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Chagas disease is a debilitating and neglected disease caused by the protozoan
Trypanosoma cruzi. Soon after infection, interactions among T. cruzi and host innate
immunity cells can drive/contribute to disease outcome. Dendritic cells (DCs), present in all
tissues, are one of the first immune cells to interact with Trypanosoma cruzi metacyclic
trypomastigotes. Elucidating the immunological events triggered immediately after
parasite-human DCs encounter may aid in understanding the role of DCs in the
establishment of infection and in the course of the disease. Therefore, we performed a
transcriptomic analysis of a 12 h interaction between T. cruzi and MoDCs (monocyte-
derived DCs) from three human donors. Enrichment analyses of the 468 differentially
expressed genes (DEGs) revealed viral infection response as the most regulated pathway.
Additionally, exogenous antigen processing and presentation through MHC-I, chemokine
signaling, lymphocyte co-stimulation, metallothioneins, and inflammasome activation
were found up-regulated. Notable, we were able to identify the increased gene
expression of alternative inflammasome sensors such as AIM2, IFI16, and RIG-I for the
first time in a T. cruzi infection. Both transcript and protein expression levels suggest
proinflammatory cytokine production during early T. cruzi-DCs contact. Our transcriptome
data unveil antiviral pathways as an unexplored process during T. cruzi-DC initial
interaction, disclosing a new panorama for the study of Chagas disease outcomes.

Keywords: Chagas disease, inflammasome, metacyclic trypomastigotes, transcriptome, virus infection
INTRODUCTION

Chagas disease, caused by Trypanosoma cruzi, is an endemic parasitic disease that affects
approximately seven million people in Latin America, with over 65 million estimated to be at
risk of contracting the disease (1, 2). The disease has turned into a global health concern, mainly
because of migratory flow and lack of treatment or vaccine (3–6). Individuals who are infected by
org April 2021 | Volume 12 | Article 6380201
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the parasite initially develop an acute asymptomatic phase, with
only 1% manifesting non-specific symptoms (7). After 20 to 30
years, however, approximately one-third of infected individuals
will progress to the chronic phase, which is characterized by
cardiomegaly and mega viscera, which can lead to death (8, 9).
The outcome of the infection depends upon the combination of
many complex processes, with accurate prediction regarding
progression to the chronic phase remaining a challenge.
Immunological events within the acute phase influence the
development of either a protective or a pathogenic response in
later stages of Chagas disease (10). Likewise, parasite genetic
diversity and tissue tropism, inoculum, and transmission route,
together with host genetic background, age, and nutritional
conditions, may all modulate immunological and pathogenesis
mechanisms (10, 11).

Chagas disease is a vector-borne disease, with the parasite
transmitted by blood-sucking bugs from the Triatominae family
(12). Its oral transmission is of increasing epidemiological
importance, with frequent outbreaks of acute and, at times,
lethal cases. In these episodes, T. cruzi is acquired through
food or drink products contaminated with bugs and/or bug
feces/urine (13, 14). During its complex life cycle, the parasite
evolves through different forms, including epimastigotes, the
insect replicative midgut forms; metacyclic trypomastigotes
(MTs), the infective and non-replicative rectum insect forms;
amastigotes, the intracellular vertebrate replicative forms; and
bloodstream trypomastigotes, the infective and non-replicative
vertebrate forms (12, 15). Natural insect-derived MTs are found
in triatomine feces/urine and invade vertebrate cells through the
insect bite site or mucosal tissues (13, 16). MTs are thus
responsible for the parasite’s first interaction with the host cells.

MT has a variety of cellular membrane and secreted virulence
factors that allow for mammalian cell invasion, host immune
response evasion, and parasite intracellular survival (17). Once
inside the host, the parasite may be recognized and able to infect
phagocytic and/or non-phagocytic cells through a variety of host
cell factors. Among the molecules on non-phagocytic cells,
mucins, laminins, fibronectins, thrombospondins, heparan
sulfate proteoglycans, and bradykinin B2 receptors have been
reported to mediate parasite entrance (18–22). Otherwise, classic
and non-classic pattern recognition receptors (PRRs) such as
TLR2, TLR4, TLR9, NOD2, lectins, C5a, Slamf1, and LAMP-2
have shown their importance for T. cruzi internalization in
monocytes, macrophages, and dendritic cells (DCs) (23–28).

Ex vivo studies in indeterminate patients have shown that the
activation of Th1, Th2, Treg, and Th17 cells can lead to the
control of parasitemia and tissue damage and the development of
immunological memory against T. cruzi (29–31). However, an
excessive and/or prolonged response of any of these types may
contribute to the disease pathogenesis (32). Therefore, the
signaling pathways unleashed by the host innate immune
system immediately after sensing the infection will impact
almost every aspect of the subsequent adaptative immune
response (33, 34). In this sense, DCs perform a crucial role in
controlling infection at the beginning of the acute phase and in
coordinating innate and adaptive immune response (35).
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Since they are present in all tissues, DCs show potential to be
the first immune cells to interact with the pathogen (36).
Nevertheless, the DC molecular signature, subtypes, and
maturation are needed to provide a precise understanding of
these cell functions (37), especially under T. cruzi infection.
Recently, it was demonstrated that several subtypes of murine
DCs, examined after infection by T. cruzi, showed a lower
expression of MHC class II when compared to the steady-state
(35). A lower expression of MHC class I and II was also found
when human monocyte-derived DCs (MoDCs) interacted with
the parasite (38–41). T cell co-stimulatory molecules CD80,
CD86, CD83, and CD40 showed a reduced expression on
murine DC surface after infection with different T. cruzi
strains. On the other hand, the expression of PD-L1, a
molecule that suppresses the proliferation of antigen-specific
T-cells, was decreased (42–44). Regarding cytokine production,
in most cases, human and murine models showed an increased
production of anti-inflammatory cytokines IL-10, TGF-b, and
IL-4, responsible for host susceptibility to parasite infection, and
a decreased production of IL-12 and TNF-a, important
protective molecules against the parasite (28, 38, 39, 42–44).
Therefore, T. cruzi seems to have the capacity of downregulating
the expression of MHC class I and II molecules, co-stimulatory
molecules, and proinflammatory cytokines, modulating host
DCs that may help to modulate the adaptive immune response.

Studies on T. cruzi-DC interactions and their importance in
the establishment of infection are scarce. In addition, the
majority of published investigations are restricted to the
murine model, hindering the capability to elucidate the first
immunological events triggered immediately after parasite-
human DC interaction (45). Moreover, data from murine
Chagas disease immune response may not be extrapolated to
human infection, which highlights the necessity of
comprehending T. cruzi-DC interactions using human
leukocytes. To address these goals, we carried out a
comparative RNA-sequencing-based transcriptome analysis of
human MoDCs after exposure to MTs vs. non-infected MoDCs.
Analyses of differentially expressed gene (DEG) profiles revealed
that T. cruzi is able to elicit a virus-related response in MoDCs.
These discoveries open up new perspectives for the pathogenesis
of this disease, with better-elucidated viral infection mechanisms
expanding understanding of Chagas disease.
MATERIALS AND METHODS

Parasite
T. cruzi CL Brener strain epimastigotes were cultivated in liver
infusion tryptose (LIT) medium (46), pH 7.0, supplemented with
5% heat-inactivated fetal bovine serum (FBS) and 0.1 mg/ml
gentamicin at 28°C. For metacyclogenesis, epimastigotes in final
stationary phase were cultivated in triatomine artificial urine
(TAU) medium for 2 h at 28°C as previously described (47).
After this period, TAU was replaced by TAU3AAG medium
(TAU medium added with 10 mM L-proline, 10 mM glutamic
acid, 2 mM aspartic acid, and 10 mM glucose) and the parasites
April 2021 | Volume 12 | Article 638020

https://www.frontiersin.org/journals/immunology
http://www.frontiersin.org/
https://www.frontiersin.org/journals/immunology#articles


Gil-Jaramillo et al. DC-T. cruzi Triggers Viral-Like Response
were cultivated for 6 days at 28°C. Parasites were harvested and
incubated in 100% active FBS (non-heat inactivated) for 24 h to
assure residual epimastigote lysis (48). Epimastigote cellular
debris was decanted twice for 2 h and the resulting swimming
MTs were washed thrice in PBS. Clean MTs were resuspended in
RPMI 1640. The differentiated parasites (MTs) were quantified
using instant prov stain (NewProv) to visualize the nucleus and
kinetoplast localization.

Donors
Donors were composed of three male and three female
individuals between 22 and 33 years old (�x = 28.3 ± 2.9) which
were not previously infected with T. cruzi, as verified by PCR
(Figure S1) (49). Infection and vaccination data from each
donor were collected in Table S1. The study protocol was
reviewed and approved by the Research Ethics Committee
from the Medicine Faculty (Comitê de Ética em Pesquisa da
Faculdade de Medicina)–The University of Brasıĺia (CAAE:
54822616.7.0000.5558). Written informed consent for the work
was collected from all subjects.

Human MoDCs
Blood was collected from healthy donors and peripheric blood
mononuclear cells (PBMCs) were obtained through density
gradient centrifugation using Ficoll-Paque Plus (GE
Healthcare). Monocytes were then purified from PBMCs using
the CD14 microbead human kit (Miltenyi Biotec). Monocytes
recovered from the positive fraction were cultivated at 37°C, 5%
CO2 for 7 days in a concentration of 5 × 105 cells/ml in RPMI
1640 medium (Gibco) supplemented with 10% heat-inactivated
FBS (Gibco), 0.15 mg/ml gentamicin, 0.05 μg/ml of human GM-
CSF (Peprotech), and 0.16 μg/ml of human IL-4 (Peprotech) (34,
50). Cytokine stimulus was maintained by replacing 10% of
medium every 3-culture days. To evaluate activation/maturation
in MoDCs, the three criteria of morphological changes
considered were: size, presence of cytoplasmic prolongations,
and non-spherical shape (36, 51, 52).

MoDCs Infection
After DC differentiation, 5 × 105 cells/ml were plated in 24-well
plates at 37°C with 5% CO2 and infected with MTs in a 10:1 MOI
for 12 h (final volume: 1.1 ml RPMI 1640). After this period,
infected and control MoDCs were harvested, washed, and
counted. To estimate the infection rate, 105 MoDCs were
collected and stained with instant prov stain (NEWPROV). A
total of 300 cells were counted in double-blind format,
identifying infected cells (infection rate) and amount of
intracellular amastigotes per infected cell. An unpaired Student
t-test was used to determine differences in infection rate, number
of amastigotes per infected cell among donors, and activation
between Infected and Control groups (n = 8).

Cytokine Quantification
After infection, supernatant was collected and stored at −80°C
until post-analysis. IL-1b, IL-8, IL-10, and TNF were measured
using a cytometric bead array (CBA) Human Inflammatory
Cytokine Cytometric Bead Array (CBA) - I Kit (BD) and
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analyzed by flow cytometry using a FACs Verse (BD
Bioscience), following the manufacturer’s recommendations.
Briefly, 50 μl of a solution containing the capture beads for
each cytokine were mixed with 50 μl of cell culture supernatant
and 50 μl of Human Inflammatory Cytokine PE Detection
Reagent. After 3 h of incubation at room temperature, samples
were washed and resuspended in the indicated buffer.

RNA Extraction
Infected and control MoDCs were harvested and RNA extracted
using Trizol reagent (Ambion), as suggested by the
manufacturer’s recommendations. The final material was
eluted in RNase free water and RNA integrity was assessed
using bioanalyzer (Agilent Technologies). Samples with RINs
below eight were excluded from the transcriptome analysis.

RNA-seq
Two replicates from each donor were used to perform
transcriptome sequencing at Novogen (http://www.novogen.
com) according to their protocols. Briefly, oligo d(T) beads
were employed to perform mRNA enrichment, which were
then fragmented randomly and converted into cDNA. Poly(A)
tails were added and enriched by PCR to generate a cDNA
library using NEBNext® Ultra™ RNA Library Prep Kit for
Illumina® (NEB, USA). Illumina HiSeq 2500 was used to
perform paired-end sequencing of 150 bp reads. The Illumina
sequence reads were analyzed for quality control with FastQC
(https://www.bioinformatics.babraham.ac.uk/projects/fastqc/),
with reads then aligned simultaneously to the human (Ensembl
GRCh38.87) and T. cruzi (Ensembl Protists ASM20906v1)
reference genomes using HISAT2 v2.0.6 (53). The aligned files
were ordered and indexed using Samtools v0.1.18 (54) followed
by read count calculation using the human genome annotation
files of Ensembl genome build GRCh38.87 and the software
HTSeq-count v. 0.6.0 (-m intersection-nonempty) (55).

Transcriptomics Analysis
The relationship among Infected and Control biological
replicates of donors A, B, and C for transcriptomes were
analyzed through a principal component analysis (PCA) using
the ggfortify package R (https://CRAN.R-project.org/package=
ggfortify). Differential expression analysis was performed using
the DEseq2 package v2.14 from R/Bioconductor (56), comparing
infected and control samples (padj ≤ 0.05). All analyses were
performed after exclusion of outliers (based on Clustering),
leaving at least one representative sample of each donor. Gene
ontology enrichment and KEGG Pathway analysis were
performed using GOStat (57) and Pathview (58) packages,
respectively. Heatmaps for z-score of mean fold change by
patient were generated using the gplots package in R (https://
CRAN.R-project.org/package=gplots). DEGs were used as input
for protein-protein interaction (PPI) analysis using the STRING
database (https://string-db.org/) (59). A confidence score of 0.6
was set as a cut-off for protein-protein interaction. The PPI took
into account co-expression, co-occurrence, and experimental
evidence. The generated interaction networks were uploaded in
Cytoscape 3.8.0 for graphical representation (60). DEGs were
April 2021 | Volume 12 | Article 638020
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assigned as functional groups using GO and KEGG databases
and specific references.

Validation
For RT-qPCR, cDNA was synthesized from MoDC RNA and
amplified using a GoTaq 2 Step RT qPCR System (Promega) on a
StepOnePlus real-time PCR system (Applied Biosystem) and the
StepOne™ Software v2.3 (Applied Biosystems), following the
manufacturer’s protocol. B2M was used as reference gene (61).
Specific primers were designed using primer blast (https://www.
ncbi.nlm.nih.gov/tools/primer-blast/index.cgi?LINK_LOC=
BlastHome). Designed primers: CXCL9-F: 5’-GTGGTGTTC
TTTTCCTCTTGGG, CXCL9-R: 5’-CCTTCACATCTGC
TGAATCTGG-3’, TNSFS18-F: 5’-GAGATCATCCTGGAAG
CTGTGG-3 ’ , TNSFS18-R: 5 ’-CCAGTCAGACACCTT
ATTCACG-3’, USP18-F: 5’-ATCCGGAATGCTGTGGATGG-
3’ , USP18-R: 5’-AGACTCCGTAGATCCAGGAACG-3 ’.
Additionally, RT² qPCR Primers Cat# PPH02447C,
PPH02815F, PPH01325A, PPH05983A, and PPH58151A
(Qiagen) were used as well. Differential gene expression
between Control and Infected group treatments was analyzed
by the 2-DDCT method (62).

Statistical Analysis
All statistical tests were attributed to a p-value ≤ 0.05. Sample
raw data distribution was primarily evaluated by the Shapiro-
Wilk test to define a statistical test between parametric or non-
parametric in each experiment. The Unpaired Student t-test was
applied to parametric tests when comparing Infected and
Control groups, and for non-parametric tests, the Wilcoxon
test was used. GraphPad Prism 6.01 was used for calculations
(www.graphpad.com). The statistical details employed in each
experiment can be found in the figure legends.

Data Availability
The accession number for the transcriptome data reported in
thispaper is NCBI: GSE158986 (https://www.ncbi.nlm.nih.gov/
geo/query/acc.cgi?acc=GSE158986).
RESULTS

Metacyclic Trypomastigotes of T. cruzi CL
Brener Strain Can Infect and Promote
Human MoDCs Activation
MoDCs from six healthy donors were employed to assess their
overall transcriptional response to the presence of T. cruzi.
Donor characteristics are shown in Table S1 and Figure S1.
The morphological changes from peripheral blood monocyte-
derived cells, such as cell size increase and the presence of
cytoplasmic prolongations, were taken into account to confirm
MoDC differentiation (Figures S2A, B). Additionally, MoDCs
were characterized by flow cytometry, with at least 80% of the
population expressing CD1a, CD80, CD86, and CD206 DC
markers. Also, CD11c, HLA-DR were detected, in at least 55%
of cells (Figure S2C). Differentiated MoDCs were placed in
Frontiers in Immunology | www.frontiersin.org 4
contact with T. cruzi MTs for 12 h to simulate an early
parasite-host cell contact. This time was sufficient for parasite
entry (Figure S3, Figure 1A). The significant morphology
change due to the infected condition indicates that interaction
with the parasite triggered bystander activation in a
heterogeneous population (Figure 1B). Interestingly, MoDCs
from donor C were significantly less infected than cells from
A

B

C D

FIGURE 1 | Human MoDCs-T. cruzi interaction. Dendritic cells were infected
with metacyclic forms of T. cruzi for 12 h (A) to determine the percentage of
activated cells based on the morphology change (B), percentage of infected
cells (C), and number of amastigotes per infected cell (D). A, B, and C under
X axis refer to donors A, B, and C, respectively. Full arrows: intracellular
amastigotes. Mean ± SD, n = 8, double-blind count. Normal distribution was
confirmed using Shapiro-Wilk test. Unpaired t-test was used for comparisons.
*p < 0.05, **p < 0.01, and ***p < 0.001. Scale bar: 10 µm.
April 2021 | Volume 12 | Article 638020
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donors A and B, whereas these latter two donors presented a
similar infection rate (Figure 1C). Despite the difference in the
infection rate, the three donors exhibited two amastigotes per
infected cell, which may be associated with 12 h incubation and
with DC phagocytic features (Figure 1D). Thus, the MT forms of
CL Brener strain can infect and activate MoDCs, eliciting
morphology modifications in the host cell.

T. cruzi-Infection Modulates Gene
Expression in MoDCs
RNA-Seq of infected and non-infected MoDCs (used as control)
was performed using the Illumina Hi-Seq platform. The
experiments were carried out in biological duplicates for each
group (n = 3 per group), with an average of 21 million reads
obtained for each set. Since each sample from infected cells
consisted of a pool of mixed RNAs from MTs and MoDCs,
filtered reads were simultaneously mapped onto both human and
T. cruzi genomes to avoid incorrect mapping of parasite genes onto
the human genome (Table S2). From infected samples, 2 to 21% of
total reads mapped onto the parasite genome. On the other hand,
non-infectedMoDCs presented less than 0.02% of the total mapped
reads miss-mapping onto the T. cruzi genome (Table S3). A total of
16,264 human genes were annotated at least once in the samples
(GEO accession GSE158986), representing more than 76% of the
total known protein-coding genes in the human genome (63), and
indicating high breadth of coverage for the transcriptome. A clear
separation between infected and control samples was obtained in a
principal component analysis (PCA) after the removal of three
outliers (Figure 2A). A total of 468 DEGs were identified, with 439
up-regulated and 29 down-regulated (Figure 2B and Table S4).
These results show that T. cruzi infection modulates the gene
expression profile of MoDCs during a simulated first contact and
Frontiers in Immunology | www.frontiersin.org 5
that a modulation signature can be observed, despite the natural
variation among donors.

Response to Virus as the Most
Represented Biological Function
To identify known cellular processes and functional annotations
associated with the transcriptome presented here, the resulting
DEGs were analyzed using Gene Ontology (GO) and Kyoto
Encyclopedia of Genes and Genomes (KEGG) databases. GO
enrichment analysis revealed 517 up- and 2 down-represented
terms (Table S5). In a more comprehensive analysis, taking into
account p-value ≤ 0.0008 coverage and non-redundant GO
terms, the top 10 up-represented terms were selected (Figure
3A). Response to type I interferon, response to virus, MHC class
I processing, and some PRRs signaling were the most important
terms among the up-regulated genes. Expression levels of genes
encoding proteins known to be important for inflammasome
activation (e.g., RIG-I, IFI16, and AIM2) in response to virus
were significantly enriched (p-value 0.00009). Regarding KEGG
enrichment analysis, 32 differentially regulated pathways were
seen among the samples (Table S6). Among the highlighted
KEGG terms, multiple PRR signaling pathways were found,
including inflammasomes (NLRs and cytosolic DNA sensors),
and disease-specific pathways such as measles, herpes, hepatitis,
leishmaniasis, and African trypanosomiasis (Figure 3B).
Interestingly, viruses were included in 28% of the KEGG
pathways enriched terms. Taken together the enrichment
analyses, it seems that antiviral response may have an
important function in the early T. cruzi infection.

To compare the intra-donor expression pattern from the up-
regulated genes belonging to “defense response to virus”
(GO:0051607) term, a heat map was elaborated (Figure 4).
A B

FIGURE 2 | MoDC gene expression profiles during interaction with T. cruzi metacyclic forms. (A) Principal component analysis (PCA) to evaluate the relationships
between control and infected groups. Green: control group and violet: infected group. (B) Volcano plot of expression profiles of both groups and DEGs (padj ≤ 0.05)
shown according to regulation. Blue: up-regulated, red: down-regulated and black: no significant difference. All analyses were performed after excluding outliers.
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Donor C showed an above-average expression in 78% of the
genes, with the exception of APOBEC3B, IFIT3, UNC93B1,
C19orf66, IL27, PML, IRF7, ISG20, and STAT2. On the other
hand, the latter seven genes were expressed above average in
donor A, which has an above-average expression in 21% of the
genes. Donor B presented an above-average expression in 31% of
the genes (Figure 4, GEO accession GSE158986). Notably, the
genes coding for the inflammasome sensor proteins AIM2 and
IFI16 were expressed above the average in donors B and C, while
RIG-I was expressed above average only in C.
Frontiers in Immunology | www.frontiersin.org 6
Virus Response as a Central Pathway in
the Protein-Protein Interaction Network
In order to determine biological significance in controlling the
magnitude of differential expression of each gene, a protein-
protein interaction (PPI) network of DEGs was generated using
the STRING database. After excluding unannotated genes and
proteins with no reported interactions, the 126 proteins
participating in the network presented seven consistent
functional patterns (Figure 5). Remarkably, four of them are
closely related to virus response: Virus response (magenta),
A

B

FIGURE 3 | Analysis of biological function in differentially expressed genes between infected and control MoDCs. (A) A summary of the enriched biological
processes from GO is shown as coverage (number of DEGs per total number of genes in each GO term). Blue bars: up-represented processes and red bars: down-
represented processes. p-value is displayed at the end of each bar. (B) KEGG enriched pathways are represented as KEEG coverage (DEGs per total number of
genes in each KEGG pathway). Bar colors indicate p-values.
April 2021 | Volume 12 | Article 638020
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MHC-I antigen processing and presentation through ubiquitin-
proteasome (yellow), NOD-like receptor signaling pathway
(violet), and metallothioneins (orange). Moreover, three typical
DC functions were up-regulated and highlighted in the PPI
network: reactive oxygen species production (cyan),
lymphocyte recruitment (mint green), and co-stimulation
(shell pink). Regarding the virus-related response, a direct
correlation between fold change and PPI probability
(represented by diameter and edge length, respectively) was
observed. Noteworthy, the top 10 network-hubs: ISG15, IFIT3,
MX1, RSAD2, STAT1, IFIH1, OASL, IFIT1, IFI44L, and IFI44
belong to the “response to virus” GO term, reinforcing that T.
cruzi may activate a virus-related response in MoDCs. This
pattern indicates that the differential expression obtained
through the transcriptome analysis is not random and
supports a biological significance for the triggered pathways.
Within the PPI network, the virus response pathway was
Frontiers in Immunology | www.frontiersin.org 7
connected to NOD-like receptor signaling, lymphocyte
recruitment, and MHC-I antigen processing and presentation
pathways through GBP1, CXCL10, and USP18, respectively.
Furthermore, CCL4 links the lymphocyte recruitment cluster
to the co-stimulation-related proteins. Finally, metallothioneins
clustered into a single group that presents a strong
PPI probability.

Transcriptome Validation
RT-qPCR validation assays were performed for three up-
regulated genes chosen from the RNA-seq data as being related
to the DC function of antigen presentation: USP18, TNFSF18,
CXCL9. Three independent infections from each donor (A, B
and C) were carried out and expression modulation evaluated in
the selected genes. The analysis of these nine samples presented
concordance between RNA-seq and RT-qPCR data, thus
validating the RNA-seq results (Figure 6A). Our next goal was
FIGURE 4 | Individual gene expression patterns according to GO terms. Response to virus is shown in a heatmap. Blue color scale: variation of mean fold change
from each gene (Z-Score). Every gene in the heatmaps was up-regulated in the transcriptome.
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to determine if other donors would present the same expression
signature found in the transcriptomic data demonstrated here.
Therefore, MoDCs from three new donors (D, E, and F) were
obtained, infected with T. cruzi, and analyzed by RT-qPCR. To
reinforce our validation assay, five modulated genes were
included in this analysis: MX1, OASL, GBP4, WNT5B, PLCB2
(Figures 6B,C). These genes were selected from Human
papillomavirus infection (hsa:05165), Influenza A (hsa:05164),
and NOD-like receptor signaling (hsa:04621) KEGG pathways,
including up- and down-regulated genes. Compatible with the
previous results, with fold changes and p-values closely related to
the transcriptome data, we observed concordance between both
techniques. Together, these two analyses validate the obtained
transcriptome among our original three donors, with the same
patterns presented.

Proinflammatory Cytokines Characterize
the Early Contact Between DCs and
T. cruzi
According to the presented transcriptome, cytokine and
chemokine genes, such as TNF, IL-1b, IL-1a, IL-15, and IL-8,
Frontiers in Immunology | www.frontiersin.org 8
were up-regulated after the MoDCs-T. cruzi interaction. Among
the anti-inflammatory cytokines, only IL-10 was up-regulated,
with a fold change close to 2 and a q-value of 0.009 (see Table
S4). These results provide evidence for a tendency of
proinflammatory cytokine production after the first 12 h of
interaction between DCs and T. cruzi. To investigate if the
transcriptome-predicted proinflammatory milieu is reflected at
a protein level, innate immune cytokines were measured in the
culture supernatants, with a significant increase in the
production of TNF and IL-8 observed in the infected samples
(Figure 6D). On the other hand, no significant difference was
detected in the production of IL-1b and IL-10 (Figure 6D).
DISCUSSION

Early immunological events on Chagas disease are the result of
diverse molecular pathways modulated by a combination of T.
cruzi and host factors, such as secreted and cell surface
polymorphic molecules (64). In this work, we revealed a set
of genes modulated in human dendritic cells after contact with
FIGURE 5 | Protein-protein interaction underlines genes from virus response as network-hubs. DEGs were used as input for protein-protein interaction (PPI) analysis
in STRING database. Magenta : virus response (GO:0009615); yellow : exogenous antigen processing and presentation (GO:0002479) including proteasome
(hsa03050) and ubiquitination/deubiquitination (GO:0016567/GO:0016579); violet : NOD-like receptor signaling pathway (hsa04621); mint green : chemokine
signaling pathway (hsa04602); shell pink : lymphocyte co-stimulation; orange : metallothioneins related to virus response; cyan : protein related to reactive
oxygen species. A confidence score of 0.6 was set as a cut-off allowing co-expression, co-occurrence, and experimental as evidences. Edge lengths represent the
STRING score of evidence: higher scores reflect shorter lengths.
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T. cruzi metacyclic forms, since both cells represent the first
actors in a natural infection that can affect the progress of the
disease. It is worth to note that MTs obtained under chemically
conditions are capable of reproducing the parasite biological
behavior (47). Since control MoDCs presented a relatively high
expression of typical activation markers, morphological change
is a useful tool for assessing maturation of DCs (36, 51, 52).
Using this approach, a high percentage of morphological changes
was observed in the MoDCs, indicating bystander activation
after contact with the parasite (65–68), and a similar infection
rate to those seen in other studies (39, 40). A mixed gene
Frontiers in Immunology | www.frontiersin.org 9
expression profile from bystander and infection activation in
MoDCs is the expected scenario in the initial stage of natural
infection when not every cell is infected or mature (35).

Using this RNA-seq approach, we identified 468 DEGs from
three healthy female donors that shared a gene expression
pattern. Our main finding was that, during the initial contact
with T. cruzi, MoDCs trigger a response similar to that of a viral
infection, including expression of several type I interferon-
induced genes derived from JAK/STAT signaling pathway (69,
70) and viral inflammasome activation (Figure 7) .
Transcriptome analyses using human foreskin fibroblasts
A

B

C

D

FIGURE 6 | Transcript and protein expression levels after MoDCs and T. cruzi first contact. Differential expression of genes was confirmed by RT-qPCR. (A) Mean
Log2 Fold change ± SD was calculated using USP18, TFSF18, and CXCL9 genes from donors A, B, and C in triplicate (n = 9). (B) Mean Log2 Fold change ± SD
was calculated using USP18, TFSF18, CXCL9, WTN5B, PLCB2, OASL, MX1, and GBP4 genes from the six donors (n = 6). (C) Transcriptome Log2 Fold change is
shown for comparisons. Red: down-regulated genes, blue: up-regulated genes. Data from panels A and B present a normal distribution according to Shapiro-Wilk
test. Unpaired t-test was used for comparisons. p-value is displayed at the end of each bar. (D) Control and infected MoDC culture supernatants were collected after
12 h-interaction assays. TNF, IL-8, IL-1b, and IL-10 cytokine concentrations were measured using a cytometric bead array kit. Horizontal lines inside the graphics
represent median values and each point represents a replicate (n = 19). Data from panel D did not present a normal distribution according to Shapiro-Wilk test.
Significant differences were tested using the Mann Whitney test. **p < 0.01; ***p < 0.001.
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infected by Y strain (71) or Sylvio strain (72) blood
trypomastigotes showed induction of cytokine production and
enhanced expression of type I interferon-inducible genes. These
two studies corroborate our results regarding the activation of a
viral response in human cells infected by T. cruzi, although they
did not explore those findings. The immune aspect was explored
using human monocyte-derived macrophages infected by two
Leishmania species (73). In this case, the results were filtered for
phagocytosis-related genes, and among the up-regulated genes,
inflammatory IL-1b , IL-6, and TNF cytokines, and
metallothionein 1 family members were highlighted.
Additionally, 16 of the 39 KEGG enriched pathways observed
after Leishmania infection are identical to those obtained in our
study, including herpes simplex, hepatitis C and B, influenza A
virus, and measles pathways (73).

Currently, the immune response to viruses is well elucidated,
and it is known that besides limiting viral replication (74), type I
IFN regulates the activation of NK cytotoxic function (75),
synergizes with TNF to induce iNOS in macrophages (76), and
induces DC maturation (77). Notwithstanding, there are no
Frontiers in Immunology | www.frontiersin.org 10
studies that associate human Chagas disease acute phase and
type I interferon-inducible genes or that directly correlate the
host response during the parasite infection with a virus-like
response. Only a few studies using the murine model have shown
the importance of type I IFNs during parasite infection. For
instance, mouse NK cells lacking IFN-a/b receptor were unable
to activate their cytotoxic function (78), and murine
macrophages seem to need type I IFN co-stimulation for nitric
oxide production (79). Also, MyD88/TRIF deficient mice did not
produce IFN-b and could not control T. cruzi proliferation (80).
Interestingly, type I IFN released at the parasite inoculation site
seems to be strain-dependent, since less infective strains were
incapable of triggering the cytokine production (81).

Similar to antiviral pathways, inflammasome activation has
been widely studied in mammal models, revealing a fundamental
role in signal transduction and pyroptosis, a proinflammatory
form of cell death (82). Among the inflammasome sensor
proteins, NOD1, NOD2, and NLRP3 have been studied in the
host-T. cruzi context, with apparent contradictory results
regarding their effective roles in the protection against
FIGURE 7 | Summary of the regulated pathways during DCs-T. cruzi first contact. A view of the gene expression patterns was generated using the transcriptome
data and the enriched KEGG pathways as input for BioNSi in Cytoscape v.3.8.0. The KEGG pathways (named in gray) are displayed according to the transcriptome
Log2 Fold change scale (blue: up-regulated genes, red: down-regulated genes) and cellular localization.
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infection (83–86). Interestingly, we have identified up-regulation
of the virus-related IFI16, RIG-I, and AIM2 sensor proteins,
which are known to drive the maturation and secretion of IL-1b
after foreign RNA/DNA recognition (87–89). In Plasmodium
berghei and Aspergillus fumigatus, AIM2 and NLRP3 may
function in a redundant manner to trigger inflammasome
activation and, consequently, aid in pathogen infection control
(90, 91). Additionally, in Leishmania and Toxoplasma,
inflammasome activation can lead to parasite clearance, host
susceptibility or even an exacerbated immune response (92).
Nevertheless, the role of inflammasomes and their relationship to
Chagas disease need to be further explored.

According to our PPI analysis, the genes belonging to virus
response show robust evidence for interaction, operating as hubs
in the network (Figure 5, magenta), and indicating the
importance of this pathway during the early T. cruzi infection.
Moreover, other enriched pathways in the PPI network are also
closely related to virus response. For example, viral antigens are
usually presented to T lymphocytes by MHC-I molecules after
ubiquitin-proteasome degradation (Figure 5, yellow) (93).
Equally, metallothioneins (Figure 5, orange) are reported to be
modulated during viral infection or cytokine stimulus, regulating
host metal ion release, redox status, enzymatic function, and cell
signaling (94). Additionally, reactive oxygen species production
(Figure 5, cyan) and T lymphocyte recruitment and co-
stimulation (Figure 5, mint green and shell pink, respectively)
are known to be essential processes in both viral and T. cruzi
infection (95–98).

Inflammatory cytokines such as IL-8, TNF, IL-12, and IL-1b,
are the typical cocktail (99) that contribute to T. cruzi elimination
(10, 43, 84, 100, 101). Looking at the secreted set of cytokines after
12 h of MoDCs-T. cruzi metacyclic interaction, an increment of
IL-8 and TNF were detected as early products of gene
transcription, while IL-12 expression did not change at
transcriptional or protein level. MoDCs presented a reduced
production of IL-12 and TNF-a after 24 h of infection with the
Tehuantepec strain (39), while BM-DCs showed diminished IL-12
secretion but higher IL-10 production 24 h post-infection (102).
On the other hand, IL-10 and IL-1b transcripts were up-regulated,
but these proteins were not detected in culture supernatants. In the
case of IL-1b, CARD16, a protein reported as an inhibitor of the
caspase-1 activation, was found up-regulated at the transcriptional
level (103, 104). Without caspase-1 activity, pro-IL-1b is not
cleaved into an active IL-1b, which could be one of the reasons
for its absence in culture supernatants. Concerning IL-10, it is
classically produced upon activation of type I-IFN response (105),
and also induced through NOD2, here up-regulated, along with
TLRs (106–110). However, IL-10 transcript contains multiple
copies of destabilizing motifs and its stability is affected by
several factors, including IL-10 itself (111–113), which could
explain a rapid IL-10 transcription but a short-lasted or even
null secretion.

Despite the viral-related response being common among the
donors, donor C showed the lowest infection rates, and this is
probably related to the set of genes that were expressed above or
below average in this donor. Nevertheless, the high variations
Frontiers in Immunology | www.frontiersin.org 11
among experiments in the human model make the evaluation of
these differences difficult at the transcript or protein level. Within
the “defense response to virus” GO term, donor C showed an
above-average expression in 45 of the 58 total regulated
genes. This stronger expression in the virus response genes
could be the explanation for the lower infection in donor C.
Given the supposed importance of a viral immune response
during the host’s first contact with the parasite, one could
hypothesize that donor C ’s longer history of viral
immunizations may confer some form of protection against T.
cruzi infection. This type of nonspecific protection, provided by
commercial vaccines, has recently been explored and is known as
trained innate immunity, where epigenetic changes in innate
immune cells can be observed after vaccination and may prepare
them to respond to a different pathogen (114, 115).

To validate the transcriptome and increase the studied
individuals, some relevant regulated genes were selected.
CXCL9 (fold change = 8.1) is a chemokine mainly produced
by monocytes, epithelial cells, fibroblasts, and tumor cells, which
attracts T lymphocytes to the infection site (116). TNFSF18 (fold
change = 5.7) is a molecule mainly expressed by antigen-
presenting cells that enhances DC and lymphocyte activation
(117). USP18 (fold change = 8.7) is a cysteine protease that
negatively regulates type I IFN signaling, promoting CD11b+ DC
differentiation (118). Then, these three proteins seem to be
important during early infection, when DCs need to
differentiate to present antigens and recruit T cells, and they
were consistently more expressed in the infected MoDCs from
six donors. Additionally, the regulation of GBP4, MX1, OASL,
PLCB2, and WNT5B, genes related to the virus response, was
consistent among the donors. GBP4 (fold change = 9.2) is a IFN-g
inducible GTPase containing a C-terminal domain that enable
inflammasome activation to eliminate intracellular bacteria and
virus (119–121). MX1 (fold change = 8) is also a GTPase that
blocks viral replication, and is widely studied in the Influenza
infection (122, 123). OASL (fold change = 8.9) is a type I IFN
inducible protein that inhibits viral replication during the early
phase of infection by degrading viral RNA (124, 125). Therefore,
our data show that virus-related inflammasome induction is
important during the first contact between DCs and T. cruzi,
and this response is more similar to that directed to RNA viruses.
On the other hand, PLCB2 (fold change = − 0.6) and WNT5B
(fold change = −0.4) were down-regulated in transcriptional
levels. WNT5B is correlated with hematopoietic/bone marrow
cell differentiation GM-CSF-induced and to proinflammatory
cytokine regulation during infections (126, 127). PLCB2
negatively regulates the proinflammatory response produced by
viral infections (128). Down-regulated expression ofWNT5B and
PLCB2 was expected. Further studies are required to test if other
strains of T. cruzi up-regulate the same gene set, or if a strain of
different infection capacity will induce different gene expression
patterns that can be associated with pathogeny.

A vast range of pathogens, from viruses to multicellular
parasites, may also shape DC metabolism and immune
functions leading towards a tolerogenic phenotype. Hepatitis C
virus (HCV) NS3 and HCV core proteins can inhibit DC
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differentiation via an IL-10 induction (129). Moreover, DCs
recovered from patients infected with hepatitis B virus
exhibited decreased antigen-presenting, migration, and
cytokine production capacity (130). Human DC exposure to
Mycobacterium tuberculosis resulted in the downregulation of
CD11a, CD11b, and CD18 expression with compromised DC
adherence to endothelial cells and migration toward a chemokine
gradient (131). Finally, Plasmodium falciparum binds to the
surface of myeloid DCs and deeply reduces the expression of
MHC class II, CD83 and CD86 co-stimulatory molecules, and
maturation of DCs (132). However, the delimitated conditions
(in vitro, 12 h after infection, parasite strain, DC subset) in which
we carried out our tests do not allow us to conclude whether the
antiviral response will be exclusively to the detriment or the
benefit of the parasite.

In conclusion, our transcriptome has brought to light virus
response as an important and unexplored process during the first
hours of T. cruzi-host interaction. These discoveries open up new
perspectives for the study of this disease, with better-elucidated
viral infection mechanisms expanding current knowledge.
Future work regarding the role of the type I interferon-induced
genes for antigen presentation and T lymphocyte activation
should be conducted to elucidate the immune response against
T. cruzi and disease progression.
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16. Pérez-Molina JA, Molina I. Chagas disease. Lancet (2018) 391:82–94.
doi: 10.1016/S0140-6736(17)31612-4

17. Monteon V. Trypanosoma cruzi: the early contact between insect-derived
metacyclic trypomastigotes and the mammalian cells. Ann Parasitol (2019)
65:193–204. doi: 10.17420/ap6503.201

18. Giordano R, Fouts DL, Tewari D, Colli W, Manning JE, Alves MJM. Cloning
of a surface membrane glycoprotein specific for the infective form of
Trypanosoma cruzi having adhesive properties to laminin. J Biol Chem
(1999) 274:3461–8. doi: 10.1074/jbc.274.6.3461

19. Scharfstein J, Schmitz V, Morandi V, Capella MMA, Lima APCA, Morrot A,
et al. Host cell invasion by Trypanosoma cruzi is potentiated by activation of
bradykinin B2 receptors. J Exp Med (2000) 192:1289–99. doi: 10.1084/
jem.192.9.1289

20. Turner CW, Lima MF, Villalta F. Trypanosoma cruzi uses a 45-kDA mucin
for adhesion to mammalian cells. Biochem Biophys Res Commun (2002)
290:29–34. doi: 10.1006/bbrc.2001.6189

21. Herrera EM, Ming M, Ortega-Barria E, Pereira ME. Mediation of
Trypanosoma cruzi invasion by heparan sulfate receptors on host cells
and penetrin counter-receptors on the trypanosomes.Mol Biochem Parasitol
(1994) 65:73–83. doi: 10.1016/0166-6851(94)90116-3

22. Alves M, Colli W. “Role of the gp85/Trans-Sialidase Superfamily of
Glycoproteins in the Interaction of Trypanosoma cruzi with Host
Structures”. In: Molecular Mechanisms of Parasite Invasion. New York:
Springer (2008). p. 58–69 . doi: 10.1007/978-0-387-78267-6_4

23. Bafica A, Santiago HC, Goldszmid R, Ropert C, Gazzinelli RT, Sher A.
Cutting Edge: TLR9 and TLR2 Signaling Together Account for MyD88-
Dependent Control of Parasitemia in Trypanosoma cruzi Infection.
J Immunol (2006) 177:3515–9. doi: 10.4049/jimmunol.177.6.3515

24. Campos MA, Almeida IC, Takeuchi O, Akira S, Valente EP, Procopio DO,
et al. Activation of Toll-like receptor-2 by glycosylphosphatidylinositol
anchors from a protozoan parasite. J Immunol (2001) 167:416–23.
doi: 10.4049/jimmunol.167.1.416

25. Calderón J, Maganto-Garcia E, Punzón C, Carrión J, Terhorst C, Fresno M.
The receptor Slamf1 on the surface of myeloid lineage cells controls
susceptibility to infection by Trypanosoma cruzi. PLoS Pathog (2012) 8:
e1002799. doi: 10.1371/journal.ppat.1002799

26. Medeiros MM, Peixoto JR, Oliveira A-C, Cardilo-Reis L, Koatz VLG, Van
Kaer L, et al. Toll-like receptor 4 (TLR4)-dependent proinflammatory and
immunomodulatory properties of the glycoinositolphospholipid (GIPL)
from Trypanosoma cruzi. J Leukoc Biol (2007) 82:488–96. doi: 10.1189/
jlb.0706478

27. Schmitz V, Almeida LN, Svensjö E, Monteiro AC, Köhl J, Scharfstein J. C5a
and bradykinin receptor cross-talk regulates innate and adaptive immunity
in Trypanosoma cruzi infection. J Immunol (2014) 193:3613–23.
doi: 10.4049/jimmunol.1302417
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