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Adolescence is a time of profound changes in the physical wiring and function of the
brain. Here, we analyzed structural and functional brain network development in an
accelerated longitudinal cohort spanning 14 to 25 y (n = 199). Core to our work was
an advanced in vivo model of cortical wiring incorporating MRI features of corticocorti-
cal proximity, microstructural similarity, and white matter tractography. Longitudinal
analyses assessing age-related changes in cortical wiring identified a continued differen-
tiation of multiple corticocortical structural networks in youth. We then assessed
structure–function coupling using resting-state functional MRI measures in the same
participants both via cross-sectional analysis at baseline and by studying longitudinal
change between baseline and follow-up scans. At baseline, regions with more similar
structural wiring were more likely to be functionally coupled. Moreover, correlating
longitudinal structural wiring changes with longitudinal functional connectivity reconfi-
gurations, we found that increased structural differentiation, particularly between
sensory/unimodal and default mode networks, was reflected by reduced functional
interactions. These findings provide insights into adolescent development of human
brain structure and function, illustrating how structural wiring interacts with the matu-
ration of macroscale functional hierarchies.
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In adolescence, increasing evidence suggests that ongoing maturation of structural and
functional brain networks underpins broad cognitive development (1–9). Prior MRI
literature has assessed regional changes in brain structure in youth (1–3, 10–16), show-
ing age-related widespread decreases in cortical thickness (1, 13) as well as changes in
surrogates of intracortical myelin content (15–17). Complementing these regional
changes, diffusion and functional MRI (fMRI) studies have shown that adolescence is a
period of ongoing maturation of the microstructure of interconnecting white matter
tracts as well as large-scale developmental changes in functional organization, indicative
of shifts in brain connectivity toward a more distributed network topology (18–20).
Utilizing multimodal longitudinal MRI analyses, we explored how adolescent structural
network development gives rise to potential shifts in functional network architecture.
Core to our work was a comprehensive and recently introduced in vivo model of cortical

wiring, which integrates several neuroimaging features of structural connectivity (i.e., diffu-
sion MRI tractography, corticocortical geodesic distance mapping, and microstructural
covariance analysis) (21). Diffusion MRI tractography maps white matter fibers and is use-
ful for characterizing deeper tracts, but it is limited to the approximate distance between
regions of cortical gray matter (22, 23). On the other hand, geodesic distance analysis meas-
ures spatial proximity of areas across the cortical sheet, tapping into short-range corticocorti-
cal connectivity and wiring cost (24). Finally, a recent extension of structural covariance
analysis (25, 26), labeled microstructural profile covariance analysis, identifies networks
with similar myelin-sensitive imaging characteristics across cortical depths in a subject-
specific manner (27, 28). By integrating these complementary measures from diffusion
MRI tractography, geodesic distance, and microstructural covariance via unsupervised
pattern learning, we are able to generate a coordinate system that allows cortical regions
to be arranged based on the similarity in their anatomical connections (21). In a prior
evaluation in healthy adults, we demonstrated that this approach captures spatial gra-
dients of 1) cortical cytoarchitecture, 2) cell type–specific gene expression, and 3) intrin-
sic functional connectivity and signal flow measured from resting-state fMRI (rs-fMRI)
and intracranial electrical recordings (21), supporting neurobiological and functional
validity. Here, we adopted this wiring model to chart adolescent development of cortical
structural networks longitudinally.
Adolescence is a period of rapid change in social and cognitive processes (5, 7). As

brain structure ultimately scaffolds brain function (29–35), it is not surprising that
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multiple functional networks also change throughout adoles-
cence. Prior rs-fMRI connectivity analyses in youth have shown
shifts in the functional connectivity patterns of multiple net-
works, often situated in transmodal systems such as the default
mode and frontoparietal networks (3, 36, 37). On the other
hand, several studies have emphasized a marked contribution of
head motion to age-related changes in structural and functional
connectivity (38–42), motivating careful consideration and ade-
quate control of head motion in neurodevelopmental connec-
tomics. Ongoing increases in the availability of multimodal
datasets have allowed recent studies to examine how brain
structure and function comature. For example, structural net-
work modules are known to become more segregated with
advancing age, and this process reflects ongoing development
of executive function from 8 to 22 y (43). In other studies, it
has been established that structure–function coupling changes
with age, particularly in terms of the difference between trans-
modal vs. sensory and motor networks (3, 44). Based on these
emerging results, our study aimed to adopt a multimodal ana-
tomical coordinate space to allow us to establish how adolescent
changes in cortical wiring are reflected in the maturation of
functional networks.
Our study was based on the Neuroscience in Psychiatry Net-

work (NSPN) 2400 cohort, an accelerated longitudinal dataset
that enrolled healthy individuals between 14 and 25 y (16, 45).
Structural wiring models were derived for each participant at
two time points based on multimodal neuroimaging and unsu-
pervised machine learning (46), and we estimated longitudinal
trajectories in structural network maturation using linear mixed
effect models. In addition to assessing whether age effects on
structural wiring were similar to cortical thickness changes in
the same subjects (1, 11, 13, 47), we examined how structural
wiring changes reflect adolescent functional network matura-
tion based on parallel rs-fMRI acquisitions. Multiple sensitivity
analyses assessed the robustness of our findings with respect to
several analysis parameter variations.

Results

We studied 199 healthy participants obtained from the NSPN
2400 cohort who were part of the accelerated longitudinal
design and had imaging data available (16, 45) (Fig. 1A). All
participants included in our study had measures at two time
points (mean inter-scan interval was 0.94 y, range = 0.5 to 1),
with a mean age of 18.84 y (range = 14 to 25) at baseline and
19.96 y (range = 15 to 26) at follow-up. Participants were uni-
formly distributed across the entire age range, with a similar sex
ratio (52/48% males/females). Participant demographics, image
processing, and analysis are further detailed in Methods.

Multiscale Cortical Wiring in Youth. Following a recently devel-
oped approach in healthy adults (21), we built a comprehensive
in vivo model of corticocortical wiring for every subject time
point (Fig. 1B). Models combined MRI-based measures of geo-
desic distance, microstructural profile covariance, and diffusion
MRI tract strength. We integrated these three complementary
features into a common space using diffusion map embedding,
a nonlinear dimensionality reduction technique (Methods) (46).
Two eigenvectors (eigenvector 1 [E1] and eigenvector 2 [E2])
were identified that collectively explained ∼37.8 ± 0.01%
(mean ± SD) of information and averaged across 10 iterations
with different nonoverlapping subsets within the NSPN cohort
(Fig. 1 B and C and Methods). The first eigenvector (E1) depicted a
gradient running from sensory/motor networks toward transmodal

networks, such as the default mode and frontoparietal networks.
The second eigenvector (E2) differentiated anterior and posterior
cortices. We calculated the Euclidean distance between all brain
regions in the wiring-derived low-dimensional space to provide a
measure of structural differentiation (Fig. 1D and Methods).
While within-network connectivity showed overall low structural
differentiation, connections between sensory and transmodal
regions showed high values. In other words, nodes in the same
network showed less structural differentiation (indicating integra-
tion), while differentiation was greater between regions in different
networks, particularly between sensory vs. transmodal cortices, a
pattern indicative of segregation. Findings were furthermore sum-
marized according to seven intrinsic functional networks (48) by
assigning each brain region to the nearest networks (SI Appendix,
Fig. S1).

Tracking Adolescent Changes in Multiscale Cortical Structural
Differentiation. We assessed age effects on this structural differ-
entiation using linear mixed effect models. In adolescence, several
prior studies have reported robust age-related changes in cortical
thickness (1, 11, 13, 47), and we confirmed similar age effects in
our NSPN cohort. Indeed, cortical thickness decreased in wide-
spread cortical regions with advancing age (false discovery rate
[FDR]; [pFDR] < 0.05) (SI Appendix, Fig. S2A). Running a spatial
correlation analysis between longitudinal thickness and structural
differentiation effects while controlling for spatial autocorrelation
(49), we only observed a weak spatial association to changes in
structural differentiation, with no correlation to within-network
structural differentiation (r = �0.02 ± 0.05, pspin-FDR = 0.27)
and a trend-level association to between-network structural differ-
entiation (r = �0.12 ± 0.04 across 10 repetitions, pspin-FDR =
0.06) (SI Appendix, Fig. S2B). We then assessed age effects on
structural differentiation after controlling for sex, measurement
site, head motion, and subject-specific random intercepts as well
as cortical thickness (50). With increasing age, structural differen-
tiation increased within and between multiple networks (pFDR <
0.05) (Fig. 1E). Specifically, among the seven large-scale commu-
nities, the default mode network showed the greatest within-
network changes (Fig. 1E). We also observed increased structural
differentiation between several networks, particularly between
nodes of default mode and attention networks, frontoparietal
regions, as well as between sensory and attention, limbic networks
(pFDR < 0.05) (Fig. 1E). Investigating changes in structural differ-
entiation for each individual in the identified networks, we
established small but significant increases with within-network
structural differentiation with age (r = 0.21, pperm-FDR = 0.004)
as well as a moderate association between age and between-
network structural differentiation (r = 0.43, pperm-FDR < 0.001)
(Fig. 1F).

We additionally assessed age effects on each cortical feature
(i.e., geodesic distance, microstructural profile covariance, and
tract strength) to quantify how structural differentiation cap-
tures age-related changes in cortical organization relative to
changes in single features (SI Appendix, Fig. S3). When analyz-
ing structural differentiation, the effect size (i.e., the mean abso-
lute t statistic across network pairs) was 32.07 ± 17.88% higher
than when studying only geodesic distance across 10 repetitions
(Methods), 15.45 ± 6.53% higher than when studying micro-
structural profile covariance, and 14.65 ± 11.58% higher than
when studying tract strength, indicating that structural differen-
tiation describes adolescent cortical reorganization more sensi-
tively than each modality separately. When associating age effects
on structural differentiation with those on each feature, struc-
tural differentiation increases were strongly related to reductions
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B. Multiscale cortical wiring in youth

C. Structural eigenvectors

D. Multiscale cortical structural differentiation

Visual
Somatomotor
Dorsal attention
Ventral attention
Limbic
Frontoparietal
Default mode

Normalized GD Normalized MPC Normalized TS

Component number

Sc
al

ed
ei

ge
nv

al
ue

s

15
0

0.3

0

0.15

5 10

E1 0.18

-0.18

E1 E2 0.1

-0.1

E2

E1
E2

-0.13
-0.2 0.15

0.13

E1

E2

-0.13
-0.2 0.15

0.13 0.2

0

St
ru

ct
ur

al
di

ffe
re

nt
ia

tio
n

…

C
or

tic
al

de
pt

h

Intensity

Geodesic
distance (GD)

Microstructural profile
covariance (MPC)

Age

Fr
eq

ue
nc

y

0
10 30

40

20

20

Baseline
Follow-up
Baseline
Follow-u

A. Data cohort

Baseline Follow-up

~1 year

T1w MT dMRI rs-fMRI

E. Age-effects on multiscale cortical structural differentiation

*pFDR < 0.05

5

-5

T-
st

at
is

tic

W
ith

in
-n

et
w

or
k

ef
fe

ct
s

-5 50

* B
et

w
ee

n-
ne

tw
or

k
ef

fe
ct

s

F. Individual-level within- and between-network age-effects

St
ru

ct
ur

al
di

ffe
re

nt
ia

tio
n

(w
ith

in
-n

et
w

or
k)

0.06

0.12
r = 0.21, pperm-FDR = 0.004p

Age13 27

St
ru

ct
ur

al
di

ffe
re

nt
ia

tio
n

(b
et

w
ee

n-
ne

tw
or

k)

0.08

0.16
r = 0.43, pperm-FDR < 0.001

Fig. 1. Adolescent development of multiscale cortical wiring. (A) We studied the multimodal MRI dataset from the NSPN 2400 cohort, examining both base-
line and follow-up scans. Age at both visits is represented in the histograms. (B) Our in vivo model of corticocortical wiring combined three cortical neuroim-
aging features (i.e., geodesic distance, microstructural profile covariance, and tract strength). Matrices were normalized and concatenated prior to applying
nonlinear manifold learning, which identifies a coordinate system informed by cortical wiring. The scree plot shows eigenvalues of each estimated compo-
nent, with error bars indicating the SD across 10 repetitions. (C) We estimated two eigenvectors (E1 and E2) from cortical wiring features. Averaged maps
across 10 repetitions are reported. The scatterplot represents each brain region projected onto the two-dimensional wiring space with different colors
mapped onto the cortical surface. Solid big dots indicate mean results across 10 repetitions, and small transparent dots linked to the solid dots with lines
indicate the results from each repetition. (D) Nodes in the wiring space were assigned to seven intrinsic functional communities. Multiscale cortical structural
differentiation (i.e., the Euclidean distance between different nodes in the wiring space) was calculated at a node level and summarized for intrinsic func-
tional communities. (E) The t statistics of age effects on structural differentiation within and between networks are reported, with significant (pFDR < 0.05)
results marked by asterisks. Within-network effects are represented by a radar plot, and a significant network is indicated by an asterisk. Significant
between-network effects are reported by a circular plot, where the red lines indicate increases in structural differentiation. (F) The scatterplots show age-
related changes in within-network (Upper) and between-network (Lower) structural differentiation of each individual in the identified networks. dMRI, diffu-
sion magnetic resonance imaging; GD, geodesic distance; MPC, microstructural profile covariance; TS, tract strength; T1w, T1-weighted.
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in microstructural profile covariance (r = �0.58, pFDR = 0.001)
but not very much to changes in tract strength (r = �0.25,
pFDR = 0.21) nor geodesic distance (r = 0.22, pFDR = 0.27),
supporting the notion that increases in multiscale structural dif-
ferentiation reflected mostly a decreased similarity of intracortical
microstructure. Furthermore, as the overall manifold size (i.e.,
mean of structural differentiation across all networks) was signifi-
cantly associated with age (r = 0.19 ± 0.02, P < 0.001 across
10 repetitions), we repeated linear mixed effect models after
additionally controlling for mean structural differentiation (SI
Appendix, Fig. S4). Despite decreases in the effect size, we
observed overall consistent patterns, confirming that age effects
on structural differentiation were not driven by the expansion in
manifold space itself.

Associations with Macroscale Functional Network Maturation.
To evaluate functional associations of the changes in multiscale
cortical wiring, we first generated functional connectivity based
on rs-fMRI obtained in the same subjects at equivalent time
points (Fig. 2A). At a cross-sectional level, we found strong nega-
tive associations between structural differentiation and functional
connectivity across intrinsic functional networks (r = �0.74,
pspin < 0.001) (Fig. 2B). In other words, regions with increased
structural differentiation generally show weaker functional con-
nectivity. We then charted the development of functional connec-
tivity across age, and we found decreases in sensory–default mode
network connectivity and increases in connectivity between
sensory networks (pFDR < 0.05) (Fig. 2C). To assess how the age-
related changes in structural and functional measures were inter-
related, we correlated the age effects on structural differentiation
with the age effects on functional connectivity. Here, we found a
tendency for a negative association (r = �0.21, pspin = 0.09)
(Fig. 2D). The negative relationship between structural differenti-
ation and functional connectivity indicates that regions/networks
with stronger structural differentiation show reduced functional
connectivity.
We furthermore assessed structure–function coupling across

different age bins using data from the Human Connectome
Project (HCP)—Development dataset (focusing on participants
younger than 14 y of age), the current NSPN dataset (14 y ≤
age < 26 y), and the HCP—Young Adults dataset (focusing on
individuals older than 26 y of age), and we observed largely
consistent results (SI Appendix, Fig. S5). We additionally
assessed inter-individual differences in structure–function cou-
pling, focusing on the connections that showed significant age
effects on both structural differentiation and functional connec-
tivity (Figs. 1E and 2C). We observed a negative association
between sensorimotor and default mode networks (pperm = 0.01)
at the cross-sectional level and a similar, albeit weaker effect
at the longitudinal level (pperm = 0.05) (SI Appendix, Fig. S6).
These results confirm the findings between sensory and default
mode networks at the level of the individual.

Sensitivity Analysis. We assessed whether our findings were
robust with respect to several methodological variations.

a) Parcellation scales. We repeated assessing age effects using
different parcellation scales (i.e., 100 and 300 regions) and
revealed consistent results (SI Appendix, Fig. S7), indicating
the robustness of our findings across different scales.

b) Structural eigenvector generation using principal component
analysis. Our main analysis estimated structural eigenvectors
using diffusion map embedding (51), in keeping with a previ-
ous approach to study structural eigenvectors in healthy young
adults (21, 52). We repeated our analysis after alternatively

estimating structural eigenvectors using principal component
analysis (53), and the eigenvectors and age effects were similar
(SI Appendix, Fig. S8), confirming robustness.

c) Parcellation scheme. We generated connectome eigenvectors
and assessed adolescent remodeling using a functional (i.e.,
Schaefer) parcellation (54) instead of the structural parcella-
tion scheme (55) used for our principal analysis and found
consistent results (SI Appendix, Fig. S9), indicating the robust-
ness of our analyses across different parcellations. Moreover,
the age effects on structural differentiation were more similar
between 200 functional parcels of the Yeo 7 network (54) and
200 structural parcels compared with the similarity between
100 and 200 structural parcels, showing the correspondence
between different parcellation schemes.

d) Age effects based on low–head motion participants. To assess
the effects of head motion on age-related changes in both
structural differentiation and functional connectivity, we
assessed age effects using participants with very low head
motion only (50% of participants with the lowest frame-wise
displacement). We observed consistent findings (SI Appendix,
Fig. S10).

e) Cortical wiring in age-stratified participant subgroups. Com-
paring the spatial maps of eigenvectors generated in younger
(age < 17) and older (age ≥ 21) participants from the
NSPN dataset with those of the HCP—Young Adults
datasets (21, 56), we observed higher similarity for older
(r = 0.92/0.80, pspin < 0.001/0.001 for E1/E2) than for
younger participants (r = 0.91/0.78, pspin < 0.001/0.004)
(SI Appendix, Fig. S11). We furthermore performed cell
type–specific transcriptomic association and enrichment analy-
ses (Methods). Specifically, we correlated structural eigenvec-
tors of younger participants (age < 17) and older participants
(age ≥ 21) subdivided within our dataset as well as young
adults from the HCP—Young Adults database, with post
mortem gene expression maps provided by the Allen Human
Brain Atlas (57–59), where the significance of the association
was determined based on 1,000 spin tests. We tested the
identified genes for any cell type–specific genes (60, 61) by
calculating the overlap ratio between them after 1,000 ran-
dom permutations of the cell type–specific gene lists. As
expected from the above increase in similarity in wiring
spaces, we also observed higher transcriptomic associations
between HCP young adults and older adolescents from NSPN
than between HCP young adults and younger adolescents
from NSPN (SI Appendix, Fig. S12), suggesting that cell
type–specific enrichment approaches adult-like patterns with
increasing age of adolescent samples.

Discussion

The current work assessed adolescent maturation of cortical
networks based on an advanced in vivo model of cortical wiring
(21). Charting typical development from late childhood to
early adulthood using the longitudinal NSPN cohort (16, 45),
we observed marked increases in within- and between-network
structural differentiation in both sensory and transmodal associ-
ation networks. Moreover, associating cortical structural wiring
features with intrinsic functional connectivity obtained from par-
allel rs-fMRI analysis performed in the same subjects, we observed
that functional networks reconfigure alongside the marked reorga-
nization of corticocortical wiring. Collectively, our work offers a
perspective on how structural brain networks reconfigure and how
these changes give rise to ongoing functional maturation in typi-
cally developing youth.
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Our work centered on an advanced in vivo model of struc-
tural wiring that integrates multiple dimensions of corticocortical
connectivity (21), namely diffusion MRI tractography strength,
geodesic distance, and microstructure profile covariance. Each
feature taps into different aspects of corticocortical connectivity,
grounded in foundational neuroanatomical studies on the multiple

facets of the cortical wiring scheme (62). Synergistic integration
of these features is hypothesized to describe structural connec-
tivity more comprehensively and to thus provide insights into
structure–function relationships in the developing brain. In
fact, tract strength is an established measure of short- and long-
range white matter fibers (63, 64), whereas geodesic distance
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Fig. 2. Association between functional connectivity and structural differentiation. (A) The functional connectivity matrix was summarized according to intrin-
sic functional communities (Left) and projected onto brain surfaces (Right). (B) Cross-sectional structure–function coupling between functional connectivity
and structural differentiation. The histogram indicates a null distribution of correlation coefficients generated based on 1,000 spin tests, and the actual
r value is represented by a red bar. (C) Age effects on functional connectivity. The t statistics of age effects are reported. The within-network effects are rep-
resented with a radar plot, and a significant network is reported with an asterisk. Significant between-network effects are reported with a circular plot,
where the red/blue lines indicate increases/decreases in structural differentiation. (D) Longitudinal structure–function coupling between age effects on func-
tional connectivity and structural differentiation.
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computed within the cortical ribbon has been proposed to index
horizontal connectivity between adjacent cortical regions (24, 65).
Similarity of intracortical microstructural profiles, quantified as
microstructural profile covariance (28), is generally recognized as
an indicator of inter-regional connectivity (21, 27, 66, 67). In
fact, the structural model of brain connectivity, initially formu-
lated in nonhuman animals, predicts that areas with similar
microstructure are more likely to be connected than areas with
different connectivity profiles (68). These findings were recently
extended to human neuroanatomy by relating microstructural
similarity to diffusion MRI–derived streamline strength (67, 69)
and to resting-state functional connectivity (28, 70). By translat-
ing the approach previously formulated in adults (21) to typically
developing adolescents in the current work, we demonstrated that
the wiring space in youth overall resembles the one previously
seen in adults. Indeed, the two principal dimensions of the wiring
space differentiated unimodal from transmodal cortex and ante-
rior from posterior regions—two major axes of adult macroscale
cortical topography (71–75). On the other hand, we also showed
how the structural networks increasingly reconfigure into those
seen in adults. The NSPN dataset was acquired using an acceler-
ated longitudinal design, enrolling individuals aged from late
childhood to young adulthood with a 1-y follow-up on average
(16, 45). Compared with cross-sectional studies, longitudinal
designs are sensitive to intraindividual changes in cortical features,
allowing developmental trajectories to be charted directly (3, 20,
76–78). Our multiscale approach gathered evidence for develop-
mental shifts in cortical wiring, indicative of increased structural
differentiation in multiple systems, with the highest effects in
default mode and ventral attention networks. These findings indi-
cate that differentiation of corticocortical structural networks, in
particular transmodal systems at the apex of the cortical hierarchy
(3, 37, 79, 80), continues into early adulthood.
Our findings on cortical wiring changes need to be contextu-

alized within a well-established literature on developmental
changes in cortical morphology during adolescence, which indi-
cates widespread cortical thickness reductions with advancing
age, a finding likely reflecting ongoing synaptic pruning and
cortical myelination (10, 16, 81, 82). Here, by analyzing longi-
tudinal cortical thickness changes in the same NSPN partici-
pants, we could confirm widespread cortical thinning in youth
with advancing age. In addition, we showed that wiring space
changes were only partially attributable to these changes in cor-
tical thickness, however, suggesting that age-related structural
wiring changes likely occurred above and beyond maturational
effects on cortical morphology per se. In prior work in healthy
adults (21), we could identify associations between in vivo
cortical wiring space organization and intracortical factors,
specifically cell type–specific gene expression as well as externo-
pyramidization. Although these associations were indirect and
based on separate datasets (in vivo MRI and histology-based
post mortem gene expression information), they nevertheless
supported a link between multiscale wiring and internal cortical
microcircuitry that goes beyond the changes measurable by cor-
tical thickness measures alone. Such interactions between differ-
ent scales of cortical organization during typical development
could be further explored in studies obtaining wiring space data
and gene expression in the same subjects.
An increasing body of studies has provided insights into

age-related changes in structural and functional connectivity in
adolescence, which help to further contextualize the current
findings. First, multiple studies assessing structural or func-
tional changes separately have shown spatiotemporal variations
in developmental change patterns. At the level of structural

connectivity, diffusion MRI–based studies showed continued
microstructural changes in multiple fiber tracts in late child-
hood and adolescence (83), likely underpinning a continuous
integration of long-range hub-to-hub connectivity (16, 20,
84, 85). In particular, a relative strengthening of long-range
anterior–posterior tracts in adolescence has been reported,
implicating tracts between posterior cingulate and medial pre-
frontal cortex (79). Studies examining developmental connec-
tome reconfigurations also supported increases in hub-to-hub
connectivity in adolescents, particularly frontal–subcortical and
frontal–parietal connections (84, 85). Our findings based on a
multiscale wiring model recapitulated these findings, showing
increased structural differentiation in higher-order association
and transmodal systems. Considering intrinsic function, prior
work has suggested age-related reductions in short-range func-
tional interactions between default mode and sensory/motor
systems along with strengthening of long-range interactions
within default mode networks, suggesting increased coherence
of such transmodal systems (37, 86–88). Such conclusions are
in line with a longitudinal graph theoretical rs-fMRI analysis
focusing on the default mode network (89) and a work indicat-
ing that longitudinal functional trajectories differ between
sensory/motor networks on the one hand and association
systems on the other hand (37). Our work also showed a rela-
tive strengthening of functional connectivity within primary
networks with simultaneous weakening of sensory–default
mode interactions, which likely reflects ongoing functional seg-
regation of primary and heteromodal systems. Second, our
work adds evidence on how functional and structural changes
may converge. We observed overall associations between struc-
tural differentiation and functional connectivity at baseline
and revealed that adolescent decreases in functional connectivity
between sensory and association systems are marginally reflected
in increased structural differentiation between these systems, con-
sistent with prior cross-sectional (79, 86, 87, 90) and longitudinal
findings (91, 92). Based on these prior findings, the developmen-
tal processes would likely culminate in increased structural differ-
entiation of heteromodal association systems from other brain
networks. Ultimately and as our work shows, these findings may
also affect functional organization and be compatible with work
on the development of structure–function coupling in adoles-
cence and changes in cognitive functions (3, 79). Finally and
beyond the findings in our work that focused on changes between
14 and 25 y, it remains to be investigated as to which connec-
tions do already exist at the beginning of a given neurodevelop-
mental time window. Our supporting analyses based on the
HCP—Development and HCP—Young Adults datasets along
with the NSPN cohort suggest that while cortical wiring patterns
are overall already quite similar to an adult configuration in youn-
ger NSPN participants and younger children from the HCP—
Development dataset, similarity further increases throughout
adolescence. It will be important for future exploration to track a
wider developmental time span longitudinally, ideally from early
childhood until adulthood. This will also allow for the identifica-
tion of potentially nonlinear age-related changes in structure–
function coupling in the first decades of life and the comparison
of age-related changes during adolescence with those in early
childhood and adulthood, respectively.

Numerous neurodevelopmental connectomics studies have
shown an effect of head motion, motivating its consideration as
a potential confounding factor as well as strategies for its con-
trol (38–42). Considering age-related changes in functional net-
work organization, prior work has shown that adequate control
for head motion changes connectivity within and between
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networks substantially (38–42). Indeed, controlling for head
motion in rs-fMRI connectivity analysis has been shown to
diminish the age effects, in particular for long-range connections
(41, 42). Considering structural connectivity estimated from dif-
fusion MRI, head motion has similarly been shown to affect both
short- and long-range connectivity strength (93), suggesting that
it is also an important confounder for structural brain network
analyses. In the current study, we controlled for head motion
effects during image preprocessing and statistical analysis, and fur-
thermore, we confirmed the robustness of age effects on structural
differentiation as well as functional connectivity within the 50%
of participants with the lowest in-scanner head motion estimates.
Our multimodal wiring space analysis established how features

of brain anatomy can change in tandem, a perspective that would
not arise from the analysis of single features. Of note, the applied
model of corticocortical wiring can be generated at the level of
the group as well as individual subjects. As such, our model and
approach can have practical value for the understanding and
monitoring of typical as well as atypical brain development. Atyp-
ical corticocortical wiring at different spatial scales has been impli-
cated in numerous neurological and neuropsychiatric conditions,
notably autism, epilepsy, and schizophrenia (94–98). In fact, each
of these conditions is characterized by a complex combination of
atypical cortical microstructure, wiring, and geometry (99–102).
The findings support the potential value of our approach to
inform prognostic and diagnostic applications in future work and
to better understand factors contributing to shared and syndrome-
specific functional anomalies.
To conclude, we longitudinally tracked development of struc-

tural brain networks in adolescence and showed an ongoing differ-
entiation based on an advanced model of corticocortical wiring
across multiple brain networks, in particular an increased differen-
tiation between uni- and transmodal systems that was also found
to mirror ongoing functional network reconfigurations. Our mul-
timodal framework, thus, provides insights into structural and
functional brain development in adolescence and points to an inher-
ent coupling of developmental trajectories across both domains.

Methods

Participants. We obtained imaging and phenotypic data from the NSPN 2400
cohort (openly available at https://nspn.org.uk/) (103), which contains question-
naire data on 2,402 individuals (with MRI data in a subset of ∼300) from ado-
lescence to young adulthood in a longitudinal setting (16, 45). In this study, we
included 199 participants who completed quality-controlled (Data Preprocessing)
multimodal MRI scans consisting of T1 weighted, magnetization transfer (MT),
diffusion MRI, and rs-fMRI for at least two time points (48% female; mean ±
SD; age = 18.84 ± 2.83 y [between 14 and 25] at baseline and 19.96 ± 2.84
y [between 15 and 26] at follow-up with an inter-scan interval of 0.94 ± 0.17 y
[between 0.5 and 1]) (Fig. 1A). Data were collected from three different sites: the
Wolfson Brain Imaging Centre, the Medical Research Council (MRC) Cognition
and Brain Sciences Unit in Cambridge, and the University College London. Partic-
ipants provided informed written consent for each aspect of the study, and
parental consent was obtained for those aged 14 to 15 y old. Ethical approval
was granted for this study by the National Health Service Research Ethics Service
(NHS NRES) Committee East of England–Cambridge Central (project ID 97546).
The authors assert that all procedures contributing to this work comply with the
ethical standards of the relevant national and institutional committees on human
experimentation and with the Helsinki Declaration of 1975, as revised in 2008.

MRI Acquisition. Imaging data were obtained using a Siemens Magnetom TIM
Trio 3T scanner at all sites. The T1-weighted and MT sequences were acquired
using a quantitative multiparameter mapping sequence (repetition time [TR]/flip
angle = 18.7 ms/20° for T1 weighted and 23.7 ms/6° for MT; six equidistance
echo times [TE] = 2.2 to 14.7 ms; voxel size = 1 mm3; 176 slices; field of view

[FOV] = 256 × 240 mm; matrix size = 256 × 240 × 176) (104). The diffusion
MRI data were acquired using a spin-echo echo-planar imaging (EPI) sequence
(TR = 8,700 ms; TE = 90 ms; flip angle = 90°; voxel size = 2 mm3; 70 slices;
FOV = 192 × 192 mm2; matrix size = 96 × 96 × 70; b value = 1,000 s/mm2;
63 diffusion directions; six b0 images). The rs-fMRI data were collected using
a multiecho EPI sequence with three different TEs (TR = 2.43 ms; TE =
13.0/30.55/48.1 ms; flip angle = 90°; voxel size = 3.75 × 3.75 × 4.18 mm3;
34 slices; FOV = 240 × 240 mm2; matrix size = 64 × 64 × 34; 269 volumes).

Data Preprocessing. T1-weighted data were processed using the fusion of
neuroimaging preprocessing pipeline integrating AFNI, FSL, FreeSurfer, ANTs,
and Workbench (https://gitlab.com/by9433/funp) (105–109), which is similar to
the minimal preprocessing pipeline for the HCP (110). Gradient nonlinearity
and b0 distortion correction, nonbrain tissue removal, and intensity normaliza-
tion were performed. The white and pial surfaces were generated by following
the boundaries between different tissues (107, 111–113). The midthickness sur-
face was generated by averaging the white and pial surfaces, and it was used to
generate an inflated surface. Quality control involved visual inspection of the sur-
face reconstructions from T1-weighted data, and cases with suboptimal cortical
segmentation were excluded. We generated 14 equivolumetric cortical surfaces
within the cortex, especially between inner white and outer pial surfaces, and
sampled MT intensity along these surfaces (28). The diffusion MRI data were
processed using MRtrix3 (23), including correction for susceptibility distortions,
head motion, and eddy currents. The rs-fMRI data were processed using the mul-
tiecho independent component analysis pipeline (https://github.com/ME-ICA/
me-ica) (114, 115). The first six volumes were discarded to allow for magnetic
field saturation, and slice timing was corrected. Motion correction parameters
were estimated from the middle TE data by aligning all volumes to the first
volume using rigid-body transformation. The coregistration transformation parame-
ters from functional to structural images were estimated by registering the skull-
stripped spatially concatenated multiecho functional data to the skull-stripped
anatomical image using affine transformation. The estimated parameters from
motion correction and anatomical coregistration procedures were applied to each
slice-timing corrected TE data and then, temporally concatenated. The noise compo-
nents were removed using principal component analysis followed by independent
component analysis (114, 115). The processed fMRI data were mapped to the stan-
dard gray ordinate space (i.e., 32k Conte69) with a cortical ribbon-constrained vol-
ume-to-surface mapping algorithm. Finally, data were surface smoothed with 5-mm
full width at half-maximum.

Multiscale Cortical Wiring Features. We calculated complementary cortical
wiring features from different imaging sequences, namely geodesic distance
from T1 weighted, microstructural profile covariance from MT, and tract strength
from diffusion MRI (Fig. 1B). Geodesic distance is a physical distance represented
by the shortest paths between two points along the cortical surface (24, 52, 65).
To calculate the geodesic distance matrix, we first matched each vertex to the
nearest voxel in volume space. We then calculated the distance to all other
voxels traveling through a gray/white matter mask using a Chamfer propagation
(https://github.com/mattools/matImage/wiki/imGeodesics) (116). Unlike a previ-
ously introduced approach that calculates only intrahemispheric distance (24,
52, 65), this approach allows for estimating inter-hemispheric projections (21).
We mapped geodesic distance to a 200–cortical nodes parcellation scheme,
which preserves the boundaries of the Desikan Killiany atlas (55) (SI Appendix,
Fig. S1). Following our prior study in adults (28), the microstructural profile
covariance matrix was constructed by calculating linear correlations between cor-
tical depth–dependent intensity profiles of different nodes, controlling for the
average whole-cortex intensity profile based on the 200 parcels. The microstruc-
tural profile covariance matrix was thresholded at zero and log transformed. We
generated the tract strength matrix from preprocessed diffusion MRI data using
MRtrix3 (23). Anatomical constrained tractography was performed using differ-
ent tissue types derived from the T1-weighted image, including cortical and sub-
cortical gray matter, white matter, and cerebrospinal fluid (117). We coregistered
the T1-weighted and diffusion MRI data using a boundary-based registration
and applied the transformation to different tissue types to align them onto the
native diffusion MRI space. The multishell and multitissue response functions
were estimated (118), and constrained spherical deconvolution and intensity
normalization were performed (119). Seeding from all white matter voxels, the
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tractogram was generated using a probabilistic approach (23, 120) with 40 million
streamlines, a maximum tract length of 250, and a fractional anisotropy cutoff of
0.06. Subsequently, we applied spherical-deconvolution informed filtering of tracto-
grams to optimize an appropriate cross-section multiplier for each streamline (121)
and reconstructed whole-brain streamlines weighted by cross-section multipliers.
Reconstructed cross-section streamlines were mapped onto the 200 parcels to build
tract strength matrix and log transformed (122, 123).

Structural Eigenvector Identification. We estimated structural eigenvectors
based on the multiscale cortical features calculated above using an openly accessi-
ble normative manifold map approach (https://github.com/MICA-MNI/micaopen/
tree/master/structural_manifold) (21), which is now integrated in BrainSpace
(https://github.com/MICA-MNI/BrainSpace) (46). First, we ranked the normalized
nonzero entries of the input matrices, and the less sparse matrices (i.e., geodesic
distance and microstructural profile covariance) were rescaled to the same numer-
ical range as the sparsest matrix (i.e., tract strength) to balance the contribution of
each input measure (Fig. 1B). Notably, we rank normalized the inverted geodesic
distance matrix to represent closer regions with larger values. We horizontally
concatenated the normalized geodesic distance, microstructural profile covariance,
and tract strength matrices and constructed an affinity matrix with a normalized
angle kernel with 10% density, which quantifies the strength of cortical wiring
between two regions. We applied diffusion map embedding (51), a nonlinear
dimensionality reduction technique that is robust to noise and computationally
efficient, to generate corticocortical wiring spaces (124, 125) (Fig. 1C). Diffusion
map embedding applies singular value decomposition to the corticocortical affin-
ity matrix that was transformed via a diffusion kernel, where regions with more
similar connectivity have small diffusion times, while dissimilar regions have
larger diffusion times. It is controlled by two parameters α and t, where α controls
the influence of the density of sampling points on the manifold (α = 0, maximal
influence; α = 1, no influence) and t controls the scale of eigenvalues of the dif-
fusion operator. We set α = 0.5 and t = 0 to retain the global relations between
data points in the embedded space, following prior applications (17, 20, 28, 46,
52, 99, 126). Cortical regions with more similar interregional patterns are more
proximal in this structural manifold space. To assess robustness, we repeated
estimating structural eigenvectors 10 times with different sets of participants.
Specifically, we split the dataset into nonoverlapping template (1 of 10) and non-
template (9 of 10) partitions with similar distributions of age, sex, and site. The
template eigenvector was generated using the averaged concatenated matrix of
the template dataset, and individual-level eigenvectors were estimated from the
non-template dataset and aligned to the template eigenvector via Procrustes
alignment (46, 127). We repeated generating connectome eigenvectors 10 times
with different template and non-template datasets.

Age Effects on Structural Eigenvectors. To chart age effects on structural
eigenvectors, we first calculated multiscale cortical structural differentiation,
which is the Euclidean distance between different brain regions in the manifold
space (Fig. 1D) (21, 128), and stratified the node-level structural differentiation
based on intrinsic functional communities (48). It has been shown that cortical
thickness shows significant changes across age (1, 11, 13, 47). We first repli-
cated these morphological findings by assessing age effects on cortical thickness
measured using T1-weighted MRI (SI Appendix, Fig. S2A). Next, we linearly cor-
related time-related changes in structural differentiation and those in cortical
thickness to assess spatial similarity across the cortex (SI Appendix, Fig. S2B). The
significance of the similarity was assessed based on 1,000 spin tests that account
for spatial autocorrelation (46, 49) and was FDR corrected across within- and
between-network correlations. We then assessed age effects on network-level
structural differentiation using a linear mixed effect model (50). The model addi-
tionally controlled for sex, site, head motion (i.e., frame-wise displacement mea-
sured from diffusion MRI), and cortical thickness and included a subject-specific
random intercept. We corrected for multiple comparisons across all pairs of func-
tional communities with pFDR < 0.05 (129). We repeated the age modeling
10 times with different non-template individuals and reported only those net-
work pairs showing significant effects across all repetitions (Fig. 1E). To assess
individual-level changes in structural differentiation across the age, we calculated
linear correlations between mean age and within- and between-network struc-
tural differentiation in the identified networks between baseline and follow-up,
where the significance was determined based on 1,000 permutation tests

randomly assigning subjects (Fig. 1F). We additionally implemented mixed effect
models for each cortical wiring feature separately (i.e., geodesic distance, micro-
structural profile covariance, and tract strength) to assess how much the age effects
improved when we considered multiscale cortical structural differentiation (SI
Appendix, Fig. S3). The age effect t statistics of each feature were correlated with
those of structural differentiation to assess which features are strongly related to
adolescent development in structural differentiation. To assess the association
between global wiring effects and age, we calculated linear correlation between
age and mean structural differentiation across the whole network. We also imple-
mented a linear mixed effect model that additionally controlled for mean structural
differentiation to assess whether the age effects on structural differentiation are
affected by global changes in the size of manifold space (SI Appendix, Fig. S4).

Association between Structural Differentiation and Functional Connectivity.

Structure–function coupling analyses assessed how multiscale cortical wiring
related to functional connectivity. First, we constructed the functional connectivity
matrix by calculating linear correlations of resting-state functional time series
between different brain regions, controlling for average whole-cortex signals
(Fig. 2A). After row-wise thresholding with remaining 10% of values for each row
in the connectivity matrix, we assessed structure–function correspondence via
linear correlations between the z-transformed functional connectivity and struc-
tural differentiation measures at the network level (48) (Fig. 2B). To assess the
relationship between age effects on multiscale cortical wiring and those on func-
tional connectivity, we first calculated the age effects t statistic on functional con-
nectivity for all node pairs (Fig. 2B). Then, we calculated linear correlations
between the age effect t statistics of functional connectivity and structural differ-
entiation (Fig. 2D). We assessed the significance of these using 1,000 spin tests
(46, 49). To assess the consistency of structure–function coupling across age, we
evaluated cross-sectional structure–function coupling at different age bins:
1) age < 14 using the HCP—Development dataset (130); 2) 14 ≤ age < 17,
3) 17 ≤ age < 20, 4) 20 ≤ age < 23, and 5) 23 ≤ age < 26 using the current
NSPN cohort; and 6) age ≥ 26 using the HCP—Young Adults dataset (56) (SI
Appendix, Fig. S5). To examine inter-individual variations in the association
between structural differentiation and functional connectivity, we additionally
assessed structure–function coupling focusing on the networks that showed sig-
nificant age effects on both structural differentiation and functional connectivity
(SI Appendix, Fig. S6).

Sensitivity Analysis.

a) Parcellation scales. Our main analyses were based on a 200–cortical node
subparcellation of the Desikan Killiany atlas (55). To assess robustness across
parcellation scales, we repeated out analysis eigenvectors using structural
atlases with 100 and 300 parcels (SI Appendix, Fig. S7).

b) Structural eigenvector generation using principal component analysis.
Instead of relying on diffusion map embedding (51), we generated structural
eigenvectors using principal component analysis (53). Then, we repeated cal-
culating multiscale cortical structural differentiation and assessed age effects
to evaluate consistency of our findings (SI Appendix, Fig. S8).

c) Functional parcellation. We also repeated structural eigenvector generation
and age modeling using the functional Schaefer parcellation scheme with
200 parcels (54) (SI Appendix, Fig. S9).

d) Age effects based on low–head motion participants. We assessed age effects
on both network-level structural differentiation and functional connectivity
using a linear mixed effect model (50) fit to data from participants with low
head motion (50% of participants with the lowest frame-wise displacement
for both structural differentiation and functional connectivity) (SI Appendix,
Fig. S10). The multiple comparisons were corrected using FDR (129).

e) Cortical wiring in age-stratified participant subgroups. To assess the develop-
ment of cortical structures, we generated eigenvectors in younger (age < 17 y)
and older (age ≥ 21 y) participants separately (SI Appendix, Fig. S11). We
calculated linear correlations between the generated eigenvectors with those
estimated from the HCP—Young Adults dataset (21, 56), and the significance
of correlations was assessed using 1,000 spin tests that account for spatial
autocorrelation (49). In addition, we aimed to decode multiscale cortical wiring
of younger and older adolescence from the current NSPN cohort as well as
young adults from the HCP—Young Adults database, respectively, based on cell
type–specific gene expressions (SI Appendix, Fig. S12). We associated the struc-
tural eigenvectors with the post mortem gene expressions provided by the
Allen Human Brain Atlas. Specifically, among all genes from the Allen Human
Brain Atlas, we selected genes consistently expressed across donors using
the abagen toolbox (https://github.com/rmarkello/abagen) (59, 131, 132). For
each gene, we correlated the whole-brain gene expression map between all
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pairs of donors and considered genes with an average inter-donor r > 0.5
for subsequent analyses. We spatially correlated the eigenvector maps with
the gene expression maps to assess which genes were associated with the
macroscale findings. For each gene, we performed the correlation analysis
1,000 times with spin-rotated eigenvectors to construct a null distribution
(49). If the real correlation coefficient between eigenvectors and gene
expression maps did not belong to the 95% of the null distribution, we
considered that the gene was significantly associated with the eigenvectors.
We further corrected the P values using FDR < 0.05 (129). To address cell
type–specific gene enrichment, we compared the identified genes with cell
type–specific genes proposed in prior work, which includes excitatory and
inhibitory neuronal subtypes in the cortex and nonneuronal cells, such as
endothelial cells, pericytes, astrocytes, oligodendrocytes and their precursor
cells, and microglia (60, 61). We calculated overlap ratios to assess how
many genes expressed for eigenvectors are included in each cell type–
specific gene list. To assess the significance of the overlap ratio, we per-
formed 1,000 permutation tests. For each cell type, we randomly assigned
genes among all cell type–specific genes with the same gene length. Then,
we calculated the overlap ratio between the genes expressed for eigenvector
differences and the permuted cell type–specific genes. For each cell type,
we constructed a null distribution using the overlap ratio; if the real overlap
ratio did not belong to 95% of the null distribution, it was deemed signifi-
cant, and the P value was corrected using FDR < 0.05 (129).

Data Availability. Codes for multimodal connectome manifold generation
and codes for structural differentiation calculation have been deposited in GitHub
[https://github.com/MICA-MNI/micaopen/tree/master/structural_manifold (133),
https://github.com/MICA-MNI/BrainSpace (134), and https://github.com/MICA-
MNI/micaopen/tree/master/manifold_features (135)]. The imaging and pheno-
typic data were provided by the NSPN 2400 cohort, and openly available at
https://nspn.org.uk/ (103).

ACKNOWLEDGMENTS. B.-y.P. was funded by National Research Foundation
of Korea Grant NRF-2021R1F1A1052303, the Institute for Information and Com-
munications Technology Planning and Evaluation funded by Korea Government

(Ministry of Science and ICT; MSIT) Grants 2022-0-00448 (Deep Total Recall:
Continual Learning for Human-Like Recall of Artificial Neural Networks), 2020-0-
01389 (Artificial Intelligence Convergence Research Center, Inha University), RS-
2022-00155915 (Artificial Intelligence Convergence Innovation Human Resour-
ces Development, Inha University), and 2021-0-02068 (Artificial Intelligence
Innovation Hub), and Institute for Basic Science Grant IBS-R015-D1. R.A.I.B. was
funded by a British Academy Post-Doctoral Fellowship and the Autism Research
Trust. E.T.B. was supported by a Senior Investigator Award from the National
Institute of Health Research (NIHR). B.C.B. acknowledges research support from
National Science and Engineering Research Council of Canada (NSERC) Grant
NSERC Discovery-1304413, Canadian Institutes of Health Research (CIHR) Grants
FDN-154298 and PJT-174995, SickKids Foundation Grant NI17-039, Azrieli Cen-
ter for Autism Research Grant - Transforming Autism Care Consortium (ACAR-
TACC), BrainCanada Grant Azrieli Future Leaders, and the Tier-2 Canada Research
Chairs Program. The NSPN study was funded by a Wellcome Trust award to the
University of Cambridge and the University College London. The data were
curated and analyzed using a computational facility funded by Medical Research
Council (MRC) Research Infra-Structure Award MR/M009041/1 and supported by
the NIHR Cambridge Biomedical Research Centre. The views expressed are those
of the authors and not necessarily those of the National Health Service (NHS),
the NIHR, or the Department of Health and Social Care.

Author affiliations: aMcConnell Brain Imaging Centre, Montreal Neurological Institute
and Hospital, McGill University, Montreal, QC, H3A 2B4, Canada; bDepartment of Data
Science, Inha University, Incheon, 22212, Republic of Korea; cCenter for Neuroscience
Imaging Research, Institute for Basic Science, Suwon, 16419, Republic of Korea;
dInstitute of Neuroscience and Medicine, Forschungszentrum J€ulich, J€ulich, 52428,
Germany; eAutism Research Centre, Department of Psychiatry, University of
Cambridge, Cambridge, CB2 8AH, United Kingdom; fBrain Mapping Unit, Department of
Psychiatry, University of Cambridge, Cambridge, CB2 8AH, United Kingdom; and
gDepartment of Psychology, Queen’s University, Kingston, ON, K7L 3N6, Canada

1. P. Shaw et al., Intellectual ability and cortical development in children and adolescents. Nature
440, 676–679 (2006).

2. N. Gogtay et al., Dynamic mapping of human cortical development during childhood through
early adulthood. Proc. Natl. Acad. Sci. U.S.A. 101, 8174–8179 (2004).

3. G. L. Baum et al., Development of structure-function coupling in human brain networks during
youth. Proc. Natl. Acad. Sci. U.S.A. 117, 771–778 (2020).

4. D. B. Dwyer et al., Large-scale brain network dynamics supporting adolescent cognitive control.
J. Neurosci. 34, 14096–14107 (2014).

5. V. Menon, Developmental pathways to functional brain networks: Emerging principles.
Trends Cogn. Sci. 17, 627–640 (2013).

6. K. K. Kolskår et al., Key brain network nodes show differential cognitive relevance and developmental
trajectories during childhood and adolescence. eNeuro 5, ENEURO.0092-18.2018 (2018).

7. B. Larsen, B. Luna, Adolescence as a neurobiological critical period for the development of higher-
order cognition. Neurosci. Biobehav. Rev. 94, 179–195 (2018).

8. T. Paus, M. Keshavan, J. N. Giedd, Why do many psychiatric disorders emerge during
adolescence? Nat. Rev. Neurosci. 9, 947–957 (2008).

9. B. J. Casey, R. M. Jones, T. A. Hare, The adolescent brain. Ann. N. Y. Acad. Sci. 1124, 111–126
(2008).

10. J. N. Giedd et al., Brain development during childhood and adolescence: A longitudinal MRI
study. Nat. Neurosci. 2, 861–863 (1999).

11. A. Sotiras et al., Patterns of coordinated cortical remodeling during adolescence and their
associations with functional specialization and evolutionary expansion. Proc. Natl. Acad. Sci.
U.S.A. 114, 3527–3532 (2017).

12. J. Hill et al., Similar patterns of cortical expansion during human development and evolution.
Proc. Natl. Acad. Sci. U.S.A. 107, 13135–13140 (2010).

13. C. K. Tamnes et al., Development of the cerebral cortex across adolescence: A multisample study
of inter-related longitudinal changes in cortical volume, surface area, and thickness. J. Neurosci.
37, 3402–3412 (2017).

14. A. Raznahan, D. Greenstein, N. R. Lee, L. S. Clasen, J. N. Giedd, Prenatal growth in humans and postnatal
brain maturation into late adolescence. Proc. Natl. Acad. Sci. U.S.A. 109, 11366–11371 (2012).

15. D. J. Miller et al., Prolonged myelination in human neocortical evolution. Proc. Natl. Acad. Sci.
U.S.A. 109, 16480–16485 (2012).

16. K. J. Whitaker et al.; NSPN Consortium, Adolescence is associated with genomically patterned
consolidation of the hubs of the human brain connectome. Proc. Natl. Acad. Sci. U.S.A. 113,
9105–9110 (2016).

17. C. Paquola et al.; NSPN Consortium, Shifts in myeloarchitecture characterise adolescent
development of cortical gradients. eLife 8, e50482 (2019).

18. N. U. F. Dosenbach et al., Prediction of individual brain maturity using fMRI. Science 329,
1358–1361 (2010).

19. D. A. Fair et al., Functional brain networks develop from a “local to distributed” organization. PLoS
Comput. Biol. 5, e1000381 (2009).

20. B. Y. Park et al.; Neuroscience in Psychiatry Network (NSPN) Consortium, An expanding manifold
in transmodal regions characterizes adolescent reconfiguration of structural connectome
organization. eLife 10, e64694 (2021).

21. C. Paquola, et al., A multi-scale cortical wiring space links cellular architecture and functional
dynamics in the human brain. PLoS Biol 18, e3000979 (2020).

22. J. D. Tournier, F. Calamante, A. Connelly, MRtrix: Diffusion tractography in crossing fiber regions.
Int. J. Imaging Syst. Technol. 22, 53–66 (2012).

23. J. D. Tournier et al., MRtrix3: A fast, flexible and open software framework for medical image
processing and visualisation. Neuroimage 202, 116137 (2019).

24. C. Ecker et al.; MRC AIMS Consortium, Intrinsic gray-matter connectivity of the brain in adults
with autism spectrum disorder. Proc. Natl. Acad. Sci. U.S.A. 110, 13222–13227 (2013).

25. A. Alexander-Bloch, A. Raznahan, E. Bullmore, J. Giedd, The convergence of maturational
change and structural covariance in human cortical networks. J. Neurosci. 33, 2889–2899
(2013).

26. A. Alexander-Bloch, J. N. Giedd, E. Bullmore, Imaging structural co-variance between human
brain regions. Nat. Rev. Neurosci. 14, 322–336 (2013).

27. H. Barbas, N. Rempel-Clower, Cortical structure predicts the pattern of corticocortical connections.
Cereb. Cortex 7, 635–646 (1997).

28. C. Paquola et al., Microstructural and functional gradients are increasingly dissociated in
transmodal cortices. PLoS Biol. 17, e3000284 (2019).

29. K. Batista-Garc�ıa-Ram�o, C. I. Fern�andez-Verdecia, What we know about the brain structure-
function relationship. Behav. Sci. (Basel) 8, 39 (2018).

30. C. J. Honey et al., Predicting human resting-state functional connectivity from structural
connectivity. Proc. Natl. Acad. Sci. U.S.A. 106, 2035–2040 (2009).

31. B. Mi�si�c et al., Network-level structure-function relationships in human neocortex. Cereb. Cortex
26, 3285–3296 (2016).

32. H. J. Park, K. Friston, Structural and functional brain networks: From connections to cognition.
Science 342, 1238411 (2013).

33. L. E. Su�arez, R. D. Markello, R. F. Betzel, B. Misic, Linking structure and function in macroscale
brain networks. Trends Cogn. Sci. 24, 302–315 (2020).

34. Z. Wang, Z. Dai, G. Gong, C. Zhou, Y. He, Understanding structural-functional relationships in the
human brain: A large-scale network perspective. Neuroscientist 21, 290–305 (2015).

35. B. Y. Park et al., Signal diffusion along connectome gradients and inter-hub routing differentially
contribute to dynamic human brain function. Neuroimage 224, 117429 (2021).

36. P. Kundu et al., The integration of functional brain activity from adolescence to adulthood.
J. Neurosci. 38, 3559–3570 (2018).

37. F. V�a�sa et al.; NSPN Consortium, Conservative and disruptive modes of adolescent change in
human brain functional connectivity. Proc. Natl. Acad. Sci. U.S.A. 117, 3248–3253 (2020).

38. K. Hwang, M. N. Hallquist, B. Luna, The development of hub architecture in the human functional
brain network. Cereb. Cortex 23, 2380–2393 (2013).

39. M. Jalbrzikowski et al., Resting-state functional network organization is stable across
adolescent development for typical and psychosis spectrum youth. Schizophr. Bull. 46,
395–407 (2020).

40. S. Marek et al., Identifying reproducible individual differences in childhood functional brain
networks: An ABCD study. Dev. Cogn. Neurosci. 40, 100706 (2019).

41. S. Marek, K. Hwang, W. Foran, M. N. Hallquist, B. Luna, The contribution of network
organization and integration to the development of cognitive control. PLoS Biol. 13,
e1002328 (2015).

42. T. D. Satterthwaite et al., Impact of in-scanner head motion on multiple measures of functional
connectivity: Relevance for studies of neurodevelopment in youth. Neuroimage 60, 623–632
(2012).

PNAS 2022 Vol. 119 No. 27 e2116673119 https://doi.org/10.1073/pnas.2116673119 9 of 11

https://github.com/MICA-MNI/micaopen/tree/master/structural_manifold
https://github.com/MICA-MNI/BrainSpace
https://github.com/MICA-MNI/micaopen/tree/master/manifold_features
https://github.com/MICA-MNI/micaopen/tree/master/manifold_features
https://nspn.org.uk/


43. G. L. Baum et al., Modular segregation of structural brain networks supports the development of
executive function in youth. Curr. Biol. 27, 1561–1572.e8 (2017).

44. F. Z. Esfahlani, J. Faskowitz, J. Slack, B. Mi�si�c, R. F. Betzel, Local structure-function relationships in
human brain networks across the human lifespan. Nat. Commun. 13, 2053 (2022).

45. B. Kiddle et al., Cohort profile: The NSPN 2400 Cohort: A developmental sample supporting the
Wellcome Trust NeuroScience in Psychiatry Network. Int. J. Epidemiol. 47, 18–19g (2018).

46. R. Vos de Wael et al., BrainSpace: A toolbox for the analysis of macroscale gradients in
neuroimaging and connectomics datasets. Commun. Biol. 3, 103 (2020).

47. B. S. Khundrakpam et al.; Brain Development Cooperative Group, Developmental changes in
organization of structural brain networks. Cereb. Cortex 23, 2072–2085 (2013).

48. B. T. T. Yeo et al., The organization of the human cerebral cortex estimated by intrinsic functional
connectivity. J. Neurophysiol. 106, 1125–1165 (2011).

49. A. F. Alexander-Bloch et al., On testing for spatial correspondence between maps of human brain
structure and function. Neuroimage 178, 540–551 (2018).

50. K. J. Worsley et al., SurfStat: A Matlab toolbox for the statistical analysis of univariate and
multivariate surface and volumetric data using linear mixed effects models and random field
theory. Neuroimage 47, S102 (2009).

51. R. R. Coifman, S. Lafon, Diffusion maps. Appl. Comput. Harmon. Anal. 21, 5–30 (2006).
52. D. S. Margulies et al., Situating the default-mode network along a principal gradient of

macroscale cortical organization. Proc. Natl. Acad. Sci. U.S.A. 113, 12574–12579 (2016).
53. S. Wold, K. Esbensen, P. Geladi, Principal component analysis. Chemom. Intell. Lab. Syst. 2,

37–52 (1987).
54. A. Schaefer et al., Local-global parcellation of the human cerebral cortex from intrinsic functional

connectivity MRI. Cereb. Cortex 28, 3095–3114 (2018).
55. R. S. Desikan et al., An automated labeling system for subdividing the human cerebral cortex on

MRI scans into gyral based regions of interest. Neuroimage 31, 968–980 (2006).
56. D. C. Van Essen et al.; WU-Minn HCP Consortium, The WU-Minn Human Connectome Project:

An overview. Neuroimage 80, 62–79 (2013).
57. K. J. Gorgolewski et al., NeuroVault.org: A web-based repository for collecting and sharing

unthresholded statistical maps of the human brain. Front. Neuroinform. 9, 8 (2015).
58. K. J. Gorgolewski et al., Tight fitting genes: Finding relations between statistical maps and gene

expression patterns (2014). https://f1000research.com/posters/1097120. Accessed 28 October
2014.

59. M. J. Hawrylycz et al., An anatomically comprehensive atlas of the adult human brain
transcriptome. Nature 489, 391–399 (2012).

60. B. B. Lake et al., Neuronal subtypes and diversity revealed by single-nucleus RNA sequencing of
the human brain. Science 352, 1586–1590 (2016).

61. B. B. Lake et al., Integrative single-cell analysis of transcriptional and epigenetic states in the
human adult brain. Nat. Biotechnol. 36, 70–80 (2018).

62. V. Braitenberg, A. Sch€uz, Anatomy of the Cortex: Statistics and Geometry (Studies of Brain
Function, Springer-Verlag, Berlin, Germany, 1991).

63. S. N. Sotiropoulos, A. Zalesky, Building connectomes using diffusion MRI: Why, how and but.
NMR Biomed. 32, e3752 (2019).

64. C. Reveley et al., Superficial white matter fiber systems impede detection of long-range cortical
connections in diffusion MR tractography. Proc. Natl. Acad. Sci. U.S.A. 112, E2820–E2828 (2015).

65. S. J. Hong, S. L. Valk, A. Di Martino, M. P. Milham, B. C. Bernhardt, Multidimensional
neuroanatomical subtyping of autism spectrum disorder. Cereb. Cortex 28, 3578–3588 (2018).

66. M. �A. Garc�ıa-Cabezas, B. Zikopoulos, H. Barbas, The Structural Model: A theory linking
connections, plasticity, pathology, development and evolution of the cerebral cortex. Brain Struct.
Funct. 224, 985–1008 (2019).

67. Y. Wei, L. H. Scholtens, E. Turk, M. P. van den Heuvel, Multiscale examination of cytoarchitectonic
similarity and human brain connectivity. Netw. Neurosci. 3, 124–137 (2018).

68. C. Delettre et al., Comparison between diffusion MRI tractography and histological tract-tracing of
cortico-cortical structural connectivity in the ferret brain. Netw. Neurosci. 3, 1038–1050 (2019).

69. M. Wahl et al., Microstructural correlations of white matter tracts in the human brain. Neuroimage
51, 531–541 (2010).

70. J. M. Huntenburg, P. L. Bazin, D. S. Margulies, Large-scale gradients in human cortical
organization. Trends Cogn. Sci. 22, 21–31 (2018).

71. D. Badre, M. D’Esposito, Is the rostro-caudal axis of the frontal lobe hierarchical? Nat. Rev.
Neurosci. 10, 659–669 (2009).

72. V. Borghesani et al., Word meaning in the ventral visual path: A perceptual to conceptual
gradient of semantic coding. Neuroimage 143, 128–140 (2016).

73. M. A. Goodale, A. D. Milner, Separate visual pathways for perception and action. Trends Neurosci.
15, 20–25 (1992).

74. R. M. Braga, P. J. Hellyer, R. J. S. Wise, R. Leech, Auditory and visual connectivity gradients in
frontoparietal cortex. Hum. Brain Mapp. 38, 255–270 (2017).

75. R. E. Passingham, K. E. Stephan, R. K€otter, The anatomical basis of functional localization in the
cortex. Nat. Rev. Neurosci. 3, 606–616 (2002).

76. E. A. Crone, B. M. Elzinga, Changing brains: How longitudinal functional magnetic resonance
imaging studies can inform us about cognitive and social-affective growth trajectories.Wiley
Interdiscip. Rev. Cogn. Sci. 6, 53–63 (2015).

77. E. M. McCormick, Y. Qu, E. H. Telzer, Activation in context: Differential conclusions drawn from
cross-sectional and longitudinal analyses of adolescents’ cognitive control-related neural activity.
Front. Hum. Neurosci. 11, 141 (2017).

78. E. M. McCormick, E. H. Telzer, Adaptive adolescent flexibility: Neurodevelopment of decision-
making and learning in a risky context. J. Cogn. Neurosci. 29, 413–423 (2017).

79. K. Supekar et al., Development of functional and structural connectivity within the default mode
network in young children. Neuroimage 52, 290–301 (2010).

80. L. Q. Uddin, K. S. Supekar, S. Ryali, V. Menon, Dynamic reconfiguration of structural and
functional connectivity across core neurocognitive brain networks with development. J. Neurosci.
31, 18578–18589 (2011).

81. B. S. Khundrakpam, J. D. Lewis, L. Zhao, F. Chouinard-Decorte, A. C. Evans, Brain connectivity in
normally developing children and adolescents. Neuroimage 134, 192–203 (2016).

82. E. R. Sowell et al., Mapping cortical change across the human life span.Nat. Neurosci. 6, 309–315 (2003).
83. C. Lebel, S. Deoni, The development of brain whitemattermicrostructure.Neuroimage 182, 207–218 (2018).
84. P. Hagmann et al., White matter maturation reshapes structural connectivity in the late

developing human brain. Proc. Natl. Acad. Sci. U.S.A. 107, 19067–19072 (2010).

85. S. T. E. Baker et al., Developmental changes in brain network hub connectivity in late
adolescence. J. Neurosci. 35, 9078–9087 (2015).

86. D. A. Fair et al., Development of distinct control networks through segregation and integration.
Proc. Natl. Acad. Sci. U.S.A. 104, 13507–13512 (2007).

87. J. D. Power, D. A. Fair, B. L. Schlaggar, S. E. Petersen, The development of human functional brain
networks. Neuron 67, 735–748 (2010).

88. S. Oldham, A. Fornito, The development of brain network hubs. Dev. Cogn. Neurosci. 36, 100607 (2019).
89. F. Fan et al., Development of the default-mode network during childhood and adolescence:

A longitudinal resting-state fMRI study. Neuroimage 226, 117581 (2021).
90. K. Supekar, M. Musen, V. Menon, Development of large-scale functional brain networks in

children. PLoS Biol. 7, e1000157 (2009).
91. W. Gao et al., Evidence on the emergence of the brain’s default network from 2-week-old

to 2-year-old healthy pediatric subjects. Proc. Natl. Acad. Sci. U.S.A. 106, 6790–6795 (2009).
92. L. E. Sherman et al., Development of the default mode and central executive networks across

early adolescence: A longitudinal study. Dev. Cogn. Neurosci. 10, 148–159 (2014).
93. G. L. Baum et al., The impact of in-scanner head motion on structural connectivity derived from

diffusion MRI. Neuroimage 173, 275–286 (2018).
94. S. Adler et al., Topographic principles of cortical fluid-attenuated inversion recovery signal in

temporal lobe epilepsy. Epilepsia 59, 627–635 (2018).
95. B. C. Bernhardt et al., Preferential susceptibility of limbic cortices to microstructural damage in

temporal lobe epilepsy: A quantitative T1 mapping study. Neuroimage 182, 294–303 (2018).
96. G. Shafiei et al., Spatial patterning of tissue volume loss in schizophrenia reflects brain network

architecture. Biol. Psychiatry 87, 727–735 (2020).
97. B. Zikopoulos, M. �A. Garc�ıa-Cabezas, H. Barbas, Parallel trends in cortical gray and white matter

architecture and connections in primates allow fine study of pathways in humans and reveal
network disruptions in autism. PLoS Biol. 16, e2004559 (2018).

98. B. Zikopoulos, H. Barbas, Changes in prefrontal axons may disrupt the network in autism.
J. Neurosci. 30, 14595–14609 (2010).

99. B. Y. Park et al., Differences in subcortico-cortical interactions identified from connectome and
microcircuit models in autism. Nat. Commun. 12, 2225 (2021).

100. S. Larivi�ere et al., Functional connectome contractions in temporal lobe epilepsy: Microstructural
underpinnings and predictors of surgical outcome. Epilepsia 61, 1221–1233 (2020).

101. M. A. d’Albis et al., Local structural connectivity is associated with social cognition in autism
spectrum disorder. Brain 141, 3472–3481 (2018).

102. P. Shah et al., Structural and functional asymmetry of medial temporal subregions in unilateral
temporal lobe epilepsy: A 7T MRI study. Hum. Brain Mapp. 40, 2390–2398 (2019).

103. Neuroscience in Psychiatry Network (NSPN), Open NSPN Dataset, NSPN 2400 Cohort. https://
nspn.org.uk/. Accessed 23 June 2022.

104. N. Weiskopf et al., Quantitative multi-parameter mapping of R1, PD(*), MT, and R2(*) at 3T:
A multi-center validation. Front. Neurosci. 7, 95 (2013).

105. B. B. Avants et al., A reproducible evaluation of ANTs similarity metric performance in brain image
registration. Neuroimage 54, 2033–2044 (2011).

106. R. W. Cox, AFNI: Software for analysis and visualization of functional magnetic resonance
neuroimages. Comput. Biomed. Res. 29, 162–173 (1996).

107. B. Fischl, FreeSurfer. Neuroimage 62, 774–781 (2012).
108. M. Jenkinson, C. F. Beckmann, T. E. J. Behrens, M. W. Woolrich, S. M. Smith, Fsl. Neuroimage 62,

782–790 (2012).
109. B. Y. Park, K. Byeon, H. Park, FuNP (Fusion of Neuroimaging Preprocessing) pipelines: A fully

automated preprocessing software for functional magnetic resonance imaging. Front.
Neuroinform. 13, 5 (2019).

110. M. F. Glasser et al.; WU-Minn HCP Consortium, The minimal preprocessing pipelines for the
Human Connectome Project. Neuroimage 80, 105–124 (2013).

111. A. M. Dale, B. Fischl, M. I. Sereno, Cortical surface-based analysis. I. Segmentation and surface
reconstruction. Neuroimage 9, 179–194 (1999).

112. B. Fischl, M. I. Sereno, A. M. Dale, Cortical surface-based analysis. II. Inflation, flattening, and a
surface-based coordinate system. Neuroimage 9, 195–207 (1999).

113. B. Fischl, M. I. Sereno, R. B. H. Tootell, A. M. Dale, High-resolution inter-subject averaging and a
surface-based coordinate system. Hum. Brain Mapp. 8, 272–284 (1999).

114. P. Kundu et al., Integrated strategy for improving functional connectivity mapping using
multiecho fMRI. Proc. Natl. Acad. Sci. U.S.A. 110, 16187–16192 (2013).

115. P. Kundu, S. J. Inati, J. W. Evans, W. M. Luh, P. A. Bandettini, Differentiating BOLD and non-BOLD
signals in fMRI time series using multi-echo EPI. Neuroimage 60, 1759–1770 (2012).

116. D. Legland, J. Beaugrand, Automated clustering of lignocellulosic fibres based on morphometric
features and using clustering of variables. Ind. Crops Prod. 45, 253–261 (2013).

117. R. E. Smith, J. D. Tournier, F. Calamante, A. Connelly, Anatomically-constrained tractography:
Improved diffusion MRI streamlines tractography through effective use of anatomical
information. Neuroimage 62, 1924–1938 (2012).

118. D. Christiaens et al., Global tractography of multi-shell diffusion-weighted imaging data using a
multi-tissue model. Neuroimage 123, 89–101 (2015).

119. B. Jeurissen, J. D. Tournier, T. Dhollander, A. Connelly, J. Sijbers, Multi-tissue constrained spherical
deconvolution for improved analysis of multi-shell diffusion MRI data.Neuroimage 103, 411–426 (2014).

120. J.-D. Tournier, F. Calamante, A. Connelly, Improved probabilistic streamlines tractography by 2nd
order integration over fibre orientation distributions. Proceedings of the International Society for
Magnetic Resonance in Medicine 18, 1670 (2010).

121. R. E. Smith, J. D. Tournier, F. Calamante, A. Connelly, SIFT2: Enabling dense quantitative assessment of
brain white matter connectivity using streamlines tractography. Neuroimage 119, 338–351 (2015).

122. E. Amico, J. Go~ni, Mapping hybrid functional-structural connectivity traits in the human
connectome. Netw. Neurosci. 2, 306–322 (2018).

123. A. Fornito, A. Zalesky, E. Bullmore, Fundamentals of Brain Network Analysis (Elsevier, Amsterdam,
the Netherlands, 2016).

124. J. B. Tenenbaum, V. de Silva, J. C. Langford, A global geometric framework for nonlinear
dimensionality reduction. Science 290, 2319–2323 (2000).

125. U. von Luxburg, A tutorial on spectral clustering. Stat. Comput. 17, 395–416 (2007).
126. S.-J. Hong et al., Atypical functional connectome hierarchy in autism. Nat. Commun. 10, 1022 (2019).
127. G. Langs, P. Golland, S. S. Ghosh, Predicting activation across individuals with resting-state

functional connectivity based multi-atlas label fusion. International Conference on Medical Image
Computing and Computer-Assisted Intervention 9350, 313–320 (2015).

10 of 11 https://doi.org/10.1073/pnas.2116673119 pnas.org

https://f1000research.com/posters/1097120


128. R. A. I. Bethlehem et al., Dispersion of functional gradients across the adult lifespan. Neuroimage
222, 117299 (2020).

129. Y. Benjamini, Y. Hochberg, Controlling the false discovery rate: A practical and powerful approach
to multiple testing. J. R. Stat. Soc. 57, 289–300 (1995).

130. L. H. Somerville et al., The Lifespan Human Connectome Project in Development: A large-scale
study of brain connectivity development in 5-21 year olds. Neuroimage 183, 456–468 (2018).

131. A. Arnatkeviciute, B. D. Fulcher, A. Fornito, A practical guide to linking brain-wide gene
expression and neuroimaging data. Neuroimage 189, 353–367 (2019).

132. R. Markello, G. Shafiei, Y.-Q. Zheng, B. Mi�si�c, abagen: A toolbox for the Allen Brain Atlas genetics
data. Zenodo. https://zenodo.org/record/3688800#.Yo55sCjMK38. Deposited 26 February 2020.

133. C. Paquola et al., Data and code to use the structural manifold as a standard space or create
your own from "The Cortical Wiring Scheme of Hierarchical Information Processing." GitHub.
https://github.com/MICA-MNI/micaopen/tree/master/structural_manifold. Deposited 26 April
2021.

134. R. Vos de Wael et al., MICA-MNI/BrainSpace. GitHub. https://github.com/MICA-MNI/BrainSpace.
Accessed 20 April 2022.

135. B.-y. Park et al., Code from "An expanding manifold in transmodal regions characterizes
adolescent reconfiguration of structural connectome organization." GitHub. https://github.
com/MICA-MNI/micaopen/tree/master/manifold_features. Deposited 16 April
2021.

PNAS 2022 Vol. 119 No. 27 e2116673119 https://doi.org/10.1073/pnas.2116673119 11 of 11

https://zenodo.org/record/3688800#.Yo55sCjMK38
https://github.com/MICA-MNI/micaopen/tree/master/structural_manifold
https://github.com/MICA-MNI/BrainSpace
https://github.com/MICA-MNI/micaopen/tree/master/manifold_features
https://github.com/MICA-MNI/micaopen/tree/master/manifold_features

