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LinkedSV for detection of mosaic structural
variants from linked-read exome and genome
sequencing data

Li Fang® !, Charlly Kao?, Michael V. Gonzalez?, Fernanda A. Mafra?, Renata Pellegrino da SilvaZ, Mingyao Li3,

Séren-Sebastian Wenzel?, Katharina Wimmer® %, Hakon Hakonarson® ° & Kai Wang® "6+

Linked-read sequencing provides long-range information on short-read sequencing data by
barcoding reads originating from the same DNA molecule, and can improve detection and
breakpoint identification for structural variants (SVs). Here we present LinkedSV for SV
detection on linked-read sequencing data. LinkedSV considers barcode overlapping and
enriched fragment endpoints as signals to detect large SVs, while it leverages read depth,
paired-end signals and local assembly to detect small SVs. Benchmarking studies demon-
strate that LinkedSV outperforms existing tools, especially on exome data and on somatic
SVs with low variant allele frequencies. We demonstrate clinical cases where LinkedSV
identifies disease-causal SVs from linked-read exome sequencing data missed by conven-
tional exome sequencing, and show examples where LinkedSV identifies SVs missed by high-
coverage long-read sequencing. In summary, LinkedSV can detect SVs missed by conven-
tional short-read and long-read sequencing approaches, and may resolve negative cases from
clinical genome/exome sequencing studies.
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enomic structural variants (SVs) have been implicated in
a variety of phenotypic diversity and human diseases!.

Several approaches, such as split-reads>3, discordant
read-pairs>#, and assembly based methods>® have been devel-
oped for SV discovery from short reads. However, reliable
detection of SVs from these approaches remains challenging. The
split-reads and discordant read-pairs approaches require that the
breakpoint-spanning reads/read-pairs are sequenced and con-
fidently mapped. Genomic rearrangements are often mediated by
repeats and thus breakpoint junctions of SVs are very likely to
reside in repetitive regions’®. Therefore, the breakpoint-
spanning reads/read-pairs may be multi-mapped and have low
mapping qualities. It is also difficult to perform assembly at repeat
regions. Long-read sequencing, such as single-molecule real-time
(SMRT) sequencing and nanopore sequencing are better for SV
detection!®11, but their application is limited by the higher cost
and per-base error rate.

Linked-read sequencing technology developed by 10xGe-
nomics combines the throughput and accuracy of short-read
sequencing with the long-range information. In this approach,
nanogram amounts of high-molecular weight (HMW) DNA
molecules are dispersed into more than 1 million droplet parti-
tions with different barcodes by a microfluidic system!2. Thus,
only a small number of HMW DNA molecules (~10) are loaded
per partition!3. The HMW DNA molecules can be up to several
hundred kilobases in size and have a length-weighted mean DNA
molecule length of about 50 kb. Within an individual droplet
partition, HMW DNA molecules are primed and amplified by
primers with a partition-specific barcode. The barcoded DNA
molecules are released from the droplets and sequenced by
standard Illumina paired-end sequencing!2. The sequenced short
reads derived from the same HMW DNA molecule can be linked
together, providing long-range information for mapping, phasing
and SV calling. In addition, linked-read whole-exome sequencing
(WES) has also been developed!2, which provides an attractive
and efficient option for clinical genetic testing.

In linked-read sequencing data, barcode similarities between
any two nearby genome locations are very high, because the reads
tend to originate from the same sets of HMW DNA molecules. In
contrast, barcode similarities between any two distant genome
locations are very low, because the reads of the two genome
locations originate from two different sets of HMW DNA
molecules and it is highly unlikely that two different sets of HMW
DNA molecules share multiple barcodes. Thus, the presence of
multiple shared barcodes between two distant locations indicates
that the two distant locations are close to each other in the
alternative genome!4. A few pipelines and software tools have
adopted this principle to call SVs from linked-read sequencing
data, such as Longranger!?2, GROC-SVs!4, and NAIBR!>. Long-
ranger is the official pipeline developed by 10x Genomics.
Longranger bins the genome into 10 kb windows and finds the
barcodes of high-mapping quality reads within each window. A
binomial test is used to find all pairs of regions that are distant
and share more barcodes than what would be expected by chance.
A sophisticated probabilistic model is used to assign a likelihood
and remove low-quality events!?. GROC-SVs uses a similar
method to find candidate SV loci but performed assembly to
identify precise breakpoint locations. GROC-SVs also provides
functionality to interpret complex SVs!4. NAIBR detects SVs
using a probabilistic model that incorporates signals from both
linked-reads and paired-end reads into a unified model®>.

However, SV detection from linked-read datasets is still in the
early stage. The available SV callers face challenges if we want to
detect: (i) SVs from targeted region sequencing (e.g., WES); (ii)
somatic SVs in cancer or somatic mosaic SVs that have low
variant allele frequencies (VAFs, also known as variant allele

fractions); (iii) SVs of which the exact breakpoints have no cov-
erage or are located in repeat regions. In this study, we introduce
LinkedSV, a novel computational method and software tool for
linked-read sequencing, which aims to address all the above
challenges. LinkedSV detects large SVs using two types of evi-
dence and quantifies the evidence using a novel probabilistic
model. It also leverages read depth, paired-end signals and local
assembly to detect small deletions. We evaluate the performance
of LinkedSV on both whole-genome and WES data sets. In each
case, LinkedSV outperforms other existing tools, including
Longranger, GROC-SVs and NAIBR, especially on exome data
and on somatic SVs with low variant allele frequencies. We
additionally demonstrate clinical cases where LinkedSV identifies
disease causal SVs from linked-read exome sequencing data
missed by conventional exome sequencing, and show examples
where LinkedSV identifies SVs missed by high-coverage long-
read sequencing.

Results

Illustration of two types of evidence near SV breakpoints. Two
types of evidence may be introduced while a genomic rearran-
gement happens: (1) reads from one HMW DNA molecule which
spans the breakpoint being mapped to two genomic locations and
(2) reads from two distant genome locations that get mapped to
adjacent positions. Both types of evidence can be used for SV
detection.

First, we describe the signals of type 1 evidence. After reads
mapping, the original HMW DNA molecules can be computa-
tionally reconstructed from the sequenced short reads using their
barcodes and mapping positions. In order to distinguish them
from the physical DNA molecules, we use fragments to refer to
the computationally reconstructed DNA molecules. A fragment
has a left-most mapping position, which we call L-endpoint, and
a right-most mapping position, which we call R-endpoint. As a
result of genomic rearrangement, reads from one breakpoint-
spanning HMW DNA molecule would be mapped to two
different genome loci on the reference genome. This split-
molecule event has two consequences: (1) observing two separate
fragments sharing the same barcode and (2) each of the two
fragment has one endpoint close to the true breakpoints.
Therefore, in a typical linked-read WGS data set, multiple split-
molecule events could be captured and we would usually observe
multiple shared barcodes between two distant genome loci and
multiple fragment endpoints near the breakpoints.

To illustrate this, Fig. 1a shows the split-molecule events of a
deletion, where breakpoints 1 and 2 are marked by red arrows.
Multiple fragment endpoints are enriched near the two break-
points of a large deletion. This can be observed in deletions with
minimal size of about 5-10kb. Figure 1b and Supplementary
Figs. 1-3 show the patterns of enriched fragment endpoints that
are introduced by different types of SVs. As an example, Fig. 1c
shows the number of fragment endpoints in a 5-kb sliding
window near two deletion breakpoints, based on a 35x coverage
linked-read WGS data generated from the NA12878 genome
(genome of a female individual extensively sequenced by multiple
platforms). At the breakpoints, the number of fragment endpoints
in the 5-kb sliding window is more than 100 and is 5 times more
than normal regions, forming peaks in the figure.

Since the fragments can be paired according to their barcodes,
we can also observe fragment endpoints of this deletion in a two-
dimensional view. As shown in Fig. 1d, each dot indicates two
endpoints from a pair of fragments which share the same
barcode. The x-value of the dot is the position of the first
fragment’s R-endpoint and the y-value of the dot is the position
of the second fragment’s L-endpoint. The bottom panel and right
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Fig. 1 Two types of evidence near SV breakpoints. a Type 1 evidence. Reads from HMW DNA molecules that span the breakpoints of a deletion are
mapped to two genomic locations, resulting in two sets of observed fragments and two sets of newly introduced fragment endpoints (large dots). b The
patterns of enriched fragment endpoints indicate the SV types. Please refer to Supplementary Figs. 1-3 and Supplementary Movie 1 for detailed
explanations of how the patterns are formed. ¢ Enriched fragment endpoints detected near two breakpoints of a deletion on NA12878 genome. L-endpoints
and R-endpoints are plotted separately. The breakpoint positions are marked by red arrows. d Two-dimensional view of enriched endpoints near the two
breakpoints of the deletion. Each dot indicates a pair of fragments which share the same barcode and thus may support the SV. The x-value of the dot is the
position of the first fragment’'s R-endpoint and the y-value of the dot is the position of the second fragment's L-endpoint. The background of the 2D plot
is cleaner than the 1D plot (panel c) since the fragments that do not share barcodes are excluded. e Type 2 evidence. Reads from two breakpoints of
an inversion being mapped to nearby positions (in the gray rectangles), resulting in decreased barcode similarity between the two nearby positions.

f Decreased barcode similarity near the breakpoints of an inversion on NA12878 genome. The reciprocal of barcode similarity is shown in the figure.
The peaks indicate the positions of the breakpoint.

panel in Fig. 1d shows number of dots that are projected to the not share barcodes are excluded. Therefore, the two-dimensional
x-axis and y-axis. Similar with the one-dimensional plot (Fig. 1c), plot is more useful when the variant allele frequency (VAF) is
a peak is formed near each breakpoint, which is marked by the very low and there are only a few supporting fragments.

red arrow. The background noise of the two-dimensional plot is Next, we describe the signals of type 2 evidence. The barcodes
cleaner than the one-dimensional plot since the fragments that do  between two nearby genome locations is highly similar because
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the two locations are spanned by almost the same set of input
HMW DNA molecules. However, due to the genome rearrange-
ment, the reads mapped to the left side and right side of a
breakpoint may originate from different locations of the
alternative genome and thus have different barcodes (Fig. le).
Dropped barcode similarity between two nearby loci therefore
indicates an SV breakpoint. LinkedSV detects this type of
evidence by a twin-window method, which uses two adjacent
sliding windows to scan the genome and find regions where the
barcode similarity between the two nearby window regions is
significantly decreased. Figure 1f illustrates an inversion break-
point detected by LinkedSV from the NA12878 genome. The
change of barcode similarity was plotted and a peak was formed
at the breakpoint. After searching for the two types of evidence,
LinkedSV combines the candidate SV regions, and quantifies the
evidence using a novel probabilistic model. The breakpoints are
further refined using short-read information, including discor-
dant read pairs and split-reads.

Performance evaluation on simulated WGS data. To assess
LinkedSV’s performance, we simulated a 35x linked-read WGS
data set with 1175 SVs inserted using LRSIM!3 (see Methods for
details). The breakpoints of the simulated SVs were designed to
be located in repeat regions, since we found that LinkedSV and
other available SV callers performed very well when the break-
points were located in non-repeat regions, and thus we set to test
the performances of all the SV callers under more challenging
situations. This makes sense because SV breakpoints are more
likely to be in repeat regions’~%, and because these situations
represent those that are difficult to be addressed by conventional
short-read sequencing approaches.

The simulated reads were aligned to the reference genome
using the Longranger!2 package provided by 10x Genomics. The
Longranger pipeline internally uses the Lariat aligner!®, which
was designed for the alignment of linked reads. SV calling was
performed using LinkedSV as well as three other available SV
callers designed for linked-read sequencing: Longranger, GROC-
SVs!'4, and NAIBR!®. Two widely used short-read SV callers
(Delly® and Lumpy!”) were also used.

We used recalls, precisions and F1 scores to evaluate the
performance of the six SV callers on this data set. As shown in
Fig. 2a, the four linked-read SV callers showed higher F1 scores
than the two short-read SV callers. LinkedSV achieved the highest
recall and F1 score among all methods. GROC-SVs had a good
precision but its recall was lower than LinkedSV, so we further
analyzed the false negative calls of GROC-SVs to understand the
underlying reason. A major portion of the false negative calls by
GROC-SVs represents duplications that are smaller than twice
the fragment length. For large duplications, the reads of the
alternative allele are separated by a large gap so that we can
observe two sets of fragments with the same set of barcodes,
which indicate an SV (Supplementary Fig. 4a). If the duplication
is not large enough, the reads will be probably clustered into one
fragment (Supplementary Fig. 4b). Even in this case, we can
observe enriched fragment endpoints near the duplication
breakpoints in LinkedSV. As an example, Fig. 2b shows the
endpoint signal of a missed duplication call by GROC-SVs. The
supporting fragments of this duplication is shown in Fig. 2c. A
detailed explanation of the pattern of duplication can be found in
Supplementary Fig. 1 and Supplementary Movie 1. Figure 2d
showed the extra read depth in this region. We also evaluated the
breakpoint precision of LinkedSV. Most of breakpoints predicted
by fragment endpoints are within 20bp (Fig. 2e) and refined
breakpoints using discordant read-pairs and split-reads have
base-pair resolution (Fig. 2f).

Benchmarking on WGS data with somatic SVs of low VAF.
Somatic SVs are commonly found in cancer genomes!8-20,
However, due to the high heterogeneity of genomic alteration in
cancer genomes, somatic SVs often have low (as opposed to ~50%
in a germline genome) VAF and thus are more difficult to detect
by SV callers designed for germline SVs. We simulated two WGS
data sets with VAF of 10% and 20%, respectively. Recalls, pre-
cisions and F1 values of the six SV callers were evaluated on both
data sets (Fig. 3a, b). When the VAF was 20%, the recall of
LinkedSV (0.803) was much higher than that of Longranger
(0.306), GROC-SVs (0.324), and NAIBR (0.679) The F1 score of
LinkedSV (0.855) was also the highest among all the SV callers.
When the VAF was 10%, LinkedSV still had a recall of 0.761,
which was 72% higher than the second best SV caller NAIBR.
Longranger detected 17% of the SVs while GROC-SVs almost
completely failed to detect the SVs. The recall rates of Delly and
Lumpy were 0.28 and 0.72, respectively, indicating that some of
the SVs can be detected even without barcode information. These
observations confirmed that other SV callers were mainly
designed for germline genomes and had substantial difficulty in
detecting SVs with somatic mosaicism. However, due to the
combination of barcode overlapping and enriched fragment
endpoints in our statistical model (see Methods for details),
LinkedSV was able to achieve a good performance even when
VAF was very low. We manually checked the barcode over-
lapping evidence of some SV calls using the Loupe software
developed by 10x Genomics. Figure 3¢ shows an inversion that
was missed by Longranger, and NAIBR but detected by LinkedSV
(at VAF of 10%). Although the variant frequency is low, the
overlapped barcodes between the two inversion breakpoints can
be clearly visualized (in the black circles) in the figure. Figure 3d
shows the supporting fragments of the inversion detected by
LinkedSV. Each horizontal line represent two fragments that
share the same barcode and support the SV. These results suggest
that the manufacturer-provided software tool has limitations for
SV detection, despite its strong functionality in visualization.

To test the performance of LinkedSV on the detection of
disease casual SVs, we simulated one germline and two somatic
(VAF=10% and 20%) linked-read WGS data sets with 51
deletions/duplications that were known to cause copy number
variation (CNV) syndromes involved in developmental disorders
(see Method for details). The size distribution of the events was
shown in Supplementary Fig. 5. The performances of LinkedSV
as well as five other SV callers were shown in Supplementary
Fig. 6. The results were similar to those of the above simulations.
LinkedSV had the highest F1 score on both germline and mosaic
data sets, followed by NAIBR.

Benchmarking of deletion detection on the HG002 genome.
Recently, the Genome in a Bottle (GIAB) Consortium released a
benchmark call set for the evaluation of germline SV detection?!.
The benchmark set was based on the HG002 genome and was
generated from integrating multiple SV calling methods from
multiple sequencing platforms including 10x Genomics sequen-
cing and PacBio long-read sequencing. The current GIAB call set
only contains insertions and deletions. Since LinkedSV and the
other three linked-read SV callers cannot detect insertions, we
only benchmarked the performance to detect deletions using this
benchmarking data set.

LinkedSV uses different strategies to detect deletions of
different sizes. For deletions that are more than 10 kb, LinkedSV
uses the two types of evidence from barcode signals as described
above; for deletions that are within 1-10kb, LinkedSV uses a
combination of read depth and paired-end signals, with
additional consideration of local haplotypes; for detection of
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Fig. 2 Performance of LinkedSV on the simulated WGS data set. a Recalls, precisions and F1 scores of six SV callers on the simulated WGS data set.
b Fragment endpoint signals of a small duplication that was missed by GROC-SVs. The peaks indicate the approximate breakpoint positions. € Supporting
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Supplementary Movie 1 for detailed explanations of how the patterns are formed. Horizontal lines represent linked reads with the same barcode; dots
represent reads; colors indicate barcodes; dashed vertical gray lines represent breakpoint positions. d Read depth distribution near the duplication region.
The black lines showed the depth of reads with mapping quality > 20, while the gray lines showed the depth of reads with mapping quality > O (i.e., all
reads). Red lines indicate breakpoints predicted by LinkedSV and the blue line indicate the average depth of the whole genome. e Precision of breakpoints
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Source data is provided as a Source Data file.
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SVs that are less than 1 kb, LinkedSV uses a local assembly based
method. Specifically, we modified the FermiKit?> de novo
assembly pipeline to be a local assembler to improve speed and
reduce the complexity of the assembly graph (see Method for
details).

Supplementary Fig. 7a showed the performance on detection of
deletions that were more than 10 kb. The recall and F1 score of
LinkedSV was the highest among the seven methods. The four
linked-read SV callers performed better than the three short-read
SV callers in terms of F1 score. The performance on detection of
deletions that within 1-10kb were shown in Supplementary
Fig. 7b. The performance of LinkedSV was similar to Longranger,
which also provided an algorithm to detect small deletions.
NAIBR and GROC-SVs did not perform well because they were
not designed to detect small events including small deletions. For
deletions that were less than 1kb, LinkedSV (with modified
FermiKit) performed best (recall=0.48, F1 score=0.64), it
detected more calls than the original de novo assembly version
(recall =0.43, F1 score =0.60), indicating that local assembly
reduced the complexity of the assembly graph and improved the

performance. NAIBR, GROC-SVs, and Lumpy did not perform
well on deletions of this scale (Supplementary Fig. 7c). Size
distribution of SV events (including deletions, duplications, and
inversions) detected by LinkedSV was shown in Supplementary
Fig. 8.

Performance evaluation on simulated WES data. Compared
with WGS, WES is currently widely used in clinical settings to
identify disease causal variants on patients with suspected genetic
diseases, partly due to the lower cost of WES. Since WES only
covers a small portion of regions in the whole genome, it is far
more challenging to detect SVs from WES data, especially when
the SV breakpoints are not in the capture regions. However, by
combining linked-read sequencing with WES capture platforms,
it is possible to alleviate this problem, and significantly improve
the sensitivity of SV detection using WES.

To evaluate SV detection on linked-read WES data, we
simulated a 40x coverage linked-read WES data set with 1160
heterozygous SVs (see Methods for details). Totally, 44.3% of the

6 | (2019)10:5585 | https://doi.org/10.1038/s41467-019-13397-7 | www.nature.com/naturecommunications


www.nature.com/naturecommunications

ARTICLE

a WES
1.0

0.8 —
0.7 | —

05
04
03
02
0.1

0.0

Longranger GROC-SVs  NAIBR LinkedSV Delly Lumpy

0O Recall @ Precision ® F1 score

b .
o &
o B
@ -
o =
-
:
o =
o =
@
S =
i~ =
5
o =
o - =
4
8
S Barcode overlap
BT o [ ¢
chri 168x
¥ HHHHE I + HHH FIH T T FHTHHHE R
172,066,209 1,917,408 bp 173,983,617
chri |
Cc Breakpoint 1 Breakpoint 2
1 P . 1
T 7 T
. eea | ow
! looe e
| o
i joe
i e
“ i jo—eee
— 1 1
c i [
[0 1 loo
E 1 | oeo wes =
5 : =
© I [F
- 1 1
=2 f H—
£ H | o
Tt 1 1 oo
o 1 | so—w
Q. 1 | es—e
o 1 | em—ee—e
> 1 !
n 1 lose
1 lo eo—cee
1 I o weo—a
i joe—weee
| e
1 1
1 i
Capture region ‘ ‘ : :
] 1
L 1 / L L ! 4

172,600,000 7 /173,400,000 173,600,000

breakpoints were not in exon regions. SV calling was performed
using the six SV callers. As shown in Fig. 4a, LinkedSV had the
highest recall (0.79) and highest F1 score (0.86). In terms of the
balanced accuracy (F1 score), NAIBR was the second best caller,
followed by GROC-SVs.

We analyzed false-negative calls of the second best SV caller
NAIBR. NAIBR tends to miss some SV events that have shared

Fig. 4 Performance of LinkedSV on the simulated WES data set. a Recalls,
precisions and F1 scores of six linked-read SV callers on the simulated WES
data set. b Heat map showing a deletion that was missed by NAIBR. The
overlapping barcodes between the two breakpoints can be clearly visualized
(in the black circles). The heat map was plotted by the Loupe software. Dots
represent overlapping barcodes. ¢ Supporting fragments of the deletion
detected by LinkedSV. Horizontal lines represent linked reads with the same
barcode; dots represent reads; colors indicate barcodes. Predicted breakpoint
positions are marked by vertical gray lines. Capture regions were shown as
vertical bars in the bottom. Source data is provided as a Source Data file.

barcodes but lack short-read support. For example, Fig. 4b
showed a deletion between chrl:172545561-173504265. Both
breakpoints were located outside of capture regions. Breakpoint 1
(chr1:172545561) was 768 bp away from the nearest capture
region and breakpoint 2 (chr1:173504265) was 392 bp away from
the nearest capture region. Unfortunately, no discordant read
pairs that support the deletion could be found. However, shared
barcodes between the two breakpoints were clearly indicated by
the Loupe software (Fig. 4b). In addition, LinkedSV also detected
28 pairs of fragments that share the same barcodes and support
the SV. These fragments were plotted in Fig. 4c. Although no
short-read support was found, the SV type could be determined
using the pattern of enriched fragment endpoints shown in
Fig. 1b. In this SV event, R-endpoints were highly enriched for
the first set of fragments and L-endpoints were highly enriched
for second set of fragments. Thus, the SV type was predicted as
deletion.

Detection of F8 inversion from clinical WES data. We also
tested the performance of LinkedSV on several clinical samples
with linked-read WES data. First, we applied LinkedSV on a WES
sample of a male individual with Hemophilia A. Previous
experiments had shown that the patient had type I inversion of
the F8 gene, where the two breakpoints resided in intronic/
intergenic regions, thus the inversion and its breakpoints cannot
be inferred from conventional WES. The F8 gene is located in
X@28. The intron 22 of F8 gene contains a GC-rich sequence
(named int22h-1) that is duplicated at two positions towards the
Xq-telomere (int22h-2 and int22h-3). Int22h-2 has the same
direction with int22h-1 while int22h-3 has the inverted direction.
The type I inversion is induced by the recombination between
int22h-1 and int22h-32324 (Fig. 5a). BLAST alignment of int22h-
1 and int22h-3 showed that the two sequences had 99.88%
identity. Since the breakpoints were located in two segmental
duplications with nearly identical sequences, the inversion is
undetectable by conventional short-read sequencing. Delly? and
Lumpy!7 failed to detect the inversion from the linked-read WES
data (results were shown in Supplementary Tables 1 and 2).
Longranger, GROC-SVs, NAIBR, and LinkedSV were also used
to detect SVs from this sample. None of the first three methods
detected this inversion (results were shown in Supplementary
Tables 3-5), although the overlapping barcodes can be visualized
using the Loupe software (Fig. 5b). However, LinkedSV
successfully detected this inversion by combining two types of
evidence. As described above, barcode similarity between two
nearby regions is very high but drops suddenly at the breakpoints.
Figure 5¢ shows the sudden drop of barcode similarity at the two
breakpoints. Each dot in the figure represents the reciprocal of the
barcode similarity between its left 40 kb window and right 40 kb
window, thus the y-value of the dots are inversely related to the
barcode similarity and positively related to the probability of
being a breakpoint. The barcode similarities are lowest at the two
breakpoints and thus form two peaks in the figure (marked by
red arrow). In addition, LinkedSV also identified the supporting
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Fig. 5 Detection of F8 inversion from clinical exome sequencing data. a lllustration of type | inversion of F8 gene. A portion of intron 22 has three
copies in chrX (int22h-1, int22h-2, and int22h-3). The inversion is induced by the homologous recombination between two inverted copies int22h-1
and int22h-3. Int22h-1 is located in intron 22 of F8 gene and int22h-3 is located in the intergenic regions. b Heat map of overlapping barcodes in
chrX:153916335-154862316 (hg19 coordinates), plotted by the Loupe software tool. Black circles indicate overlapping barcodes near the inversion
breakpoints. Dots represent overlapping barcodes. ¢ Decreased barcode similarity at breakpoints detected by the twin window method of LinkedSV.
Window size = 40 kb. d Supporting fragments detected by LinkedSV. Horizontal lines represent linked reads with the same barcode; dots represent
reads; colors indicate barcodes. Dashed vertical gray lines represent breakpoints. Capture regions were shown as vertical bars in the bottom.

fragments of the SV using type 1 evidence (Fig. 5d). The predicted
breakpoint positions are consistent with the genomic positions of
int22h-1 and int22h-3.

Detection of mosaic NF1 deletion from clinical WES data.
Another linked-read WES sample was from an individual who
was clinically diagnosed with Neurofibromatosis type 1. Neuro-
fibromatosis type 1 is caused by mutations in the NFI gene on
chromosome 17q11.2, which encodes neurofibromin, a GTPase
activating protein that has a role in the regulation of RAS sig-
naling. Since standard genetic testing techniques including cDNA
sequencing and multiplex ligation-dependent probe amplification
revealed no constitutional or mosaic pathogenic mutation in this
patient, we hypothesized that this patient may carry an SV
affecting the NFI gene that escapes the detection by the applied
standard techniques. To evaluate LinkedSV, we utilized the 10x
Genomics Chromium platform to generate linked-read WES data
to confirm and resolve the mutation. SV detection was conducted
using the four linked-read SV callers as well as Delly and Lumpy.
Longranger detected overlapped barcodes between exon 54 of the
NF1 gene and intron 3 of RAB11FIP4. However, the SV type was

unknown and no supporting read pairs or split-reads were found.
GROC-SVs, NAIBR, Delly and Lumpy failed to detect this SV
(Supplementary Tables 6-9). As shown in Fig. 6a, LinkedSV
detected 16 fragment pairs that may support a deletion spanning
the region of chr17:29684175-29822527. In addition, a discordant
read pair spanning the two breakpoints were found (Fig. 6b),
which gave further evidence supporting the deletion. The
breakpoints were estimated from this discordant read pair and
thus the resolution is a few hundred base pairs. In Fig. 6, each
colored line represent a reconstructed fragment, and ~13% of the
fragments belong to the variant allele, indicating the somatic
mosaicism of this deletion. The right breakpoint was within an
AluJr sequence masked by repeat masker, which may explain why
the deletion was difficult to be detected by conventional methods.

In comparison, the clinical lab used massive parallel sequen-
cing (TruSightCancer panel on a MiSeq platform (Illumina)) and
successfully revealed in exon 54 a transition of NFI sequences
into a non-NFI derived sequence. This sequence transition at
NF1 position ¢.7886_7887 was present in 8% of the reads covering
this site in germline DNA of the patient. Analysis of the reads
displaying the aberrant sequence in exon 54 showed that the
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Fig. 6 Detection of NF1 deletion from clinical exome sequencing data. a Plot of linked-reads for NFT WES sample spanning chr17:29645000-29855000. In the
normal allele (top), there are 71 fragments crossing over the left breakpoint and 38 fragments crossing over the right breakpoint. In the variant allele (bottom),
the linked reads are separated by a large gap. Horizontal lines represent linked reads with the same barcode; dots represent reads; colors indicate barcodes.
Dashed vertical red lines represent breakpoints. b Zoom-in plot of supporting fragments for the deletion. One read pair was found to support the deletion.

non-NFI derived sequence was part of an Alu element that
matched best a sequence in intron 3 of the RABI1IFIP4 gene located
138 kb downstream of NFI exon 54. These results suggested a low-
level (~8%) mosaicism of a deletion encompassing the region
intervening between NFI:c.7886 and RABII1FIP4:c.337-22216, so
that the true deletion spans chr17:29684367-29822453, which is
very similar to our estimated breakpoints from LinkedSV above. In
summary, our analysis on two clinical samples with F8 inversion
and NFI deletion demonstrated the unique advantage of linked-
read sequencing in confirming and resolving SVs in repetitive
regions and challenging situations.

Comparison with SVs detected from long-read sequencing. We
previously reported the de novo genome assembly of a Chinese
individual (HX1)2°. This genome was sequenced deeply at 103x
coverage using PacBio long-read sequencing. Recently, the
developers of SMRT-SV1026 reported the SV calls of HXI
detected from the PacBio data. In addition, we have also gener-
ated a 37x linked-read WGS dataset on HX1. Therefore, in the
current study, we detected SVs from the linked-read data using
LinkedSV and compared the SV calls detected by LinkedSV and
SMRT-SV. The SMRT-SV call set has 17 large deletions (=10 kb),
all of which were detected by LinkedSV. In addition, LinkedSV

detected another 46 large deletions, which were missed by SMRT-
SV. To validate these deletion calls, we mapped the PacBio reads
of HX1 to GRCh38 reference genome using minimap22’, and
manually examined all the SV-affected regions in both PacBio
data and linked-read data, using the Integrative Genomics Viewer
(IGV)28 and the Loupe software tool. We classify a deletion as a
true deletion if there are decreased read depth in the deletion
region and clear boundaries at the breakpoints. After the manual
inspection, we found that among the 46 deletions that are only
detected by LinkedSV, 34 of them have clear evidence of deletion
in the WGS data; 10 of them are complex SV events that need
to be fully resolved; and 2 of them are false positive events.
Figure 7a-c showed an example of a deletion that were detected
by LinkedSV but missed by SMRT-SV. This is a 45kb deletion
located in chr2:110395971-110441346. A deletion pattern was
clearly indicated by the Loupe software tool (Fig. 7a). After
examine the PacBio reads, we were able to found clipped
reads at the breakpoint positions (Fig. 7b, c). However, for
most of the clipped reads, the clipped sequences were aligned to
the hs38d1 decoy sequence, except for 5 reads with clipped
sequence > 7 kb. Analysis of the 5 reads revealed that the two
breakpoints in chr2 were not directly joined. There was a 6 kb
insertion in between. The inserted sequence was from hs38d1

NATURE COMMUNICATIONS | (2019)10:5585 | https://doi.org/10.1038/s41467-019-13397-7 | www.nature.com/naturecommunications 9


www.nature.com/naturecommunications
www.nature.com/naturecommunications

ARTICLE

a b Alignments of PacBio reads near chr2:110395942
5 Barcode overlap T == e =
o [ 5
f 50
2 J it > o
&
8
{
g
- i c Alignments of PacBio reads near chr2:110441266
- T .
&
8
S m Deletion
3 -
]
128x
) | H—AF ~——t +—-H—
110,350,596 136,125 bp 110,486,721
d e v f v
Linked reads ‘ r " : ‘ ‘
chr19:27,338,390-27,399,298 DUP : | ‘.,.mmmuw.nmmll '|!|l T i Hi'l | M\'l!‘l\l( iy IU"M
120 s R e
100 B g g R ——=
< 1 11 TR T '
§ £ i ERR B LA ==
< 60 I W T T b b (AR 1L 0T ) € 0, = H
S 40 = = D —
T i === iy i :
20 A (o TR P ‘ : R
0 b e ;
27,277,000 27,337,908 27,398,816 _— .;u,[.w,f — — :

Fig. 7 Structural variants detected from linked-read WGS data of the HX1 genome. a Heatmap of overlapping barcodes for a 45 kb deletion on
chromosome 2 (chr2:110395971-110441346, hg38 coordinates), plotted by the Loupe software tool. Black circles indicate overlapping barcodes near the
breakpoints. The deletion was not detected by SMRT-SV from PacBio long reads; b, ¢ Alignments of PacBio reads near the breakpoints of the 45 kb deletion
in chr2 in the HX1 genome. Clipped reads were marked by vertical pink lines (5’-clipping) or pink arrows (3’-clipping). The figures were generated by IGV.
Reads with mapping qualities equal to O were in white color. d Read depth distribution near a 61kb duplication region on chromosome 19
(chr19:27338390-27399298, hg38 coordinates). The calculation was based on the bam file of linked-reads. Only reads with mapping quality >20 were
counted. The dotted blue line showed the average depth across the whole genome. The predicted breakpoints were indicated by vertical red lines. The
duplication was not detected by SMRT-SV using PacBio long reads. e, f Aligned PacBio raw reads near the two breakpoints of the duplication, as shown in
IGV. Increased alignment mismatches due to the SV were observed in (e) (black rectangles). A clear duplication breakpoint was observed in (f).

(coordinates: 1381394-1387327). The proposed variant allele
was shown in Supplementary Fig. 9a. To validate this deletion/
insertion event, we aligned all the PacBio reads to a new reference
genome with all sequences of GRCh38 plus hs38d1 and the
sequence of the proposed variant allele. The reads aligned to the
proposed variant allele were shown in Supplementary Fig. 9b.
There were 33 reads spanning the chr2-hs38d1 junction, 48 reads
spanning the hs38d1-chr2 junction and 13 reads spanning both
junctions. De novo assembly of all the reads aligned to the pro-
posed variant allele generated a single contig of 42.7 kb, which
also spanned both junctions (Supplementary Fig. 9b, bottom
track). These analysis showed that the large deletion event
detected by LinkedSV is true and with PacBio long reads the
details of complex SV events could be resolved.

We also compared the duplication calls of LinkedSV and
SMRT-SV and manually examined discordant SV calls. LinkedSV
reported 6 large duplications (210kb), 5 of which were not
reported by SMRT-SV. Figure 7d-f showed the evidence of a 61
kb duplication call (chr19:27338390-27399298), which was only
reported by LinkedSV. A two-fold increase of read depth could be

10

observed in the duplication region (Fig. 7d), and the breakpoints
were also clearly indicated in the alignments of PacBio long reads,
as shown in IGV (Fig. 7e, f). The read depths of PacBio raw reads
and error-corrected reads were shown in Supplementary Fig. 10.
The increase of read depth in the duplication region can also be
observed. After the manual inspection of the left duplication
breakpoint, a small duplication event was found next to the main
event. The boundaries of the small duplication can be observed in
the alignments of linked reads and error-corrected PacBio reads,
but not in the alignments of PacBio raw reads, potentially because
of mapping errors (Supplementary Fig. 11). SMRT-SV reported
194 large duplications (=10kb). Unexpectedly, 193 of the
duplication calls were not detected by LinkedSV. In addition,
none of these duplications could be detected by Sniffles!!, another
widely used long-read SV caller. After comparing with the
segmental duplication database?, we found that 182 of the 193
duplication calls (94.3%) were located in large segmental
duplication regions. Both long reads and linked reads could not
be reliably mapped in these regions. As an example, we plotted
the read depth distribution in the region around a 25kb
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duplication call of SMRT-SV. Neither long reads (Supplementary
Fig. 12a) nor linked reads (Supplementary Fig. 12b) had mapping
quality >20 in the duplication region. Therefore, SV detection in
the super-large segmental duplication regions is still very
challenging. In summary, our comparative analysis demonstrated
unique advantages of linked-read WGS in resolving large SV's that
may fail to be detected by even long-read sequencing platform
with very deep coverage.

Discussion

In this study, we present LinkedSV, a novel algorithm for SV
detection from linked-read sequencing data. We assessed the
performance of LinkedSV on three simulated data sets and two
real data sets. By incorporating the two types of evidence as
outlined below, LinkedSV outperforms all existing linked-read SV
callers including Longranger, GROC-SVs, and NAIBR on both
WGS and WES data sets.

Type 1 evidence gives information about which two genomic
positions are connected in the alternative genome. It has two
observations: (1) fragments with shared barcodes between two
genomic locations and (2) enriched fragment endpoints near
breakpoints. Current existing linked-read SV callers only use the
first observation to detect SVs, while LinkedSV incorporates both
observations in the statistical model and is therefore more sen-
sitive and can detect SVs with lower allele frequencies, such as
somatic SVs in cancer genomes and mosaic structural variations.

Type 2 evidence gives information about which genomic
position is interrupted with the observation that the reads on the
left side and right side of a genomic position have different
barcodes and should be derived from different HMW DNA
molecules. LinkedSV is the only SV caller that use type 2 evidence
to detect breakpoints. Type 2 evidence is independent of type 1
evidence, and gives additional confidence to identify the break-
points. In addition, type 2 evidence can be detected locally, which
means we can detect an abnormal genomic location without
looking at the barcodes of the other genomic locations. This is
particularly useful in two situations: (1) novel sequence insertions
where there is only one breakpoint and (2) only one breakpoint is
detectable and the other breakpoint is located in a region where
there is little coverage within 50 kb, which is often the case in
target region sequencing. As LinkedSV incorporates two types of
evidence from barcodes, and performs local assembly to detect
small deletions, the computation time of LinkedSV is longer than
NAIBR, but shorter than GROC-SVs and Longranger (Supple-
mentary Fig. 13).

In recent years, WES has been widely used to identify disease
causal variants for patients with suspected genetic diseases in
clinical settings. Identification of SVs from WES data sets are
more challenging because the SV breakpoints may not be in the
capture regions and thus there would be little or no coverage at
the breakpoints. Linked-read sequencing increases the chance
of resolving such type of SVs by providing long-range infor-
mation. As long as there are a few capture regions nearby, the
fragments can still be reconstructed and type 1 and type 2
evidence can still be observed. Our statistical models for both
type 1 evidence and type 2 evidence were designed to handle
both WGS and WES data sets. GROC-SVs uses a local-assembly
method to verify the SV call, which requires sufficient coverage
at the breakpoints. By using these two types of evidence, Lin-
kedSV can rely less on short-read information (e.g., pair-end
reads and split-reads). We demonstrated that LinkedSV has
better recall and balanced accuracy (F1 score) on the simulated
WES data set and can detect SVs even when the breakpoints
were not located in capture regions and have no short-read
support. In addition, LinkedSV is also the only SV caller that

clearly detected the F8 intron 22 inversion and NFI deletion
from the clinical WES data sets.

Linked-read sequencing has several advantages over traditional
short-read sequencing for the purpose of SV detection. First, the
human genome is highly repetitive. Previous studies have shown
that SVs are closely related to repeats and many SVs are directly
mediated by homologous recombination between repeats®. In
traditional short-read sequencing, if the breakpoint falls in a
repeat region, the supporting reads would be multi-mapped and
thus the SV cannot be confidently identified. However, this type
of SV are detectable by linked-read sequencing when the HMW
DNA molecules span the repeat region. We can observe type 1
and type 2 evidence in the non-repeat region nearby. In our
benchmarking, LinkedSV detected more SVs than Delly and
Lumpy, especially when the VAF is low. Secondly, SVs are
undetectable from traditional short-read sequencing if there is
little coverage at the breakpoints, which is often the case in WES
data sets. As described above, this type of SV can also be resolved
by linked-read sequencing and LinkedSV. Third, linked-read
sequencing requires less coverage for detection of SVs with low
variant allele frequencies. In linked-read sequencing data, short-
read pairs are sparsely and randomly distributed along the HMW
DNA molecule. In a typical linked-read WGS data set, the average
distance between two read pairs derived from the same HMW
DNA molecule is about 1000 bp and each HMW DNA molecule
only has a short-read coverage of about 0.2x. Therefore, there are
about 150 HMW DNA molecules (reconstructed fragments)
covering a genomic location of 30x depth. An SV of 10% VAF
will has 15 supporting fragment pairs in a 30x depth location in
linked-read WGS data set, which is sufficient to be detected by
LinkedSV. However, an SV of 10% VAF will only has 3 sup-
porting read pairs in a 30x depth location in traditional short-
read WGS, which makes the detection more challenging.

Linked-read sequencing also has several advantages over long-
read sequencing in terms of SV detection. The fragment length of
linked-reads (typically 50-100 kb) is longer than the average read
length of regular long-read sequencing (typically 20-30Xkb).
Therefore, linked-read sequencing has unique advantages for
detection of large SVs. In our study, LinkedSV detected several
large SV's that were missed in the long-read SV call set. We also
showed that the sequencing error (13-15%) of long-read
sequencing technologies potentially had a negative effect on
reads mapping and subsequent SV calling (Supplementary
Fig. 11). In terms of library preparation, linked-read sequencing
only requires 1 ng input DNA, which is two orders of magnitude
smaller than what is needed by long-read sequencing. Therefore,
disease samples of very low DNA amount can be easily sequenced
by linked-read sequencing. In addition, SNPs, indels and SVs can
be detected from linked-read sequencing simultaneously.

LinkedSV may have limitations on detection of SVs in large
segmental duplication regions, where the linked reads have low
mapping qualities. SMRT-SV was able to find 194 large dupli-
cations in the HX1 genome, which were not detected by Lin-
kedSV and Sniffles, two alignment-based SV callers. SMRT-SV
detects SVs using an assembly based approach. During the
assembly process, the assembly contigs were error corrected and
polished by the PacBio reads. Therefore, the assembly contigs are
potentially more accurate and longer than each of the raw reads.
Thus, it is possible for SMRT-SV to detect SVs in these large
segmental duplication regions.

The linked-read technology provides strong evidence to detect
large SVs, but it provides little additional evidence to detect small
SVs. Therefore, LinkedSV has limited power to detect small SVs
such as small duplications and inversions. However, based on our
analysis of SV size distribution, large SVs are associated with
diseases such as cancers and CNV syndromes (Supplementary
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Note 2). Therefore, we expect that linked-read technology can
help resolve disease associated SVs. Similar to the existing linked-
read SV callers, LinkedSV currently does not handle insertions
and repeat expansions. As a future direction, we plan to detect
novel sequence insertions using type 2 evidence, since this type of
SV also cause a decrease of barcode similarity between nearby
regions and can be detected by the twin-window method. The
exact insertion sequence may then be inferred from the assembly
of all the reads that share barcodes with the candidate breakpoint.
LinkedSV currently already supports local assembly to detect
deletions, but it has not been parameterized and optimized to be
combined with type 2 evidence for detection of insertions.

In summary, we present LinkedSV, a novel SV caller for
linked-read sequencing. LinkedSV outperformed current existing
SV callers, especially for identifying SVs with low allele frequency
or identifying SV's from target region sequencing such as linked-
read WES. We expect that LinkedSV will facilitate the detection
of SVs from linked-read sequencing data and help solve nega-
tive clinical cases from conventional short-read sequencing.

Methods

Breakpoint detection from type 1 evidence. First, LinkedSV reconstructs the
original long DNA fragments from the reads using mapping positions and barcode
information. All mapped reads are partitioned according to the barcode and sorted
by mapping position. We define gap distance as the distance between two nearest
reads with the same barcode. Two nearby reads are considered from the same long
DNA fragment if they have the same barcode and their gap distance is less than a
certain distance G. G is determined using two steps. First, we use G =50kb (the
same as Zheng et al.1) to group the reads into fragments. This value is suitable for
detection of large SVs. However, it may be too large for detection of SVs that are
smaller than 50 kb. Therefore, we calculate the empirical distribution of intra-
fragment gap distance, which is the distance of two nearby reads that are grouped
in one fragment. The empirical distribution of intra-fragment gap distance is
calculated from all the fragments, and we assign G as the 99th percentile of this
distribution. G is a fixed number for all fragments and is usually between 5 and
15 kb, depending on the data set. Fragments with a gap distance larger than G
potentially span a breakpoint and will be separated to two fragments.

In non-SV regions, all the reads from the same HMW DNA molecule would be
reconstructed into a single-DNA fragment. The reads from the breakpoint-
spanning HMW DNA molecule will be mapped to two different positions in the
genome. As illustrated in the Result section, this split-molecule event has two
consequences: (1) observing two fragments sharing the same barcode and (2) each
of the two fragment has one endpoint close to the breakpoints. Therefore, we could
observe enriched fragment endpoints near the breakpoints, in both one-
dimensional view (Fig. 1c) and two-dimensional view (Fig. 1d). The type of the
endpoints (L-endpoint or R-endpoint) that enriched near the breakpoints depends
on the type of SV (Fig. 1b). The two-dimensional view has less background noise
because the fragments that do not share barcodes and thus do not support the SVs
are excluded. Therefore, we detect the enriched endpoints in the two-
dimensional view.

We now describe how we detect the type 1 evidence of deletion calls, but the
method can be applied to other types of SVs. We define fragment pair to be two
fragments sharing the same barcode. Let b;, b, be the positions of the two
breakpoint candidates (assuming b; < b,). Let n be the number of fragment
pairs that may support the SV between b; and b,. Let F;;, F;, denote the ith
fragment pair that support the SV. Let B(F) denote the barcode of fragment F.
Therefore, we have

B(F,)=B(F,),i=1,2,3, ..., n (1)

Let L(F) denote the L-endpoint position (i.e., left-most position) of fragment F,
R(F) denote the R-endpoint position (i.e., right-most position) of fragment F.
Since this is a deletion and b, < b,, R(F;;) is the position on F;; that is closest to
by and L(F};,) is the position on F;, that is closest to b, (Supplementary

Fig. 14a). The distance between the fragment endpoint and its corresponding
breakpoint should be within gap distance distribution (explained in
Supplementary Fig. 15). Therefore, for almost all (99% x 99%) of the fragment
pairs, we have

by — G < R(Fy) < by; by <L(Fp) < b, +G. (2)

As described above, G is the 99th percentile of the empirical distribution of
intra-fragment gap distance.

If we regard (R(F;1), L(F;)) as a point in a two-dimensional plane, according to
Eq. (2), for almost all (98.01%) of the fragment pairs (F;;, F,), ((R(F;1), L(Fp)) is
restricted in a G x G square region with the point (b;, b,) being a vertex
(Supplementary Fig. 14b).

We used a graph-based method to fast group the points into clusters and find
square regions where the numbers of points were more than expected. First, every
possible pair of endpoints (R(F;), L(F,)) meeting B(F;) = B(F,) formed a point in
the two-dimensional plane. Each point indicated a pair of fragments that share the
same barcode. For example, if ten fragments share the same barcode, C3; pairs of
endpoints will be generated. A point/pair of endpoints may or may not support an
SV because there are two possible reasons for observing two fragments sharing the
same barcode: (1) the two fragments originated from two different HMW DNA
molecules but were dispersed into the same droplet partition and received the same
barcode and (2) the two fragments originated from the same HMW DNA molecule
but the reads were reconstructed into two fragments due to an SV. The points are
sparsely distributed in the two-dimensional plane and it is highly unlikely to
observe multiple points in a specific region. Next, a k-d tree (k =2) was
constructed, of which each node stores the (X, Y) coordinates of one point. A k-d
tree is a binary tree that enable fast query of nearby nodes. Therefore, we could
quickly find all pairs of points within a certain distance. Any two points (x;, y;) and
(x2, y2) were grouped into one cluster if |x; — x,| < G and |y; — y,| < G. For each
cluster, if the number of points in the cluster was more than a user-defined
threshold (default: 5), it was considered as a potential region of enriched fragment
endpoints. If the points in the cluster were not within a G x G square region, we
used a G x G moving square to find a square region where the points are best
enriched. Theoretically, the best enriched square region should contain 98.01%
(0.99 x 0.99) of the points, according to Eq. (2). The predicted breakpoints were the
X and Y coordinates of the right-bottom vertex of the square. The points in the
square region were subjected to a statistical test describe below.

Quantification of type 1 evidence. Let # be the number of points in the square
region. Each point corresponds to a pair of fragment F;;, Fp, (i=1, 2, 3, ..., n) that
may support the SV. Let b; and b, be the coordinates of the predicted breakpoint.
Egs. (1) and (2) hold for all the fragment pairs F;;, F (i=1, 2, 3, ..., n). We then
test the null hypothesis that there is no SV between b; and b,.

First, we test the hypothesis that the »n fragment pairs F;;, F; have originated
from different DNA molecules, but coincidently received the same barcode. Here,
we define two fragments F, and F, as an independent fragment pair if F, and F,
share the same barcode but have originated from different DNA molecules. Thus, R
(F,) and L(F,) are independent variables. All the fragment pairs that do not support
SVs are independent fragment pairs. It is reasonable to assume the generation of
HMW DNA molecules from chromosomal DNA is a random process thus both R
(F,) and L(F,) are uniformly distributed across the chromosome. Therefore, the
point ((R(F,), L(Fy)) is equal likely to be in any place in the two-dimensional plane.
Technically, we connect all the chromosomes in a head-to-tail order so that both
intra-chromosomal events and interchromosomal can be analyzed at the same
time. Observing at least n independent fragment pairs meeting Eq. (2) is equivalent
to the event that observing at least n points ((R(F;1), L(F;»)) located in a squared
region with an area of G2 on the two-dimensional plane. The probability of this
event is

N G
P = ZBinomiamef <n, Nigy s F)’ (3)

j=n

where Binomial_pmf is the probability mass function of binomial distribution; L is
the total length of the genome (also the side length of the two-dimensional plane);
Nig, is the total number of independent fragment pairs.
Since we are doing multiple hypothesis testing in the data set, the probability
need to be adjusted.
G
Padjustedl =P F : (4>
We reject the hypothesis if pagjustedi < Pthreshold: Pehreshold is 107> by default.

Next, we test the hypothesis that fragment pairs F;;, F (i=1, 2, 3, ..., n) have
originated from the same DNA molecule, but no reads were sequenced in the gap
between R(F;;) and L(F;,). Let g; denote the length of the gap between F;; and Fj,, g
denote the mean of g;, and we have

_R(Fil)! (5>

1
§=,2_8: (6)

If g is too large such that the probability of no reads being generated is smaller than
a threshold, we can reject this hypothesis.

Similar to the model described by 10x Genomics'4, we assume the read
generation on a DNA molecule is a Poisson process with constant rate A across the
genome. Let r be the number of reads generated in a region of length g, then r ~Pois
(Ag). Let Py, (g) denote the probability of no read being generated in length g, we
have

12

Pgap(g) =P(r=0‘,\g) =%=eﬁl& (7>

Therefore, the gap length g; follows exponential distribution: g; ~exp (1). Recalling
that (1) the exponential distribution with rate parameter A is a Gamma distribution
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with shape parameter 1 and rate parameter A; (2) the sum of #n independent
random variables from Gamma (1, 1) is a Gamma random variable from Gamma
(n, A), we have

ng ~ Gamma (n, 1), (8)

i=0

g= % ~ Gamma (n, #\). )

Therefore, the probability that observing n gap regions with mean length equal to
or larger than g is

p, =1 — Gamma_cdf (n, nl). (10)

Where Gamma_cdf is the cumulative distribution function of Gamma distribution.

Since we are doing multiple hypothesis testing in the data set, the probability
need to be adjusted.

P
padjusledz :PZTv (11)
where N, is the total number of read pairs.

We reject the hypothesis if pagjusted2 < Pthreshold: Pthreshold 1S Set as 10~ by
default. If both pagjustear a0d Padjustedz are less than pireqhoras We accept the
hypothesis that the SV is true. For each candidate SV, we report a confidence score
for type 1 evidence as

(12)

Confidence score 1 = —log, (max (Padjustedlv padjustedl))'

Breakpoint detection from type 2 evidence. Barcode similarity between two
nearby regions is very high because the reads originate from almost the same set of
HMW DNA molecules. However, at the SV breakpoint, the aligned reads from the
left side and right side may have originated from different locations in the alter-
native genome. Thus, the barcode similarity between the left side and right side of
the breakpoint are dramatically reduced (as described in the Result section and
shown in Fig. le, f). To detect this, LinkedSV uses two adjacent sliding windows
(twin windows, moving 100 bp) to scan the genome and calculate the barcode
similarity between the twin windows. The window length can be specified by user.
By default, it is G for WGS data sets and 40 kb for WES data sets.

The barcode similarity can be simply calculated as the fraction of shared
barcodes. This method is suitable for WGS, where the coverage is continuous and
uniform. But it does not perform well for WES, where the numbers of reads in the
sliding windows vary a lot due to capture bias and the length of capture regions.
Therefore, we use a model that considering the variation of sequencing depth and
capture region positions. The barcode similarity is calculated as

S= X ne ",

T a.,b
mym,

(13)

where m; is the number of barcodes in window 1, m, is the number of barcodes
in window 2, x is the number of barcodes in both windows, d is the weight distance
between reads of the left window and the right window, # is a constant representing
the characteristic of the library, a is a parameter of fragment length distribution, a
and b are two parameters between 0 and 1, #, a, a, and b are estimated from the
data using regression. Detailed explanation of this model is in Supplementary
Note 1.

Next, we calculate the empirical distribution of barcode similarity. Regions
where the barcode similarity less than a threshold (5th percentile of the empirical
distribution by default) were regarded as breakpoint candidates. If a set of
consecutive regions have barcode similarity lower than the threshold, we only
retain the region that has the lowest barcode similarity. If the barcode similarity of
a breakpoint candidate is Sp, the empirical p value is calculated as

number of twin windows with § < §

(14)

Pempirical = ST umber of twin windows

The confidence score of type 2 evidence is

Confidence score 2 = —log,, (pempi,ical)-

(15)

Combination of both types of evidence. Type 1 evidence gives pairs of endpoints
that indicate two genomic positions are joined in the alternative genome. Type 2
evidence gives genomic positions where the barcodes suddenly changed, regardless
of which genomic position can be joined. Therefore, type 1 and type 2 evidence are
independent. The candidate breakpoints detected from type 2 evidence were
searched against the candidate breakpoint pairs detected from type 1 evidence so
that the calls were merged. The combined confidence score is

Combined score = Confidence score 1 + Confidence score 2a (16)

+ Confidence score 2b,
where Confidence score 1 is the confidence score calculated from type 1 evidence
(Eq. (12)); Confidence score 2a and Confidence score 2b are the confidence scores
of the two breakpoints calculated from type 2 evidence (Eq. (14)).

Refining breakpoints using short-read information. For large SV events, we
search for discordant read-pairs and clipped reads that are within 10 kb to the
predicted breakpoint pairs by the above approach. We use a graph-based approach
that is similar to DELLY? to cluster the discordant read-pairs. We define the
supporting split-reads as the clipped reads that can be mapped to the both
breakpoints, and the map direction matches the SV type. If both discordant read-
pairs and split-reads are found to support the SV, we use the breakpoints inferred
by split-reads as the final breakpoint position.

Detection of small deletions that are within 50 bp-10 kb. We use a 1 Mb
moving window (with 0.1 Mb overlapping) to scan the genome. For each window,
all the aligned reads (including phased and un-phased reads) were extracted and
were assembled by the FermiKit pipeline. Regions with extreme high coverage
(more than 20-fold of average coverage) were skipped. The resulting contigs were
mapped back to the 1 Mb reference sequence of the moving window using bwa-
mem and deletions were called from the aligned contigs if the alignments were
unique within the 1 Mb moving window. The local assembly based process mainly
contribute to the detection of deletions within 50-1000 bp. To detect deletions that
are larger than 1kb and might be missed by the assembly based process, we use a
500 bp moving window (with no overlapping) to find candidate regions where the
read depth of either haplotype is less than 10% of the average depth of the hap-
lotype. Next we extract all the read pairs of this haplotype and test if the mean
insert size of these read pairs is significantly larger than the mean value of the
whole genome, assuming the average insert size of n read pairs follows normal
distribution: N(y, 6/n), where y and ¢ are the mean and standard deviation of the
insert size of the whole genome.

We use a read depth based method to detect deletions that are larger than 1kb
and lack read pair support. If there are m consecutive windows where the read
depths are less than 10% of the average depth, we assume the read depth of each
window is independent, and calculate the p value using the simple equation:

p = (a/b)™, where b is the total number moving windows and a is the total number
of moving windows where the read depths are less than 10% of the average depth.
A deletion is called if p < 1010,

Generation of simulated linked-read WGS data set. The linked reads were
simulated by LRSIM, which can generate linked-reads from a given FASTA file
containing the genome sequences. We generated a diploid FASTA file based on
hg19 reference genome with SNPs and SV inserted. The purpose of inserting SNPs
was to mimic real data. The generation of the diploid FASTA file is described below.
First, we inserted SNPs to hg19 using vcf2diploid3!. The inserted SNPs were from
the gold standard SNP call set (v.3.3.2) of NA12878 genome32. The vcf2diploid
software generated two FASTA files, each of which was a pseudohaplotype (paternal
or maternal) with the phased SNPs inserted. Next, we insert SVs into the paternal
FASTA file using our custom script. The breakpoints were located in the repetitive
regions in hgl9 and the distance between the two breakpoints were in the range of
50 kb to 10 Mb. In total, we simulated 351 deletions, 386 duplications, 353 inver-
sions and 85 translocations, all of which were in the paternal copy and were het-
erozygous SVs. We then concatenate the paternal and maternal FAST file into a
single FASTA file and simulated linked-reads using LRSIM. To mimic real data, the
barcode sequences and molecule length distribution used for simulation were from
the NA12878 whole-genome data set released by 10x Genomics. The number of
read pairs was set to 360 million so that a 35x coverage data set was generated. The
genome coordinates of simulated SVs was shown in Supplementary Data 1. The size
distribution of the simulated SVs was shown in Supplementary Fig. 16a.

Generation of WGS data set with low VAF. In cancer samples or mosaic sam-
ples, the total DNA is a mix of a small portion of variant alleles and a large portion
of normal alleles. To simulate the WGS data sets with low variant frequencies, we
used the same paternal and maternal FASTA file described above but the combined
FASTA file contained multiple copies of the normal allele (the maternal FASTA)
and only one copy of the variant allele (the paternal FASTA). For example, to

simulate a WGS data set with VAF of 20%, four copies of the maternal FASTA and
one copy of the paternal FASTA were combined. The linked reads were simulated
using LRSIM with the same parameters and a 35x coverage data set was generated.

Simulation of deletions and duplications that cause diseases. To test the
performance of LinkedSV on the detection of disease casual SVs, we downloaded a
list of expert-curated deletions and duplications that were known to cause CNV
syndromes involved in developmental disorders. This list was downloaded from the
DECIPHER database, and contained 67 CNV syndromes. Some syndromes were
affected by CNV events in the same region. After removing redundant syndromes,
we got 51 CNV events (Supplementary Table 10). Based on the 51 CNV events we
simulated a germline WGS data set and two mosaic WGS data sets (VAF = 10%
and 20%) using the same method described above.

Generation of simulated linked-read WES data set. To generate the linked-read
WES data set, we first generate a 100x linked-read WGS data set and then down-
sample it to be a WES data set. Generation of the simulated linked-read WGS data
set with SNPs and SV inserted was similar to the method described above. In total,
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we inserted 1160 heterozygous SVs. The SV breakpoints were randomly selected
from regions that were within 2000 bp of an exon. Among the 2320 breakpoints
(two breakpoints per each SV), 1028 breakpoints (44.3%) were in intronic or
intergenic regions. The SV sizes are in the range of 50 kb to 10 Mb (Supplementary
Fig. 16b). Supplementary Data 2 showed the list of simulated SVs. The number of
inserted SVs in the simulated WES data set was slightly smaller than that in the
simulated WGS data set because the SV breakpoints were designed to reside within
2000 bp of an exon. The simulated reads were generated using LRSIM and were
mapped to hgl9 reference genome using the Longranger pipeline (default settings).
The phased bam generated by Longranger was down-sampled to be a simulated
WES data set. To mimic real WES data set, we used the coverage distribution of the
linked-read WES data set of NA12878 genome (released by 10x Genomics) to
guide the down-sampling process. We bin the genome into 10 bp windows and
calculate number of reads mapped to each window (left mapping positions were
used) in NA12878 linked-read WES data. The simulated WES data set was gen-
erated by sampling reads from the 100x WGS data according to number of reads
mapped to the same 10 bp window in the NA12878 WES. The down sampling was
at read pair level, if the one read is retained, the paired read would also be retained.

Benchmarking of deletion detection on the HGO02 genome. The HG002
benchmark set (version 0.6) was downloaded from the FTP site: ftp://ftp-trace.ncbi.
nlm.nih.gov/giab/ftp/data/AshkenazimTrio/analysis/NIST_SVs_Integration_v0.6/.
The benchmarking process was performed according to the authors’ suggestions?!.
The benchmark set contains a Tier 1 benchmark regions, where all the insertions/
deletions are resolved and any extra calls were putative false positives. This region
covers 2.66 Gbp of the human genome. A deletion call was considered to be a true
positive call if it had at least 50% reciprocal overlap (the overlapped region was
more than 50% of both calls) with a deletion call with filter = PASS in the Tier 1 vcf
file. Otherwise, it was considered to be a false-positive call. This 50% reciprocal
overlapping criterion was chosen to follow what was done by a previous study3>.
Recall, precision and F1 score were calculated as follows.

Number of true positive calls

Recall = .
ecd Total number of deletion calls with filter = PASS in the Tier 1 vcf file
(17)
. Number of true positive calls
Precision = - . (18)
Total number of deletion calls of the query set
F1 score — 2 * Recall * Precision (19)

Recall + Precision

Reporting summary. Further information on research design is available in
the Nature Research Reporting Summary linked to this article.

Data availability
The 10x Genomics sequencing data of the HX1 genome was generated in this study and
can be obtained from the NCBI SRA database with the accession code SRX5781869.
The PacBio sequencing data of the HX1 genome was previously published and can be
obtained from the NCBI SRA database with the accession code SRX1424851. The 10x
Genomics sequencing data of the HG002 genome was released by 10x Genomics and can be
downloaded from https://support.10xgenomics.com/de-novo-assembly/datasets/2.1.0/ash.
Due to potential compromise of individual privacy, full datasets of the clinical samples
(F8 and NF1) are available from the authors on reasonable request and institutional data
use agreement. All other relevant data is available upon request.

Code availability

The source code of LinkedSV is publicly available on GitHub (https://github.com/
WGLab/LinkedSV). A detailed description of how to use LinkedSV is also provided in
the GitHub repository.
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