotic cell death signaling, including upregulation of thioredoxin-interacting protein-thioredoxin1
(TXNIP) and suppression of Nrf2 expression, leads to NLRP3 oligomerization, ASC recruitment and subsequent caspase-1 activation. Fortunately, SalB treatment
ameliorates AKI by regulating the Nrf2/NLRP3 pathway. The arrows represent promotion, while the inverted T represent inhibition. The effect of Salvianolic acid B
(SalB) is shown in red.
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