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The human-machine interface (HMI) has been studied for robot teleoperation with the aim of empowering people who experience
motor disabilities to increase their interaction with the physical environment. The challenge of an HMI for robot control is to
rapidly, accurately, and sufficiently produce control commands. In this paper, an asynchronous HMI based on an electrooc-
ulogram (EOG) and a gyroscope is proposed using two self-paced and endogenous features, double blink and head rotation. By
designing the multilevel graphical user interface (GUI), the user can rotate his head to move the cursor of the GUI and create a
double blink to trigger the button in the interface. The proposed HMI is able to supply sufficient commands at the same time with
high accuracy (ACC) and low response time (RT). In the trigger task of sixteen healthy subjects, the target was clicked from 20
options with ACC of 99.2% and RT 2.34 s. Furthermore, a continuous strategy that uses motion start and motion stop commands
to create a certain robot motion is proposed to control a humanoid robot based on the HMI. It avoids the situation that combines
some commands to achieve one motion or converts the certain motion to a command directly. In the home service experiment, all
subjects operated a humanoid robot changing the state of a switch, grasping a key, and putting it into a box. The time ratio between
HMI control and manual control was 1.22, and the number of commands ratio was 1.18. The results demonstrated that the

continuous strategy and proposed HMI can improve performance in humanoid robot control.

1. Introduction

Humanoid robots, resembling the human body in terms of
shape and range of actions, can replace individuals in
performing daily home tasks such as grasping, lifting objects,
and turning on/off switches of electrical equipment. HMI is
able to translate human intentions into external device
control commands, helping people perform certain daily
tasks with the help of a robot. There is much research
concentrating on HMIs for robot control, such as joysticks
[1] and keyboards [2]. However, these manual interfaces
become useless for persons suffering from severe neuro-
muscular disorders caused by an accident or congenital
disease. With modern life-support technology, paralyzed
people can lead lives that are enjoyable and productive if
they can be provided with novel nonmanual means of
communication and control [3].

A major task of designing a nonmanual HMI for hu-
manoid control is to rapidly, accurately, and sufficiently
produce commands to perform some daily tasks as people do
[4], including navigation control, such as left/right turn,
forward and backward, and some joint control. Since many
paralyzed people maintain normal head and eye function,
electroencephalogram (EEG) or EOG, resulting from brain
activity and eye movement, respectively, can be used in
HMIs and have attracted a great deal of attention over the
past few decades [5]. EEG and EOG have merits because they
are noninvasive, technically less demanding, and widely
available at relatively low cost.

An EEG-based HMI is a type of brain computer interface
(BCI) that conveys a user’s intent via brain signals that do
not depend on neuromuscular activity. Common EEG
patterns used in BCIs include event-related potentials (ERPs,
e.g., the P300 potential [6]), the mu/beta rhythm related to


mailto:panjh82@qq.com
https://orcid.org/0000-0002-0419-6480
https://orcid.org/0000-0001-7788-1449
https://orcid.org/0000-0002-7576-6743
https://creativecommons.org/licenses/by/4.0/
https://doi.org/10.1155/2022/1650387

motor imagery (MI [7]), and steady-state visually evoked
potentials (SSVEPs [8]). Several BCIs aimed at controlling
robotic humanoids have been reported [9-11]. Spataro et al.
proposed a P300-based BCI to actuate a humanoid robot to
fetch a glass of water [9], with subjects using the P300 signal
to choose a highlighted grid in a user interface. The accuracy
of the system was 74.5%. In [10], Saduanov et al. developed a
framework for a P300-based BCI telepresence robot. The
robot can execute 16 commands, including 7 present
commands and 9 navigation commands. The real-time ac-
curacy of the robot was above 78% on average. A 6-com-
mand SSVEP-NAO robot system was developed in [11]. The
online experimental results of the system showed that it
yielded an average accuracy of 83.5%. To our knowledge,
EEG-based HMIs for humanoid robotic control typically
implement P300 and SSVEP paradigms to control a device
due to their sufficient commands. However, the disadvan-
tage of these paradigms is that accuracy and response time
are limited by the number of commands. The more com-
mands a system has, the more targets the BCI paradigm has.
Increasing the number of targets makes a P300 paradigm
have a longer round time, while a system using an SSVEP
paradigm needs additional different frequency signals for
identification [12]. Therefore, for the P300 paradigm, the
designer needs to trade off sufficient commands and low RT;
for the SSVEP paradigm, ACC and sufficient commands
should be carefully weighed.

An EOG signal has also been used to design nonmanual
HMIs. Typical eye movements include gaze, blink, wink, and
frown. All of these movements can generate prominent EOG
features with high signal-to-noise ratios (SNRs). Therefore,
some studies have constructed EOG-based HMIs to control
external devices. In [13], Ameri proposed an imperceptible
EOG sensor system to control a quadcopter via eyeball
movement (left, right, up, down, and blink). The five eye
movements were directly translated into five control com-
mands (right, left, up, down, and straight) to control the
quadcopter. In 2020, Milanizadeh and Safaie used the sub-
ject’s eye movement toward the four middle parts of the
screen edges of a laptop to navigate quadcopter with a 0.6s
delay and an accuracy of 94.8% [14]. In 2021, Triadi et al.
constructed a mouse control system using eight eye move-
ments to control the cursor’s movement, including up, top
right, top left bottom, bottom right, bottom left, right, and left.
The RT and ACC of the system in a customized dataset were
1.97s and 100%, respectively [15]. An EOG-based HMI for
wheelchair control was proposed in Huang and He’s research.
The system provided a GUI with 13 flashing buttons that
correspond to 13 wheelchair commands (navigation, speed
control, and stopping commands). The user issued a com-
mand by blinking according to a button’s flashes. The system
achieved an average EOG accuracy of 96.7% and an RT of
3.53s [5]. In the case of the IoT platform based on EOG,
Molleapaza-Huanaco et al. used three saccadic movements of
the eye to encode eight control commands of wheelchairs,
obtaining a classification accuracy rate of 93% [16]. Sharma
et al. proposed an EOG-based HMI for robotic arm control by
detecting a user’s eye closing/opening and eye blinks [17]. The
system can issue 7 commands (left, right, up, down, forward,
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backward, and grip) with an accuracy of 96.9%. In summary,
EOG-based HMI has two main implements: eye movements
without an interface and blinks with an interface. The first
implementation belongs to the asynchronous system, but it is
subject to the number of eye movements without sufficient
commands. Moreover, eyeball movement is a voluntary be-
havior, and the false trigger problem in the idle state still needs
to be solved. In the second implementation, the interface
ensures sufficient commands. Meanwhile, the flashed cue and
blink trigger conditions make the false trigger decrease.
However, these flashed paradigm systems are usually syn-
chronous, and the RT is unsatisfactory for device control.
Consequently, one main challenge still exists for EOG-based
HMIs: constructing an asynchronous system providing suf-
ficient commands with low RT.

To overcome the limitations of existing systems, this
paper proposes an EOG and gyroscope-based HMI for
humanoid robot control. In our system, a multilevel GUT is
designed to output sufficient robot control commands. Users
use a double blink EOG and two-angle data provided from a
gyroscope to generate a cursor clicking event. By triggering
buttons at different levels, users can implement navigation
or joint motion of a robot. Two online experiments with
sixteen subjects were conducted. First, all of the subjects
participated in a synchronous experiment in which they
tested the proposed HMI by triggering the target buttons.
Next, the subjects manipulated a humanoid robot using the
proposed HMI to complete a home service task in a sim-
ulation environment (asynchronous experiment). Indica-
tors, such as the accuracy, response time, and false positive
rate, were calculated. The results demonstrated that the
proposed asynchronous HMI based on only one type of eye
movement (double blink) and two angular velocities could
rapidly, accurately, and sufficiently produce commands to
control a humanoid robot completing home service tasks.

2. Materials and Methods

2.1. Signal Acquisition. In this study, EOG signal and gy-
roscope data are collected by a device from HNNK Com-
pany, as shown in Figure 1. The sampling rate of the device
was 125Hz. Three electrodes (“CH1,” “COM,” and
“COMLEG”) are attached to the skin, and the impedances
between the skin and the three electrodes are kept below
5kQ. Among the three channels, “CH1” is the data channel
to record vertical EOG signals from the forehead. The central
position of the device has a gyroscope to detect the angular
change of the gyroscope when the user rotates his head.

2.2. Graphical User Interface. The architecture of the GUI
used in this study is illustrated in Figure 2. The main window
consists of two panels: a navigation panel and a joint control
panel. The navigation panel is consistent, including 8 nav-
igation buttons and 3 speed control buttons (slow, general,
and fast types for walking and joint rotation control), while
the joint control panel changed from three levels: joint
selection, joint motion selection, and stopping. The details of
each level are described as follows.
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Figure 1: HNNK device (location of three electrodes and a gyroscope for data recording).
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FIGURE 2: The architecture of the proposed HMI GUI (the navigation panel is constant, but the content of the joint control panel is one of the

levels).

(i) Joint selection level: nine buttons represent different
joint objects, such as the head, LShoulder (left
shoulder), LEIbow (left elbow), etc.

(ii) Joint motion selection level: two or four buttons
represent motions of a certain joint, and one return
button gives the opportunity to modify the chosen
joint. The number of buttons at this level is de-
termined by the joint that was chosen at the joint
selection level. As shown in Figure 2, the motion
selection level has 4 buttons to represent the two-
axis rotations of the shoulder. Images in the middle
of buttons illustrate positive (+) and negative (-)
directions of certain axis motion.

(iii) Stopping level: a large button stops a navigation or
joint rotation motion.

2.3. Control Mechanism. The proposed HMI combines an
EOG signal and a gyroscope to realize a robot control
system. As illustrated in Figure 3, the system consists of four
parts: a signal acquisition device, a GUI display program, a
signal processing program, and a humanoid robot. The
acquisition device (HNNK device) collects the EOG and
angular change data transmitted to the signal processing
program for classification. If a button triggering event exists,
the GUI display program will output a relevant command to
the humanoid robot.
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FIGURE 3: Schema of the humanoid robot control system based on the proposed HML

A button triggering event consists of two conditions: a
double blink feature in the EOG signal and the cursor lo-
cation in the GUI. As depicted in Figure 4, the collection
device provides two types of data: an EOG signal and three
angles of the gyroscope. We use the yaw angle and roll angle
to control the cursor while detecting a double blink in the
EOG signal. Users trigger a button when the cursor is on the
button with a double blink.

In the command generation part, we propose a con-
tinuous control strategy. It disassembles each real motion of
the robot into two phases: one phase that makes the robot
continuously move or rotate and another phase that makes
the current continuous motion stop. In the first phase, the
user triggers a command for navigation or joint motion by
clicking buttons with the GUI, making the robot start to
move or rotate continuously. Then, the stop button is
triggered at the right moment to make the robot stop at a
desired position or pose in the second phase. The process of
using this strategy to control the humanoid robot to im-
plement navigation or joint motion is illustrated in Figure 5.
Initially, a navigation control panel and a joint control panel
are presented, and the joint selection level is presented in the
joint control panel first. The user can select one button from
the navigation control panel or joint control panel. If the
navigation control button is selected, the robot will receive
the relative command to move continuously. Meanwhile, the

stopping level is presented in the joint control panel, and the
navigation command buttons in the navigation panel are
invalid. If the joint control button is selected, the joint
motion selection level will be presented, and navigation
commands will become unavailable. The user can choose to
return to the joint selection level or rotate the current joint
by clicking the button in joint control panel. When a motion
is selected, the robot will rotate the joint to a certain di-
rection continuously, and the joint control panel will present
the stopping level. At the stopping level, users need to stop
the current movement of the robot regardless of whether the
movement is generated from the navigation panel or joint
control panel.

2.4. Algorithm. In this study, the algorithm can be divided
into two parts: (i) cursor position calculation and (ii) double
blink detection. The cursor position is derived from the angle
data of the gyroscope. Double blink waveform detection is
performed anytime in the EOG signal. First, a subsegment
(duration of 1s) is derived from 125 recorded EOG signal
points, and the similarity between the subsegment and
double blink segment generated in the threshold calculation
part is calculated. When the subsegment is similar to the
double blink segment, several features are extracted, such as
the energy and duration of the blink. The algorithm
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determines whether these features satisfy the threshold
conditions. A double blink exists in the subsegment if all the
thresholds are met. Further details are described in the
following paragraphs.

2.4.1. Cursor Position Calculation. The HNNK device can
provide three tilts (yaw, roll, and pitch) when the user rotates
his head. The signal processing program saves the initial
value of the three tilts when the user wears the device, and
the center of the screen is set as the initial position of the
cursor. A head rotation motion changes the three tilts,
resulting in Ayaw, Aroll, and Apitch related to the initial tilts.
The program uses Ayaw and Aroll to calculate Ax and Ay of

the cursor location based on the initial position. Then, Ax
and Ay are used to update the position of the cursor in real
time. The calculation formulas are as follows:

A
= P L (1+s),
pi x 180
Aroll
Ay=—x(1+5s),
A A TT I (1)
Xnew = Xinitial T Ax’
{ Vnew = Vinitial + Ay’



where (Xpey> Vnew) 1S the calculated position of the cursor
and s is a factor to adjust the sensitivity of the cursor ranging
from —0.5 to 0.5.

2.4.2. Double Blink Detection

(1) Preprocessing. First, the signal processing program fil-
ters the recorded EOG signal through a digital bandpass
filter (1-10Hz) to remove high-frequency noise and
eliminates the effect of baseline drift [18]. Then, a sub-
segment (duration is 1s) is derived from 125 sampling
points of the filtered EOG signal, and the similarity between
it and the double blink segment is calculated. In this study,
the Pearson correlation coefficient (PCC) is used to eval-
uate the similarity of the two signals (equation (2)). If the
PCC is over the similarity threshold, the waveform features
will be extracted. Otherwise, the subsegment does not exist
a double blink segment.

> (x-%)(i-7) (2)
N-1 ’

Cov(x, y) =

where x and y are vectors with N dimensions representing
the two signals, x;/y; represents the value of the i th di-
mension, and Cov (x, y) indicates the similarity of the two
signals x and y, ranging from -1.0 to 1.0 [19].

(2) Waveform Feature Extraction. As shown in Figure 6,
there are two visible peaks in the double blink waveform.
Therefore, the program identifies the positions of these
peaks to extract the features. Specifically, the extreme
points corresponding to the maximum value and secondary
maximum value are regarded as peakl and peak2. Here,
tpeaki and fpcq, are used to denote the positions of peakl
and peak2. Then, two features d and e are calculated as
follows:

d= tpeakz - tpeakl’

t=t
peak2 5 (3)
e = Z Xt

t:tpeakl

where d and e represent the duration and energy between
peakl and peak2, respectively [20]. x, is the voltage at the ¢ th
sampling point.

(3) Double Blink Detection. The program uses two duration
thresholds D, ;, and D, ,, and two energy thresholds E_;,
and E . to realize double blink waveform detection, as
follows:

{1, ifD_. <d<D
=

min < andE ; <e<E
0, otherwise,

max min = max>

(4)

where 7 is the result of double blink detection. Specifically, r = 1
indicates that a double blink is detected, whereas = 0 indicates
that no double blink is detected. The threshold parameters
D in> Dinax> Enin> @nd E . in equation (4) are determined in a
calibration process, which will be described later.

Journal of Healthcare Engineering

tpeaki|- - - o oo

30 1

peakl

tpeaka]

20 A

10

Voltage (uv)

-10 A

-20 A

400 tpeak1 600 tpeak2800 1000 1200
Time (ms)

F1GURE 6: The row EOG signal of double blink.

0 200

2.4.3. Threshold Calculation. The thresholds D, .., Dy ..
E in and E_,. and the double blink segment vary among
individuals. Thus, a calibration process is performed for each
user before he or she starts to use the EOG-based HMI.
Specifically, a single button (“Blink”) is presented on the
center of the screen, flashing 10 times with a 3 s duration.
The user needs to generate a double blink according to each
flash of the button. Similar to the blink detection process, the
recorded EOQG is filtered, and a subsegment is derived for
each flash. Waveform features, including d and e, are
extracted from these 10 subsegments. If the user misses one
flash, the corresponding subsegment is removed, and the
features are averaged across the rest of the subsegments. The
duration thresholds D, ;, and D, are the minimum and
maximum of the d features in these subsegments. The energy
thresholds E,;, and E ., are calculated by multiplying the
average value of e by empirical factors (E,;, =0.8 x € and
E .x=12xe). To obtain the double blink segment of a
person, the subsegments are averaged to generate a repre-
sentative segment.

3. Experiments and Results

To evaluate the performance of the proposed HMI for
humanoid robot control, sixteen healthy subjects, aged 23 to
27, participated in two online experiments. All subjects had
normal or corrected-to-normal vision. Before performing
the experiments, each subject was instructed to read and
complete an informed consent form. First, a calibration
session was performed to determine the four thresholds and
the double blink segment, as described in Section 2.4.3.
Then, experiments were performed within one day for each
subject with 10 min breaks between every two consecutive
experiments.

3.1. Experiment I. Clicking Target Buttons. The proposed
humanoid robot control system uses a continuous control
strategy to perform a motion with two commands (a certain
motion start command and a motion stop command). The
experiment uses two subexperiments, a general button
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triggering task and a stop button triggering task, to evaluate
the performances of the motion start command triggering
and motion stop command triggering.

3.1.1. General Button Click Experiment. In this experiment,
subjects were asked to use the proposed HMI triggering
button in the panel (Figure 7(a)), which is used to generate a
navigation or joint motion command. Specifically, subjects
were tasked with selecting randomly generated target but-
tons (target button flashed to let subjects know). The subject
had 55 to click the target after it flashed. In addition, there
was an idle state, a random period in the range of 10~20s,
between each pair of consecutive target triggering tasks. The
random duration aimed to eliminate the subjective pre-
diction influence of people [4]. Indicators, such as the ACC,
RT, and FPR, were calculated using the experimental results.
The entire experiment time was 5min, and each subject
finished the experiment five times. The rest time was 5 min
between two consecutive experiments.

3.1.2. Stop Button Click Experiment. This experiment aimed
to evaluate the performance of stop motion command
triggering in the control process because it directly influ-
ences the precision of navigation and joint control. In this
experiment, the GUI had one large stop button, which was a
unique target, and the other navigation buttons were
unclicked, except the speed control buttons (Figure 7(b)).
Subjects followed the prompt (flash) to click the stop button.
Other things, such as the result metrics, experiment time,
duration, and rest times, were identical to the general button
clicked experiment.

Table 1 illustrates the ACC, RT, and FPR for all subjects
in the general button triggering task. On average, the sub-
jects took 2.34s to trigger a target button with 99.2% ac-
curacy in the control state and produced a 0.34 event/min
FPR in the idle state. In [21], the ACC, RT, and FPR of HMI-
based motor imagery were 86.2%, 3.15s, and 3.67/min,
respectively. The proposed HMI has better performance.
Compared with the EOG-based HMI for wheelchair control
presented in [5] with an ACC of 96.7%, RT of 3.53, and FPR
of 0 event/min, our HMI has a higher ACC and lower RT.
The lower FPR of the EOG-based HMI is attributed to using
a brain switch to achieve an asynchronous system. However,
the solution determines that the switch between the work
state and idle state of their system is less flexible than our
proposed system and leads to a higher RT in command
output. In a wheelchair control scenario, the FPR is more
important, but the RT is more significant in a home service
scenario.

The results in Table 2 show the performance of the stop
button triggering task. The RT in this task was shorter than
that in the general button triggering task because we used a
large stop button, which made it easy to locate the cursor on
the target. With decreasing RT, the ACC decreased from
99.3% to 97.4%, and the FPR increased to 0.74 events/min.

The compromise suggests that users could send stop com-
mands to terminate the robot’s continuous movements
immediately, which ensures that the robot performs the
motion the person wants. It provides a solution for people
who want to apply the proposed HMI to other scenarios with
higher real-time requirements.

3.2. Experiment II. Humanoid Robot Control for Home
Services. In Experiment II, the proposed HMI was used to
control the navigation and joint motion of a humanoid robot
(Nao H25, Softbank Inc., Japan, 0.573mx0.311m) to
complete a home service task, including an electric switch
state change and an object grasping and placing. The default
robot speeds of walking, turn direction, and joint rotation
were set to 0.1 m/s, 0.39rad/s, and 0.30rad/s, respectively,
which are the same as the general mode speed in the speed
control function. We use a simulation environment from the
2014 Nao Challenge contest from Aldebaran Robotics and a
virtual Nao robot in Webots 2021b (Figure 8). In the sim-
ulation environment for home service (a 9m x 5m room),
the subject was instructed to control the robot from an initial
position (position 1) to the switch position (position 2), turn
on the switch, then go to the key position (position 3), grasp
the key to the door, place the key in a pot (position 4), and
rest at position 5. After finishing these tasks, the perfor-
mance of each subject using the proposed HMI was recorded
using metrics such as the information transfer rate (ITR),
RT, ACC, and FPR. Different from the target button trig-
gering experiment, all metrics have new meanings as follows.

(1) RT: the response time of robot command triggering.
It is calculated according to

T=3><RTg><N~ ¢+ RT; X Ny, + RTy X N

join
Nigine + Npaow + N

)

stop

> (5)

nav stop

where RT,; and RT; are the mean RTS of the general
button trigger task and stopping button trigger task,
respectively, and Ny, Ny, and N, are the
quantities of joint control commands, navigation
commands, and stopping commands in the exper-
iments. Because joint control commands, unlike
others, need two triggers of a general button in the
joint control panel, with regard to the time the
person chooses the second target button in the joint
control command triggering, we use the three RTs of
the general button to represent the RTs of joint
control commands. The RT of the general button and
the RT of the stop button represent the RT of nav-
igation commands and the RT of the stop command,
respectively.

(2) ACC: the possibility of a correct control command.

(3) FPR: false commands generated per minute during
idle time.

(4) ITR: the bits of information transferred per minute,
calculated according to
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TaBLE 1: The results of the general button triggering experiment.

Subject RT (s) ACC (%) FPR (event/min)
S1 2.27 99.3 0.19
S2 2.24 98.5 0.41
S3 2.36 98.1 0.57
S4 2.33 98.8 0.43
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TaBLE 1: Continued.

Subject RT (s) ACC (%) FPR (event/min)
S5 2.51 99.6 0.35
S6 2.24 99.7 0.38
S7 2.20 99.2 0.00
S8 2.58 99.4 0.27
S9 2.27 99.8 0.33
S10 2.24 99.5 0.31
S11 2.36 99.6 0.32
S12 2.33 99.2 0.24
S13 2.51 99.7 0.34
S14 2.24 99.4 0.42
S15 2.20 98.9 0.38
S16 2.58 98.6 0.51
Average 2.34 99.2 0.34
TaBLE 2: The results of the stop button click experiment.
Subject RT (s) ACC (%) FPR (event/min)
S1 1.65 98.1 0.31
S2 1.23 95.6 1.41
S3 1.14 95.3 1.83
S4 1.27 97.8 1.12
S5 1.63 97.5 0.55
S6 1.51 98.7 0.39
S7 1.48 98.2 0.24
S8 1.35 96.4 0.47
S9 1.15 96.4 0.83
S10 1.39 98.3 0.26
S11 1.47 97.4 0.38
S12 1.31 96.7 0.64
S13 1.29 97.1 0.85
S14 1.62 98.9 0.59
S15 1.37 97.3 1.21
S16 1.43 98.8 0.69
Average 1.39 97.4 0.74

ITR = %x (log, (N) + P xlog, (P) + (1 - P)

1-P
ol )

where N is the number of commands, P is the average ACC,
and T is the average RT.

To further evaluate the controllability of the proposed
HMI for humanoid robot control in home service, we
designed a manual experiment in which each subject uses a
physical mouse clicking the GUI button to control the robot
to finish the tasks as a contrast test [21]. Similar to Ex-
periment II, the EOG control and physical cursor control
experiments were completed five times for each subject, and
the average interval and commands of the five experiments
are calculated.

The results of robot control in the home service scenario
are shown in Table 3. The average accuracy was 99.3% across
all subjects, resulting in an average ITR of 113.9 bits/min.
Furthermore, each subject was able to complete the ex-
periment 5 times without failure. These results demonstrate
that the proposed continuous control strategy is valid to

(6)

control a humanoid robot implementing navigation and
joint motion in a home service task. The ACC of the real-
time robot control is higher than that of the target button
trigger experiment. The performance improvement could be
mainly attributed to the fact that subjects were focused in the
real-time control experiment without more double blinks
because each command subjects sent had a real intention,
making the robot navigate to a position or rotate a certain
joint to a pose. True intention with a longer time makes
subjects concentrate on the robot control process, which
easily keeps subjects in a natural state [22,23]. In contrast, in
the target button triggering experiment, each trial had a
short and relatively fixed time. These truths cause fewer error
commands in real-time robot control, leading to a higher
accuracy and a lower FPR.

To investigate how similar the proposed HMI control
performance was to manual control, we recorded the
completion time and total number of commands of each
subject in the operations of the humanoid robot and cal-
culated the ratio of the measures in the two conditions (HMI
control and manual control) shown in Figures 9 and 10. The
time ratio between the proposed HMI control and the
manual control was 1.22 on average, and the ratio of the
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FiGURE 8: Top-down view of the humanoid robot control experiment environment.
TaBLE 3: The performance metrics of the proposed HMI during the humanoid robot control experiment.

Subject RT (s) ACC (%) FPR (event/min) ITR (bit/min)
S1 2.82 99.5 0.21 111.6
S2 2.68 99.4 0.28 117.2
S3 2.59 99.2 0.36 120.0
S4 2.58 99.5 0.29 122.3
S5 3.10 99.1 0.51 100.5
S6 2.70 99.6 0.18 116.9
S7 2.49 99.8 0.13 127.4
S8 2.82 99.3 0.19 1111
S9 2.66 99.6 0.31 118.8
S10 2.71 99.1 0.23 115.0
S11 2.76 99.4 0.17 114.0
S12 2.65 98.9 0.29 117.0
S13 3.18 99.2 0.24 98.3
S14 2.82 99.5 0.29 111.8
S15 2.87 99.1 0.34 108.9
S16 2.82 99.3 0.19 111.1
Average 2.77 99.3 0.26 113.9

number of commands was 1.18. In Jiang et al. [24], the time
ratio and number of commands ratio were 1.49 and 1.53,
respectively, in a 3DOF mobile robot arm control using a
six-class BCI. Chae et al. also reported a time ratio of 1.27 in
a robot navigation experiment using a three-class BCI [25].
Our result was better than these research results because the

proposed HMI is an asynchronous system with a shorter
command generation RT and the continuous control
strategy that generates a realistic robot motion via only two
commands, which means that the proposed HMI can save
time and number of commands in a series of repeat com-
mands in discrete control HMI. Furthermore, for
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FIGURE 9: The completion time for each subject in the home service task by proposed HMI control (blue bar) and manual control (gray bar).
Avg indicates the average result of all subjects. The values above all subjects represent the time ratio of the proposed HMI control to the

manual control.
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F1GUre 10: The number of commands executed by the humanoid robot for each subject in the home service task via proposed HMI control
(orange bar) and manual control (yellow bar). Avg indicates the average result of all subjects. The values above all subjects represent the
command number ratio of the proposed HMI control to the manual control.

complicated humanoid robot navigation and joint control,
the reference experiment uses the same control GUI, which
bridges the gap between the proposed HMI control and
manual control.

4. Discussion

In this paper, we propose an HMI based on an EOG and a
gyroscope that provides 40 control commands, including 8
navigation commands, 28 joint motion commands, 3 speed
control commands, and 1 stopping command. A target
triggering experiment suggests that the proposed HMI has a

high accuracy and a short response time. The results of an
asynchronous humanoid robot control indoor task dem-
onstrated that the proposed HMI can efficiently control a
humanoid robot to perform some daily home service tasks.

For robot control, one challenge of HMISs is constructing
an asynchronous system providing sufficient commands
with low RT. In the proposed HMI, we use two self-paced
and endogenous features, double blink and head rotation, to
trigger the target. Self-space features make the HMI a natural
asynchronous system, which means that users are able to
select a command at their own convenience. It does not have
a fixed interval in command output compared with a visually



12

evoked potential HMI [26]. Therefore, the RT of the trigger is
lower than most P300 and SSVEP HMIs and some EOG-
based HMIs. Moreover, the double blink feature is detected
using a single EOG signal. An EOG has a higher SNR than an
EEG, and the double blink feature has a special waveform,
which makes the double blink feature have a higher ACC
than EEG features [27]. The higher ACC of the double blink
and the condition of cursor position make the proposed
HMI have an average accuracy of 99.3% in the robot control
task.

Another challenge for robot control is that an HMI
needs to output sufficient commands to support robots
performing complicated tasks. For most visually evoked
potential-based HMIs, increasing the target number of the
GUI to support more commands increases the RT. For-
tunately, some researchers have realized the problem of this
solution, and they use a multilevel GUI to decrease the
expression on RT, such as in [28,29]. However, another
question results in the direction of navigation or joint
rotation. These studies give only 3 to 5 commands, and
other feasible motions of navigation or joint rotation
cannot be represented. If a small step is used to represent
them, a realistic robot motion will require a series of steps
to achieve the goal, which means a series of repeated
commands and increasing time, as in [30]. A continuous
control strategy can solve this challenge. It sends a com-
mand to make the robot continuously move in a certain
navigation or joint motion direction and then sends a stop
command when a person considers the robot to be at the
desired position or pose. Only two commands are needed
to make the robot perform the desired motion. Of course,
the continuous strategy has the shortcoming that users
need to seize the right time to make the robot stop moving
to control the robot movement accurately. The proposed
system tackles it from two aspects. One is to reduce the
response time by designing a large stop command to satisfy
the triggering condition, easily decreasing the RT, and the
other is to increase the speed control function, which allows
users to control robot motion at different speeds (slow,
general, and fast). Slower continuous movement is easy to
stop, which creates more accurate motion. In the humanoid
robot control experiment, all subjects finished the exper-
iment without failure, and the average command ratio
between the HMI control and manual control was 1.18,
which demonstrates that our HMI system can efficiently
accomplish some home service tasks with a higher re-
quirement for control precision.

There are also some limitations in the current work.
First, the subjects needed to obtain more visual feedback
information other than the robot’s monocular vision when
they controlled the robot to perform the daily home tasks.
Such information roughly provided the positional rela-
tionship between the robot’s arm and the object. In real life, a
subject could obtain this visual information only when the
robot was nearby. Second, subjects could not ensure accurate
positional relationships from the visual information, unlike
machine vision. Apart from this, the HMI control and
automatic control were incomparable in object manipula-
tion because the machine automatic control process could

Journal of Healthcare Engineering

make full use of the location relationship data to calculate the
appropriate trajectory for the robot’s arm motion [31].
Motion planning of the arm will reduce the time used to
control the arm manipulation of an object. We will try to do
some work in the future to implement an automatic grasp
system based on machine vision guidance and combine it
with HMI control to implement a shared control system for
humanoid robots [32]. This system will use HMI control to
navigate the humanoid robot and determine the object that
needs to be manipulated. Machine vision guidance control
aims to automatically manipulate objects, which reduces the
complexity and time of HMI control and increases the
control precision [33]. With machine vision and HMI
control, a person can use the humanoid robot system control
to efficiently play a role in home service.

5. Conclusions

In this study, an EOG and a gyroscope-based HMI were
developed to control a humanoid robot to perform home
services. In our approach, a multilevel GUI was designed to
supply sufficient commands controlling the humanoid ro-
bot. The subject wore a wireless collection device and used
double blink and head rotation to trigger the button in the
GUL Different buttons responded to different commands,
which enabled the subject to send commands by clicking
buttons. Meanwhile, a continuous control strategy was
proposed, which allowed the user to send an initial com-
mand to start the continuous motion of the robot and then
send a second command to make the robot stop moving,
performing the desired motion of the robot. The results of
two online experiments demonstrated that the proposed
HMI and continuous control strategy can be used to create
an efficient humanoid robot control system for home ser-
vice. In future work, we will reduce the FPR of the robot
control system from two aspects: an EOG detection algo-
rithm and continuous control strategy implementation.
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