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Abstract

Cerebral small vessel disease is a common finding in the elderly and associated with vari-

ous clinical sequelae. Previous studies suggest disturbances in the integration capabilities

of structural brain networks as a mediating link between imaging and clinical presenta-

tions. To what extent cerebral small vessel disease might interfere with other measures

of global network topology is not well understood. Connectomes were reconstructed

via diffusion weighted imaging in a sample of 930 participants from a population based

epidemiologic study. Linear models were fitted testing for an association of graph-

theoretical measures reflecting integration and segregation with both the Peak width of

Skeletonized Mean Diffusivity (PSMD) and the load of white matter hyperintensities of

presumed vascular origin (WMH). The latter were subdivided in periventricular and deep

for an analysis of localisation-dependent correlations of cerebral small vessel disease.

The median WMH volume was 0.6 mL (1.4) and the median PSMD 2.18 mm2/s x 10−4

(0.5). The connectomes showed a median density of 0.880 (0.030), the median values

for normalised global efficiency, normalised clustering coefficient, modularity Q and

small-world propensity were 0.780 (0.045), 1.182 (0.034), 0.593 (0.026) and 0.876

(0.040) respectively. An increasing burden of cerebral small vessel disease was signifi-

cantly associated with a decreased integration and increased segregation and thus

decreased small-worldness of structural brain networks. Even in rather healthy subjects

increased cerebral small vessel disease burden is accompanied by topological brain net-

work disturbances. Segregation parameters and small-worldness might as well contrib-

ute to the understanding of the known clinical sequelae of cerebral small vessel disease.
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1 | INTRODUCTION

White matter hyperintensities of presumed vascular origin (WMH) are

a common finding in MRI of elderly people and are a hallmark of cere-

bral small vessel disease (CSVD) (Wardlaw et al., 2013). CSVD is con-

sidered to result from damage to small perforating arteries, arterioles,

capillaries and venules of the human brain and represents an increas-

ing burden in the ageing societies of industrialised countries

(Pantoni, 2010; ter Telgte et al., 2018). Besides rare hereditary causes,

the major underlying pathology is arteriolosclerosis due to age and

cardiovascular risk factors (Pantoni, 2010). The clinical importance of

CSVD lies in its association with various clinical sequelae such as

ischaemic and haemorrhagic stroke, cognitive decline, dementia, late-

life depression as well as gait and urinary complaints (Frey

et al., 2019; Pantoni, 2010; Rensma, van Sloten, Launer, &

Stehouwer, 2018; ter Telgte et al., 2018).

Findings from structural magnetic resonance imaging play a piv-

otal role in defining CSVD. The most common surrogate marker is the

extent of WMH. However, this measure has some weaknesses such

as the error-prone quantitative assessment of WMH via automated

segmentation (Frey et al., 2019) as well as rather weak correlation

with clinical symptoms (Baykara et al., 2016). A novel surrogate

marker of CSVD called “peak width of skeletonised mean diffusivity”
(PSMD) was suggested to overcome aforementioned limitations due

to the robust nature of its computation and evidently strong correla-

tions with clinical symptoms (Baykara et al., 2016; Wei et al., 2019).

The PSMD measures the distribution width of the mean diffusivity,

that is, the mean diffusion of water in all directions calculated by the

diffusion tensor, in the white matter and thereby assesses the micro-

structural properties of the tissue. As WMH represent the part of the

pathologic process visible on conventional MRI and thereby presum-

ably only the tissue worst affected by CSVD, the PSMD particularly

might be more sensitive to rather subtle pathologic changes in the

microstructure of the brains white matter.

In recent years, growing evidence supports the understanding of

the brain as a complex network of interconnected areas. The struc-

tural connectome as a comprehensive map of neuronal connections

interprets the brain as a network based on two components: Nodes,

which represent prespecified cortical areas; and edges, representing

the interconnecting white matter tracts (Fornito & Bullmore, 2015).

Connectomes allow inferences about the structural organisation and

integrity of the human brain via graph theoretical analysis with global

graph parameters reflecting topological network characteristics. As

such, measures of segregation (e.g., the clustering coefficient and the

modularity Q) reflect on the network's capability of distributed and

parallel information processing, whereas measures of integration

(e.g., global and local efficiency) give hints about the brain's capacities

of combining information from such distributed processes.

The analysis of these global topological characteristics allows for

the investigation of pathologic alterations in the structural network of

the brain underlying neurological conditions like Alzheimer's, stroke

and multiple sclerosis (Crofts et al., 2011; Stam, 2014; Stellmann

et al., 2017). In the context of CSVD, previous studies suggest

disturbed topological network properties as a possible mechanism

underlying clinical presentations in these patients (ter Telgte

et al., 2018). Decreased integration parameters were observed in par-

ticular and related to for example, cognitive performance of the par-

ticipants (Lawrence, Chung, Morris, Markus, & Barrick, 2014; Reijmer

et al., 2015; Tuladhar et al., 2016b). However, to what extent CSVD

affects the degree of segregation in structural network topologies is

less comprehensively studied.

The aim of this study was to investigate how brain network topol-

ogy is affected by CSVD, namely the association of topological net-

work parameters with the PSMD as a novel and robust marker of

white matter integrity in CSVD and WMH load as the most common

imaging markers representing CSVD. In addition, a deeper understand-

ing of localisation-dependent correlations of CSVD was pursued by

subdivision of WMH in periventricular (pWMH) and deep (dWMH).

2 | METHODS

2.1 | Study design and participants

The Hamburg City Health Study (HCHS) is a single centre, prospec-

tive, epidemiologic cohort study with emphasis on imaging to improve

the identification of individuals at risk for major chronic diseases and

to improve early diagnosis and survival. A detailed description of the

overall study design was published separately (Jagodzinski

et al., 2019). In summary, of all inhabitants living in Hamburg, a ran-

dom sample is drawn from a total of 45,000 (aged 45–74) based on

the official inhabitant data files. A written invitation to participate in

HCHS is sent to their home address. All individuals willing to partici-

pate are invited to a baseline visit where they undergo an extensive

assessment of their cardiovascular history and status. Of these, all

participants with a Framingham stroke risk score (FSRS) of >7 points

are invited to additional brain scans (Aparicio et al., 2017). Further-

more, 1,500 healthy participants are selected for a control group. For

an explorative analysis of cognitive functions, results from the „Mini

Mental Status Test “(MMST), the Trail Making Test part A (TMTA) and

the Trail Making Test part B (TMTB) were selected. In addition, age,

sex and years of educations were selected for analysis. For the pre-

sent study, the MRI datasets of the first 1,000 participants undergoing

imaging studies were selected - independent of FSRS. The local ethics

committee approved the HCHS, and written informed consent was

obtained from all participants.

2.2 | MRI acquisition

Images were acquired using a 3-T Siemens Skyra MRI scanner

(Siemens, Erlangen, Germany). For single-shell diffusion weighted

imaging (DWI), 75 axial slices were obtained covering the whole brain

with gradients (b = 1,000 s/mm2) applied along 64 noncollinear direc-

tions with the following sequence parameters: repetition time

(TR) = 8,500 ms, echo time (TE) = 75 ms, slice thickness (ST) = 2 mm,
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in-plane resolution (IPR) = 2 × 2 mm, anterior–posterior phase-

encoding direction. For 3D T1-weighted anatomical images, rapid

acquisition gradient-echo sequence (MPRAGE) was used with the fol-

lowing sequence parameters: TR = 2,500 ms, TE = 2.12 ms, 256 axial

slices, ST = 0.94 mm, and IPR = 0.83 × 0.83 mm. 3D T2-weighted

fluid attenuated inversion recovery (FLAIR) images were measured

with the following sequence parameters: TR = 4,700 ms, TE = 392 ms,

192 axial slices, ST = 0.9 mm, and IPR = 0.75 × 0.75 mm.

2.3 | Quantification of CSVD

For segmentation of WMH, we used FSLs Brain Intensity AbNormal-

ity Classification Algorithm (BIANCA) (Griffanti et al., 2016), a fully

automated, supervised k-nearest neighbour (k-NN) algorithm. The

training dataset comprised masks of WMH for the first 100 partici-

pants. These masks were derived by selecting only the voxels that had

been identified as WMH by two trained raters (MP and CM) indepen-

dently with manual segmentation. The mean Dice Similarity Index

between the segmentation of both raters was 0.63.

Derived masks of WMH were divided into periventricular

(pWMH) and deep (dWMH) by a 10 mm distance threshold to the

ventricles (DeCarli, Fletcher, Ramey, Harvey, & Jagust, 2005; Griffanti

et al., 2018). WMH load was calculated as the share of WMH in the

brain tissue volume (intracranial volume - ventricle volume) and log-

arithmised for further statistical analysis due to a right-skewed distri-

bution. Logarithmic pWMH respectively dWMH load were calculated

analogously.

PSMD was calculated with the available original scripts on diffu-

sion tensor imaging (DTI) data (http://www.psmd-marker.com,

(Baykara et al., 2016)). In brief, the precalculated maps of MD were

brought to MNI space using the coregistration of the precalculated FA

maps with the FSL-TBSS package (Smith et al., 2006). Following white

matter tract skeletonisation of the standardised MD maps, the PSMD

was calculated via histogram analysis.

2.4 | Connectome reconstruction

All imaging data was processed using MRtrix 3.0 ((Tournier

et al., 2019), http://www.mrtrix.org), Advanced Normalisation Tools

(ANTs, https://github.com/ANTsX/ANTs), the FMRIB Software

Library 5.0.10 (FSL, https://fsl.fmrib.ox.ac.uk) and FreeSurfer 6.0

(https://surfer.nmr.mgh.harvard.edu). Network nodes were defined by

parcellation of the grey matter areas in T1w according to the Desikan-

Killiany and Aseg atlas (Desikan et al., 2006; Filipek, Richelme, Ken-

nedy, & Caviness, 1994) including a total of 84 cortical and subcortical

regions. There was no anatomical overlap between brain regions con-

sidered as nodes in the analysis. DWI preprocessing involved den-

oising, removal of Gibbs ringing artefacts, eddy current correction and

motion correction, bias field correction as well as susceptibility distor-

tion correction based on nonlinear registration (Andersson &

Sotiropoulos, 2016; Avants, Epstein, Grossman, & Gee, 2008; Kellner,

Dhital, Kiselev, & Reisert, 2016; Tustison et al., 2010; Veraart

et al., 2016). Constrained spherical deconvolution and anatomically

constrained tractography (ACT) (Smith, Tournier, Calamante, &

Connelly, 2012) allowed for streamlines reconstruction from

preprocessed diffusion images. Upon that streamlines were filtered by

spherical deconvolution informed filtering of tractograms (SIFT2)

(Smith, Tournier, Calamante, & Connelly, 2015). Two nodes were

assumed to be connected by an edge if DWI signal-derived stream-

lines were running between them. The edge weight was determined

by the weighted streamline count reaching from one node to the

other. The detailed pipeline and an illustration of regions of interests

derived from the atlases and used for node definition can be found in

the supplementary materials.

2.5 | Connectome analysis

Connectomes produced were further processed with the brain con-

nectivity (BCT) toolbox (Rubinov & Sporns, 2010) in matlab (v2018b).

This included connectome normalisation and global graph parameter

computation. The following topological global graph parameters have

been extracted: global efficiency, clustering coefficient, modularity Q

and small-world propensity. The graph parameters are explained in

Box 1. The global efficiency and clustering coefficient are sensitive to

low level features of the connectomes as they are derived from the

value of connection weights and degree distribution. To account for

this dependency, both were normalised against graph parameters

derived from and averaged over 100 null models which were acquired

by randomly rewiring subject connectomes preserving the degree dis-

tribution (Maslov, Sneppen, & Zaliznyak, 2002). Corresponding stan-

dard errors are listed in the results. Furthermore, the network density,

that is, the fraction of present and possible connections, and median

edge weight, that is, the median of all connection weights, were com-

puted for all participants.

2.6 | Statistical analysis

The statistical analysis has been performed in R (v3.1.4). To assess the

associations of the CSVD surrogate markers with global graph param-

eters, a linear regression analysis was performed. For facilitated inter-

pretability effects of simple linear regressions are conveyed in the

first place. Subsequently, we report whether significance remains after

correcting for age, sex, brain volume and median edge weight. To

compare the correlations of pWMH and dWMH regarding the global

graph parameters, Pearson and Filon's z was applied (Diedenhofen &

Musch, 2015). For an explorative analysis of associations with cogni-

tive functions, simple and multivariable linear regression models

adjusted for age, sex and years of education were fitted for the associ-

ation between performance in MMST, TMT-A and TMT-B with global

graph parameters and CSVD surrogate markers, respectively. Unless

stated otherwise, descriptive statistics are given as median with inter-

quartile range (IQR).
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2.7 | Data assessment and quality assurance

The quality of the initial data and the reliability of the relevant

processing steps in our pipeline were assessed repeatedly. DWI-data

was initially checked for completeness of the sequence and signal-to-

noise ratio, mean voxel intensity, outlier count and maximum voxel

intensity outlier count were calculated (Roalf et al., 2016). Finally, the

output statistics of the outlier replacement step of FSL's eddy were

used for additionally identifying data with poor quality.

3 | RESULTS

3.1 | Sample characteristics

Descriptive statistics are listed in Table 1. Due to missing data and

after quality assessment, the final sample for this study comprised

930 participants. 21 participants were excluded due to missing imag-

ing data, 40 participants were excluded due to poor quality or incom-

pleteness of imaging data (39 DWI, 1 FLAIR) and 9 participants were

excluded due to poor quality of certain processing steps. The median

subject age was 64 years (IQR = 14), 45.6% were women. Figure 1

depicts a heatmap delineating the spatial distribution of WMH, the

median WMH volume was 0.6 mL (1.4) and the median PSMD

2.18 mm2/s x 10−4 (0.5). The structural connectomes showed a

median density of 0.880 (0.030), the median values for normalised

global efficiency, normalised clustering coefficient, modularity Q and

small-world propensity were 0.780 (0.045), 1.182 (0.034), 0.593

(0.026) and 0.876 (0.040) respectively. The median score for the

MMST was 28 points (2), the median time for the TMTA was 36 sec-

onds (17) and 79 seconds (37) for the TMTB. A mean connectome

matrix can be found in the supplementary materials.

3.2 | Association of CSVD surrogate markers with
global graph parameters

Simple linear regression analysis of the relationship between CSVD

surrogate markers and global graph parameters revealed consistent

and statistically significant correlations which are illustrated in

Figure 2. The normalised global efficiency (R = −0.66, p < .001) and

small-world propensity (R = −0.57, p < .001) were negatively corre-

lated with PSMD. Normalised clustering coefficient (R = 0.46,

p < .001) and modularity Q (R = 0.37, p < .001) were positively corre-

lated with PSMD. Correlations of log WMH load, log pWMH load and

log dWMH load with global graph parameters exhibited smaller effect

sizes and significance levels. After correcting for age, sex, brain tissue

volume, median edge weight and cardiovascular risk factors, all but

the following correlations remained significant: WMH load with

respect to the modularity (p = .115), dWMH load with respect to

global efficiency (p = .422) and small-world propensity (p = .614) as

well as pWMH load with respect to clustering coefficient (p = .104)

and modularity (p = .155) remained significant. Applying Pearson and

Filon's Z for correlation comparison revealed that global efficiency

(R = −0.39 vs R = −0.19, p < .001) as well as small world propensity

(R = −0.32 vs R = −0.16, p < .001) correlated significantly stronger

with pWMH load than with dWMH load. Correlations of pWMH and

dWMH with the normalised clustering coefficient (p = .177) and mod-

ularity Q (p = .398) showed no statistically significant difference.

Box 1 Global graph parameters derived in this study

Weighted clustering coefficient (Onnela, Saramäki,

Kertész, & Kaski, 2005; Watts & Strogatz, 1998).

The weighted clustering coefficient of a node is defined

as the normalised sum of geometrically averaged edge

weights of all triangles associated with the node. Thus, the

average of this parameter over all nodes indicates how

intensively the network is locally interconnected and

thereby reflects its capability of segregated computation.

Modularity Q (Newman, 2006).

The modularity Q is the result of an iterative optimiza-

tion process. First, partition of the connectome in non-

overlapping modules - i.e., highly interconnected subgroups

of nodes - is performed by applying Newman's spectral

community detection. Upon that the modularity Q is calcu-

lated: for each module the weighted count of edges present

within the module is surveyed and subtracted by the

weighted edge count expected by chance. Subsequently, all

module specific values are summed up resulting in

Q. Hence, a positive Q indicates a higher intramodular con-

nectivity than expected by chance, indicating modular struc-

ture. Based on the former partition a new partition is

defined by an optimization algorithm and this process is reit-

erated until Q does not increase anymore. This maximal Q is

the value reported.

Weighted global efficiency (Latora & Marchiori, 2001).

The global efficiency is defined as the average inverse

shortest path length. The length of a path between two

nodes is the total weight of edges comprising that path.

Small-world propensity {Muldoon et al., 2016}.

The small-world propensity allows for quantification of

small-world structure in weighted and dense networks: it

indicates how much a networks clustering coefficient and

shortest path length deviate from random and lattice null

models with the same node amount and degree distribution

and relates both deviations. Thus, the parameter provides

insights about the degree a network exhibits parallel pres-

ence of strong integration and segregation characteristics. A

network with a small-world propensity above 0.6 is consid-

ered to show pronounced small-world structure.
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Further details of the linear regression results are listed in the supple-

mentary materials.

3.3 | Analysis of cognitive function, CSVD
surrogate markers and global graph parameters

MMST was found to be associated with PSMD (simple regression

analysis p = .017 and multivariable analysis p = .244, respectively),

pWMH (p = .020 and p = .789, respectively), global efficiency

(p = .019 and p = .599, respectively) and modularity Q (p = .013 and

p = .281, respectively). There was no association of MMST and

dWMH (p = .191 and p = .956, respectively), Clustering coefficient

(p = .263 and p = .957, respectively) and small-world propensity

(p = .053 and p = .637, respectively).

TMTA was found to be associated with PSMD (p < .001 and

p = .021, respectively), pWMH (p < .001 and p = .059, respectively),

dWMH (p < .001 and p = .005, respectively), global efficiency

(p < .001 and p = .009, respectively), modularity Q (p < .001 and

p = .059, respectively) and small-world propensity (p < .001 and

p = .002, respectively). There was no association of TMTA and Clus-

tering coefficient (p = .083 and p = .877, respectively). After correcting

for multiple testing, only the association with small-world propensity

remained significant.

TMTB was found to be associated with PSMD (p < .001 and

p < .001, respectively), pWMH (p < .001 and p = .315, respectively),

dWMH (p < .001 and p = .185, respectively), global efficiency

(p < .001 and p = .006, respectively), Clustering coefficient (p < .001

and p = .058, respectively), modularity Q (p < .001 and p = .014,

respectively) and small-world propensity (p < .001 and p < .001,

respectively). After correcting for multiple testing, only the association

with small-world propensity and PSMD remained significant.

4 | DISCUSSION

In this analysis of a population-based sample of 930 subjects, we

investigated the association of CSVD with brain network topology

using state of the art methodology to reconstruct structural con-

nectomes derived from DWI and structural imaging data. As a main

finding, we identified a significant association of CSVD burden with

decreased integration and increased segregation of structural brain

networks resulting in a weakened small-world structure. These find-

ings provide novel insights into the effects of CSVD on the architec-

ture and integrity of brain networks and may foster the understanding

of the clinical sequelae of CSVD.

4.1 | Association of CSVD with global graph
parameters

Recent research provided evidence about the topological properties

of the underlying network organisation of the human brain (Latora &

Marchiori, 2001; Sporns & Zwi, 2004). Accordingly, the human brain

is organised in a topological paradigm called “small world” as it applies
to most real-world networks (Costa et al., 2011). Small-worldness

describes a compromise between pronounced segregation, meaning

that distributed and specialised processing happens in subsections of

the brain, and integration, the brain's capacity of integrating informa-

tion from distributed processes (Watts & Strogatz, 1998). Hence a

networks small-worldness is immediately depending on sufficient

integration and segregation characteristics. To investigate the net-

work topology of the reconstructed connectomes and its alteration by

CSVD, topological network parameters were assessed and related to

PSMD as a novel and robust surrogate parameter of white matter

integrity and WMH load as the most common imaging marker

TABLE 1 characteristics of the study sample

Variable Count

Sex = female 424 (45.6%)

Age (years), median (IQR) 64 (14)

Vascular risk factors

History of smoking, n (%) 560 (66.1%)

History of hypertension, n (%) 637 (72.0%)

Diabetes, n (%) 74 (8.7%)

Body-mass-index, median (IQR) 26.2 (5.5)

Conventional MRI measures

Brain volume (ml), median (IQR) 1,483.7 (203.1)

Ventricle volume (ml), median (IQR) 25.4 (18.4)

WMH volume (ml), median (IQR) 0.6 (1.4)

pWMH volume (ml), median (IQR) 0.5 (1.1)

dWMH volume (ml), median (IQR) 0.1 (0.2)

WMH load (%), median (IQR) 0.04 (0.09)

pWMH load (%), median (IQR) 0.03 (0.08)

dWMH load (%), median (IQR) 0.01 (0.01)

PSMD (mm2/s x 10−4), median (IQR) 2.18 (0.5)

Graph theoretical network measures

Edge strength, median (IQR) 28.1 (9.5)

Network density, median (IQR) 0.880 (0.030)

Norm. Global efficiency, median (IQR) 0.780 (0.045)

Standard error for null model global efficiency,

median (IQR)

0.001 (<0.001)

Norm. Clustering coefficient, median (IQR) 1.182 (0.034)

Standard error for null model clustering

coefficient, median (IQR)

<0.001 (<0.001)

Modularity Q, median (IQR) 0.593 (0.026)

Small-world propensity, median (IQR) 0.876 (0.040)

Note: Data was partly unavailable for the following variables (n): History of

smoking (83), History of hypertension (45), Diabetes (80), Body-Mass-

Index (56).

Abbreviations: PSMD, peak width of skeletonised mean diffusivity; WMH,

total white matter hyperintensities; pWMH, periventricular white matter

hyperintensities; dWMH, deep white matter hyperintensities; Norm.,

normalized.
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representing CSVD. The investigated connectomes were of strong

small-worldness as the median small-world propensity of 0.87 was

above the suggested threshold of 0.6 (Muldoon, Bridgeford, &

Bassett, 2016). It turned out that the integration parameter - global

efficiency - decreases while the segregation parameters - clustering

coefficient and modularity Q - increase with higher CSVD burden.

Both phenomena ultimately result in weakening of small-world topol-

ogy as a relatively low small-world propensity accompanies high

CSVD burden. To put this into context, the observed alterations of

brain network topology might suggest that the brain's capacity of inte-

grating distributed information decreases, while the capability of dis-

tributed computation increases with higher CSVD burden. We found

that periventricular WMH (pWMH) drive the reduction of integration

capabilities and small-worldness overall, showing significantly higher

effects than deep white matter WMH (dWMH). The effects of

dWMH on segregation parameters were of statistical significance

whereas the effects of pWMH were not. Since long-range connec-

tions are preferentially passing through ventricle-near regions

(Brodal, 2016), the observed topological alterations might be

explained by a disproportionate decrease of long-range connections

in CSVD as suggested in previous studies in this cohort of participants

of the HCHS (Petersen et al., 2020).

Global efficiency depends on the integrity of these long-distance

connections, as these connections enable communication of remote

brain regions (Watts & Strogatz, 1998). Hence a reduction of these

fibres might explain the reduced global efficiency we observed in sub-

jects with high CSVD burden. This is in line with the hypothesis that

primarily pWMH are responsible for global efficiency decline and

therefore the cognitive decline in CSVD patients, as supported by

other studies (Cees De Groot et al., 2000).

The increased clustering coefficient and modularity might be

attributable to affected long-range connections as well. Provided they

are underrepresented, long-range connections might lead with higher

probability to open triangles, respectively less modular structure,

decreasing the average clustering coefficient and modularity. Con-

versely, less long-range connections might yield higher segregation

parameters. Moreover, in presence of CSVD pathology the normal

appearing white matter (NAWM) fibre density might increase com-

pensatorily yielding more intensively connected node neighbourhoods

and modules, as hypothesised in stroke patients (Crofts et al., 2011;

Dancause et al., 2005).

4.2 | Importance of global graph parameters for
clinical sequelae of CSVD

These findings are of clinical relevance hence they might illuminate

how associations between CSVD and its known clinical sequelae

F IGURE 1 Distribution of White Matter Hyperintensities (WMH) in a cohort of 930 participants. The map presents the frequency of WMH in a
specific voxel as indicated by the coloured bar and superimposed on a standard brain template in MNI-152 space
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are mediated. A lower global efficiency, regardless of health status,

is associated with poorer cognitive performance (Bassett

et al., 2009; Berlot, Metzler-Baddeley, Ikram, Jones, &

O'Sullivan, 2016; Heuvel, Stam, Kahn, & Pol, 2009; Li et al., 2009).

In line with this, recent studies found that the interrelation of CSVD

occurrence and cognitive decline is mediated by a decreased global

efficiency (Lawrence et al., 2014; Tuladhar et al., 2016a; Tuladhar,

van Uden, et al., 2016b). In our analysis, we detected an association

between a lower extent of small-world characteristics in structural

brain networks and worse performance in the Trail Making Test.

This observation is in line with previously reported alterations of

large-scale brain networks and cognitive deficits. However, our

results have to be considered as exploratory. Additional statistical

models including several additional mediating factors are needed in

future studies.

Looking beyond cognition, results from previous cohort studies

back the assumption that late-life depression is associated with CSVD,

summarised as the vascular depression hypothesis (Alexopoul

os, 2006). Depressive CSVD patients were found to have a signifi-

cantly decreased global efficiency compared to patients without

depressive symptoms (Xie, Shi, & Zhang, 2017). However, no media-

tion effect of the brain's integration capabilities could be verified in

this study, due to the small percentage of participants demonstrating

signs of depression (N = 20).

F IGURE 2 Association of CSVD surrogate markers with global graph parameters. Results of simple linear regression modelling are illustrated
using CSVD surrogate markers as independent variables (columns) and global topological graph parameters as dependent variables (rows). Grey

bands represent confidence intervals. Correlation (R) from simple correlation analysis and explained variance (R2) from multivariable models are
reported. Asterisks indicate level of significance after inclusion of covariates (* = p < .05, ** = p < .01, *** = p < .001). PSMD = peak width of
skeletonised mean diffusivity, WMH = total White Matter Hyperintensities, pWMH = periventricular White Matter Hyperintensities,
dWMH = deep White Matter Hyperintensities
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4.3 | PSMD versus WMH as surrogate markers
for CSVD

Previous studies using diffusion weighted imaging (DWI) report that

CSVD patients exhibit a higher mean diffusivity (MD), meaning an

increased diffusion magnitude, as well as a decreased fractional

anisotropy (FA), suggesting a decreased directionality of diffusion (van

Norden, van Uden, de Laat, van Dijk, & de Leeuw, 2012; Tuladhar,

Dijk, et al., 2016a). These findings might reflect a decreased fibre

integrity and pathologic aggregation of free water in the extracellular

compartment (Duering et al., 2018) and indicate that DWI is able to

reflect microstructural changes caused by CSVD. Based on compari-

son of the linear models R2 values, our analysis suggests a superior

explanatory power of PSMD compared to the different WMH loads

with regard to the global efficiency, clustering coefficient and small-

world propensity. This observation may be owed to the robust calcu-

lation of the PSMD in contrast to the error-prone nature of WMH

segmentation. The algorithm we used for the automated segmenta-

tion of WMH tends to underestimate dWMH (Griffanti et al., 2016),

potentially blurring the influence of WMH load on the topological net-

work properties. As mentioned before, the PSMD might be more sen-

sitive to rather subtle microstructural pathologies. The moderate

CSVD burden in our study sample might therefore favour the PSMD,

as the median WMH volumes were rather low compared to other

cohort studies investigating CSVD. These results accentuate the

PSMD's high capability of capturing CSVD severity - even in brains

appearing healthy on conventional MRI (Baykara et al., 2016).

4.4 | Methodological considerations on structural
connectome reconstruction

Weighted structural connectomes were successfully reconstructed in

all participants.

Our connectomes exhibited a rather high density with regard to

comparable previous studies (Lawrence et al., 2014; Tuladhar, Dijk,

et al., 2016a; Tuladhar, van Uden, et al., 2016b) which is owed to our

usage of the “2nd order integration over fibre orientation distributions

2”-algorithm (iFOD2) (Tournier, Calamante, & Connelly, 2010) during

tractography without a separate thresholding step (Civier, Smith, Yeh,

Connelly, & Calamante, 2019). Tract-tracing studies of macaque brains

yielded similarly densely connected connectomes suggesting biologi-

cal plausibility and accuracy of the type of connectome used in this

study (Markov et al., 2011).

4.5 | Strength and limitations of our study

Briefly, advantageous features of this work lie in the utilisation of

PSMD as a CSVD surrogate parameter, the size of the sample and a

state of the art and reproducible processing pipeline applied to it.

Our study has limitations. Even though the cohort represents a

population with increased cardiovascular risk, the overall analysed

participants were relatively healthy regarding imaging findings of

CSVD. Findings might be different in a more severely affected sample.

However, we would argue that our findings in a group of patients with

relatively mild degree of CSVD point towards changes in white matter

microstructure and disturbances of brain network topology already

detectable at an early stage of CSVD. As we think of CSVD as a

chronic-progressive disease, it is likely that other graph parameters

calculated in this study would follow characteristic trajectories

depending on disease progression. Extrapolation to datasets with

patients in more advanced stages of CSVD would most certainly be

possible for the Clustering Coefficient, which is strongly dependent

on overall connectivity strength (reflecting progressing loss of struc-

tural white matter integrity in CSVD). However, Modularity and Small

World Propensity are parameters in graph theory more sensitive to

topological network changes (specific anatomical pattern of white

matter degeneration). Therefore, hypotheses regarding the translation

of findings in our group to more severely affected patients cannot be

tested validly in the current sample.

5 | CONCLUSION

To summarise, in a large sample of subjects with vascular risk factors

we were able to demonstrate that CSVD is associated with alteration

of structural brain network topology considered crucial for mainte-

nance of proper brain function – independently from the used surro-

gate parameter. Higher burden of CSVD goes along with a shift of

brain network topology towards reduced integration, which might

reflect the pathology underlying impaired cognitive function in CSVD

and an increased segregation and consequently altered small-world

structure. These findings might reflect a pathology of the brain net-

work functionality in CSVD that could explain the associated

sequelae. Since the clinical impacts of increased segregation are not

well understood yet, these parameters might serve as a promising

subject for future studies in CSVD patients.
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