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Purpose: Vision impairment affects 2.2 billion people worldwide, half of which is
preventable with early detection and treatment. Currently, automatic screening of
ocular pathologies using convolutional neural networks (CNNs) on retinal fundus
photographs is limited to a few pathologies. Simultaneous detection of multiple
ophthalmic pathologies would increase clinical usability and uptake.

Methods: Two thousand five hundred sixty images were used from the Retinal Fundus
Multi-Disease Image Dataset (RFMiD). Models were trained (n = 1920) and validated
(n = 640). Five selected CNN architectures were trained to predict the presence of
any pathology and categorize the 28 pathologies. All models were trained to minimize
asymmetric loss, a modified form of binary cross-entropy. Individual model predictions
were averaged to obtain a final ensembled model and assessed for mean area under
the receiver-operator characteristic curve (AUROC) for disease screening (healthy versus
pathologic image) and classification (AUROC for each class).

Results: The ensemble network achieved a disease screening (healthy versus patho-
logic) AUROC score of 0.9613. The highest single network score was 0.9586 using the
SE-ResNeXt architecture. For individual disease classification, the average AUROC score
for each class was 0.9295.

Conclusions: Retinal fundus images analyzed by an ensemble of CNNs trained to
minimize asymmetric loss were effective in detection and classification of ocular
pathologies than individual models. External validation is needed to translate machine
learning models to diverse clinical contexts.

Translational Relevance: This study demonstrates the potential benefit of ensemble-
based deep learning methods on improving automatic screening and diagnosis of
multiple ocular pathologies from fundoscopy imaging.

Introduction

In 2019, the World Health Organization reported
that 2.2 billion people worldwide have a visual
impairment or blindness, half of which were either
preventable or were not yet addressed.1 The limited
number of eye health professionals, especially in certain
populations and geographic areas, is a barrier to
more widespread in-person eye screening. One way
to address this gap in coverage is through detection
of eye pathologies using artificial intelligence (AI).
This allows for efficient remote screening followed by
prompt patient referral to the appropriate eye health
professional and treatment if necessary.

Fundus images have been used for mass screening
and detection of many eye pathologies because they
are noninvasive and cost-effective.2 Data-driven deep
learning has developed rapidly and its application to
fundoscopy image analysis can broadly be grouped
into classification, segmentation, and synthesis. More
recently, the use of deep convolutional neural networks
(CNNs) has been on the rise due to its ability to
accurately classify images.2,3

The application of AI in classification began
with targeting single ocular pathologies, like diabetic
retinopathy.4,5 The reality is that the most common
risk factors for eye disease result in patients present-
ing with multiple simultaneous pathologies. As a
result, investigations have evolved into detecting
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multiple ophthalmic pathologies due to such classi-
fications being more common and practical in real
clinical settings. However, these studies remain limited
due to challenges such as costly datasets, lack of
labeling, severe class imbalance, and reduced image
quality.

Presented herein is an introduction and descrip-
tion of a method to automatically perform disease
risk prediction and to classify 28 different ophthalmic
pathologies based on retinal fundus photography. An
ensemble of convolutional neural networks trained
with a modified classification loss function was used to
overcome the barriers of class imbalance. The aim was
to demonstrate how the addition of diverse classifiers
and a replacement for training loss is a simple method
to improve model performance which could potentially
aid in automatic screening of ocular pathologies using
retinal imaging.

Methods

Image Dataset

Retinal images were sourced from a Retinal Fundus
Multi-Disease Image Dataset (RFMiD)6; please see
the data description paper for full details. Retinal
fundus images were acquired using one of the three
digital fundus cameras (Kowa VX – 10α, TOPCON
3D OCT-2000, and TOPCON TRC-NW300) from a
trained retinal specialist. These images were obtained
from patients visiting an eye clinic due to concerns
about their eye health during the period of 2009 to
2020. Prior to fundoscopy, all pupils were dilated with
one drop of tropicamide at 0.5% concentration. A total
of 3200 retinal images were available with 1920 (60%)
available for training, 640 (20%) for an evaluation set,
and 640 (20%) for the online test set.

Each image was annotated with the presence of 45
different ocular diseases or pathological findings by
2 independent ophthalmologists based on the image
and the corresponding clinical records including visual
fields. Discrepancies were resolved through consensus
via a discussion with a third independent reviewer.
Both high and low-quality images were included. For
the entire dataset, only classes with more than 10
images were classified independently, and all others
are merged into an “other” class. Additionally, each
image is labeled as normal or abnormal depending
on the presence or absence of any disease findings.
This resulted in 29 classes for each image, 28 repre-
senting different pathological findings and 1 represent-
ing the presence of any abnormalities. Pachade et al.’s
data description paper outlines the preselected clini-

cal findings used to label images to specific disease
categories. The pathologies and their distributions
within the training and evaluation sets are shown
in Table 1.

Preprocessing

For images acquired with TOPCON cameras, a
square region in the center of the image was cropped
as the field of view is roughly centered. For the Kowa
images, the borders of the crops were found by finding
the rectangular area containing all pixels above a
constant threshold value.

Image Classifiers

Because retinal images can have any number of
pathological findings, this is a multiclass, multilabel
classification problem. Therefore, an image classifier
was used to model the relationship between the set of
input images and a vector yn representing the presence
or absence of each of n findings. As such, should
an image have no pathological findings, the value of
yn would be 0 for all n. For this task, CNNs were
used, with specific utilization of a number of different
current standard architectures, all of which have been
used in the medical and retinal imaging literature. The
architectures used were Inception V3,3 SE-ResNeXt7
(50-layers), DenseNet8 (121-layers), and EfficientNet9
(B4 and B5 scaled version).

Loss Function

The problem of having both common and infre-
quent pathologies was addressed with asymmetric
loss.10 The binary cross-entropy loss was modified such
that separate hyperparameters exist for positive and
negative cases of each pathology. Specifically, if the
binary cross-entropy loss is formulated as:

L = −yL+ − (1 − y)L−

where L+ and L− represent the positive and negative
loss parts and are defined as:

L+ = log (p)

L− = log (1 − p)

Then the asymmetric loss is a modification of the
component loss parts such that:

L+ = (1 − p)γ+ log (p)

L− = (pm)γ− log (1 − pm)
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Table 1. Pathologies and Their Distributions Within the Training and Evaluation Set of the RFMiD Dataset

Pathology Label Pathology Description Count in Training Set Count in Evaluation Set

DR Diabetic retinopathy 376 132
MH Media haze 317 102
ODC Optic disc cupping 282 72
TSLN Tessellation 186 65
DN Drusen 138 46
MYA Myopia 101 34
ARMD Age-related macular degeneration 100 38
BRVO Branch retinal vein occlusion 73 23
ODP Optic disc pallor 65 26
ODE Optic disc edema 58 21
LS Laser scars 47 17
RS Retinitis 43 14
CSR Central serous retinopathy 37 11
Other Other 34 21
CRS Chorioretinitis 32 11
CRVO Central retinal vein occlusion 28 8
RPEC Retinal pigment epithelium changes 22 6
AION Anterior ischemic optic neuropathy 17 5
AH Asteroid hyalosis 16 4
MS Macular scars 15 5
EDN Exudation 15 5
ERM Epiretinal membrane 14 7
RT Retinal traction detachment 14 6
PT Parafoveal telangiectasia 11 2
MHL Macular hole 11 3
TV Tortuous vessels 6 2
RP Retinitis pigmentosa 6 2
ST Optociliary shunt 5 4

where γ + and γ − are the positive and negative focusing
parameters, respectively; and pm is the shifted probabil-
ity defined by:

pm = max (p− m, 0)

With the shifted probability in the negative loss
part, this allows easy negative examples (such that
the prediction probability is less than the probabil-
ity margin m) to not factor into the loss. By setting
γ − > γ +, we can increase the contribution of positive
samples to the loss. The focusing parameters and
probability margins are tunable hyperparameters.

Model Ensemble

Using multiple different classifiers and incorpo-
rating their results in an ensemble has been shown
to improve the performance of image classifiers.11 In
this work, ensembling was performed in two ways:

first, the ensembling was performed across training
folds. Five-fold cross-validation was used for model
validation, leading to five independent models. Second,
for evaluation on the test set, the output of each model
was averaged. The above process was repeated for
five different architectures, and the outputs of each
five-fold ensemble were also averaged, resulting in our
final ensemble.

Model Training

As mentioned previously, 5 different architectures
were used and trained with the hyperparameters and
image input size listed on Table 2. For the SE-ResNeXt
model, a dropout layer was added before the last linear
layer. All other architectures were unmodified.

All networks were initialized by the default PyTorch
pre-training on ImageNet, and trained using the Adam
optimizer12 with the asymmetric loss described above.
Random horizontal flip and random rotation (between
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Table 2. Hyperparameters and Image Input Sizes for the Five Different Architectures

Architecture Image Size Batch Size Learning Rate Training Epoch

SE-ResNeXt 512 8 1 × 104 20
DenseNet-121 299 16 2 × 104 10
Inception V3 299 32 2 × 104 10
EfficientNet-B4 380 12 2 × 104 10
EfficientNet-B5 456 8 2 × 104 10

−30 and 30 degrees) augmentations were used for all
networks except Inception V3, which rotated between
−90 and 90 degrees and incorporated a random bright-
ness transformation.

Each model was trained and evaluated using five-
fold cross-validation. In order to best balance the
classes represented in each fold, iterative stratifi-
cation was performed as previously described.13,14
Final results were obtained by using the ensemble of
networks as described above and performing predic-
tions on a hidden test set.

Model Metrics

Model performance was assessed using the area
under the receiver operator characteristic (AUROC),
which was calculated using the probability outputs for
each class from the final layer of our neural networks.
To assess the model’s performance in disease screening,
the AUROC score was calculated based on the predic-
tion of healthy versus pathologic image. For assessment
of disease classification performance, the AUROC was
calculated based on the model prediction for each
pathology class. The average AUROC for all classes
was also calculated. Additionally, the sensitivity and
specificity for disease screening and for each individual
pathology was also measured using a threshold proba-
bility of greater than 0.5.

Prediction Visualization

The Grad-CAM15 saliency mapping tool was used
the visualize the pixel areas contributory to the classi-
fication of images into specific classes.

Results

The receiver operator characteristic (ROC) curve for
the disease screening (healthy versus pathologic image)
task is shown in Figure 1. The AUROC score achieved
by each individual network of the ensemble and the
final ensemble are shown in Table 3. The AUROC score

for the full ensemble was found to be 0.9613, with
the highest individual network AUROC score being
0.9587 achieved by the SE-ResNeXt architecture. This
difference is not statistically significant when using the
DeLong test16 for AUROC comparison (P = 0.3380).

The ROC curves for disease classification of each
pathology are shown in Figure 2. The average AUROC
score was 0.9295, with values ranging from 0.28 to 1.00.

Figure 1. Receiver operator characteristic (ROC) curve for disease
screening task performed by the network ensemble.

Table 3. AUROC Scores for Disease Screening (Healthy
Versus Pathologic Image) and Average Score for Each
Disease Classification

Architecture

Disease
Screening
AUROC

Disease
Classification

Average AUROC

Inception V3 0.9569 0.9091
SE-ResNeXt 0.9587 0.9066
DenseNet-121 0.9519 0.9298
EfficientNet-B4 0.9477 0.9030
EfficientNet-B5 0.9540 0.9163
Ensemble 0.9613 0.9295
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Figure 2. Receiver operator characteristic (ROC) curves for each pathology class classified by the network ensemble.

Apart from identification of tortuous vessels (AUROC
= 0.28) and retinal shunts (AUROC = 0.82), all
classes hadAUROCgreater than 0.85.When compared
to the ensembled network, the DenseNet architec-
ture achieved a comparable average AUROC score of
0.9298.

The sensitivity and specificity results for disease
screening (disease risk) as well as each individual
pathology is presented in Table 4. The model was able
to achieve a sensitivity of 0.9705 and a specificity of
0.5896 on disease screening. Performance for individ-
ual pathology varied greatly, with sensitivity values
ranging from 0 to 0.9704, and specificity ranging from
0.5896 to 1.0. Confusion matrices for disease screen-
ing and individual pathologies are presented in Supple-
mentary Table S1.

Results of Activation Mapping

Grad-CAM activation maps are shown in Table 5.
Visualization of activation maps demonstrates that
predictions for the different pathologies does corre-
spond with expected fundoscopic features. For
example, pathologies involving the optic disc do focus
on the optic disc itself. Similarly, pathologies which are
associated with specific entities (for example: drusen
with lipid deposits and laser scars) tend to focus on
these findings when present. Pathologies that involve
more generalized changes, such as diabetic retinopa-
thy, and tessellations have activation maps that focus
on several different areas. A survey of false positive
examples demonstrates that the model is still limited

in the amount of detail it can gain from these foci, as
many false positives look in the right place and yet
arrive at the wrong classification.

Discussion

Screening for multiple ocular diseases in retinal
images using an ensemble neural network approach
was shown to be feasible in this study. The proposed
approach achieved an AUROC score of 0.9613 on the
RFMiD dataset for detection of any ocular pathol-
ogy, which was found to be higher than the single
network best score of 0.9587, although the difference
is not statistically significant. For individual classifi-
cation of pathologies, the average AUROC for each
class was 0.9298. Whereas most pathology classifica-
tion had AUROC > 0.85, as illustrated by Figure 2, it
is apparent from the sensitivity and specificity values
that performance is still impacted by the small number
of training and validation images for some classes, as is
the case for tortuous vessels, shunts, and other patholo-
gies where performance is at either extreme.

Classifyingmultiple ocular pathologies using retinal
imaging has been studied before, although they were
limited due to lack of labeled data. Li et al.17 devel-
oped a deep learning approach that classified 12
different pathologies using a SE-ResNeXt network
comparable to the one used in the present ensem-
ble approach. Although their performance and testing
dataset size is greater than the current study, they
did not cover the breadth of pathologies studied in
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Table 4. Sensitivity and Specificity Values for Predictions on the Validation Set for Each Class

Pathology Description Sensitivity Specificity

Disease risk 0.9704 0.5896
Diabetic retinopathy 0.8712 0.9488
Media haze 0.9020 0.9275
Optic disc cupping 0.7778 0.9278
Tessellation 0.7846 0.9704
Drusen 0.5435 0.9529
Myopia 0.9412 0.9835
Age-related macular degeneration 0.6842 0.9801
Branch retinal vein occlusion 0.6087 0.9984
Optic disc pallor 0.2692 0.9902
Optic disc edema 0.7619 0.9871
Laser scars 0.7059 0.9984
Retinitis 1.000 0.9936
Central serous retinopathy 0.4545 0.9936
Other 0.0476 0.9984
Chorioretinitis 0.2727 0.9984
Central retinal vein occlusion 0.8750 0.9968
Retinal pigment epithelium changes 0.000 0.9968
Anterior ischemic optic neuropathy 0.4000 1.000
Asteroid hyalosis 0.500 1.000
Macular scars 0.000 1.000
Exudation 0.4000 0.9843
Epiretinal membrane 0.000 1.000
Retinal traction detachment 0.8333 0.9984
Parafoveal telangiectasia 0.000 1.000
Macular hole 0.000 1.000
Tortuous vessels 0.000 0.9984
Retinitis pigmentosa 0.000 1.000
Optociliary shunt 0.000 1.000

Values are measured using a threshold of greater than 0.5 for the probability output of the neural network.

the present work. Quellec et al.18 utilized a few-shot
learning approach to classify rare pathologies with an
average AUROC of 0.938. Despite the larger dataset
(164,660 examinations) and different demographics
(collected from the OPHDIAT19 screening network in
France), they struggledwith similar pathologies, shunts
(AUROC = 0.7586), and emboli (AUROC = 0.7946).
Ting et al.19 studied diabetic retinopathy and related
diseases in retinal images from multi-ethnic popula-
tions with diabetes, and found comparable perfor-
mance in detecting diabetic retinopathy and age-related
macular degeneration. However, their study focused
mainly on different severities of diabetic retinopathy
andmacular degeneration as opposed to a wide variety
of pathological signs. Last, in a recent paper, Cen et
al.20 developed a deep learning platform that was able
to classify 39 different conditions with an AUROC of
0.9984 from 249,620 images. Additionally, the model

was evaluated on an external dataset, and achieved
similar results (AUROC = 0.9990). Although many of
the pathologies studied by Cen et al. and the present
authors overlapped, Cen et al. did not investigatemedia
haze, anterior ischemic optic neuropathy, parafoveal
telangiectasia, or optociliary shunt. Optociliary shunt
performed poorly in this present work, with an
AUROC of 0.72. This performance is likely explained
by the poor availability of this pathological finding
in the current dataset, and is one of the pathologies
where the trained models failed to identify any positive
samples in the evaluation set (sensitivity = 0).

A key strength of this study is the large breadth of
pathologies labeled in the current dataset. Although
many algorithms have been developed to detect single,
common diseases, such as diabetic retinopathy and
macular degeneration, few studies attempt to classify
many different pathologies at once, mainly due to lack
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Table 5. ActivationMapVisualizations for Representative True Positive and False Positive Predictions for Different
Pathology Classifications
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Table 5. Continued

Only classes with double digit number of samples in the validation are included, and the “other” class is also excluded.
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of labeled data. Whereas detecting single pathologies
is a meaningful academic exercise, the real life value of
an automated screening tool necessitates simultaneous
assessments of multiple pathologies to overcome barri-
ers to implementation. The simplicity of our approach
allows applications in low resource settings.

Central to the performance of our approach is the
diversity of neural network architectures used, each of
which address challenges in deep learningwith different
approaches. Inception V33 is a CNN architecture that
uses “Inception” style building blocks, which consists
of concatenating image filters of different sizes at the
same level in order to approximate an optimal sparse
network structure. This addressed several technical
issues with CNNs at the time, and also followed the
intuition that image features should be analyzed at
different scales simultaneously. The architecture has
been used in various computer vision tasks in retinal
imaging, including detection of diabetic retinopathy4,21
and multi-disease detection.18

SE-ResNeXt7 is an architecture that uses resid-
ual learning,22 which implements shortcut connec-
tions between network layers to mitigate the difficulties
of training very deep neural networks. Additionally,
this architecture uses squeeze-excitation blocks, which
explicitly models interdependencies between image
channels to improve performance on computer vision
tasks. In this study, the 50 layer version (SE-ResNeXt-
50) was used.

The DenseNet8 architecture similarly aims to
counteract the problem of training very deep neural
networks; however, instead of the shortcut connections
used in residual learning, it connects each layer with
each other network, allowing for fewer parameters and
utilization of image features from all complexity levels
for classification. In this work, the 121 layer version of
the architecture (DenseNet-121) is used.

EfficientNet9 is an architecture that was developed
to address the challenge of scaling up CNNs efficiently
with respect to the model performance and the number
of parameters. The base version of the architecture
(EfficientNet-B0) was developed using neural architec-
ture search methods that optimized for accuracy and
floating point operations per second (FLOPS). From
this baseline, optimal values of the network depth (the
number of layers), width (the number of channels), and
resolution (the size of the input image) were found such
that each larger version of the network would take the
power of the baseline values. The proposed approach
uses the B4 and B5 scaled versions of the architecture.

Additionally, the class imbalance of the present
study was addressed successfully with asymmetric
loss.10 For multiclass multilabel classification, typically
a binary cross-entropy loss is used to train neural

network classifiers. However, in problems with signif-
icant class imbalance, the loss may be skewed by the
contributions from more represented classes, which
are easier for the network to learn. In order to focus
more on ambiguous samples, the loss functions can
be weighted based on the confidence of the network
output. Additionally, as there is a high representation
of negative samples formany pathologies, the contribu-
tion of negative samples to the loss was reduced with
the asymmetric loss, even when the output probability
is high.

In this work, an ensemble of different architectures
was explored given its known improvements to model
performance, as described in previous literature.11
In our experiments, there were observable numeri-
cal improvements to AUROC scores for screening
and classification, however, they did not reach statis-
tical significance compared to trials without ensem-
bling. These differences are not significant. Nonethe-
less, ensembling did produce a network that was able
to combine the benefits from models that performed
better at disease screening (in our example, the SE-
ResNeXt architecture) with those that performed
better at individual disease classification (DenseNet).
Despite this, the lack of statistical significance calls
into question the widely known and accepted benefit of
ensembling. Further studies can be conducted to deter-
mine whether these benefits persist in neural networks
built for ophthalmologic image analysis. Furthermore,
testing the efficacy of ensembling for different clinical
tasks can better characterize its potential for gaining
stronger performance on simpler models capable of
running on limited computational resources through
knowledge distillation23 and similar techniques. In
recent years, mobile screening tools in the form of
smartphones24 and other edge computing solutions25
have demonstrated that neural networks and other
computational tools can be deployed even without
extensive hardware to benefit vision care. Detection of
multiple ocular pathologies on these platforms have yet
to be tried.

One of the major limitations of this study is the
relatively small dataset. The RFMiD data has only
3200 images, 640 of which were not labeled. This may
decrease generalizability. Additionally, whereas a large
range of pathologies were studied, many pathologies
were very limited in sample size. Although the ROC
curves and high average AUROC for disease classi-
fication suggest that our approach was able to learn
features tied to these pathologies, the sensitivity and
specificity results indicate that sample size remains a
limitation to achieving performance suitable for clini-
cal implementation. Despite this, our study included
pathologies with smaller sample sizes to test the limits
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of multi-class detection models that can be built with
datasets with a wide variety of pathologies.

Another limitationwas lack of access to the baseline
patient and clinical characteristics of the sample images
made available to us from the RFMiD dataset. Our
approach may lack external validity if the ocular
characteristics of external data differ significantly from
the normative data used to train the CNNs. Because
it is the only publicly available annotated dataset of
its kind,6 future studies aimed at external validation of
our model may be reassuring. What is presented here
is a valuable proof of concept that a deep learning
system trained to classify multiple ocular pathologies
with acceptable performance for screening is possible.
With more training data, the performance and gener-
alizability of a neural network ensemble will improve.
Additionally, a significant limitation is the lack of pixel-
level data. Whereas the Grad-CAM analysis gives an
overall impression of what visual features are aiding in
its decisionmaking, precisemedical rationale cannot be
elucidated without training with images that have been
labeled at the pixel level to clearly identify the patho-
logical features associated with a classification.

Future studies should be performed to evaluate the
internal and external validity of the ensemble network
approach for detection of multiple ocular pathologies
using fundus photography. In particular, it is impor-
tant to ensure that any disease screening application
is not biased by limited or unrepresentative training
data. This should be investigated by studying the gener-
alizability of networks trained on specific population
data. Because a major limitation of this study is access
to annotated data, other avenues of few-shot learning,
such as feature reduction techniques18 or generative
adversarial networks,25 to create more training samples
may be explored.

Future versions of this algorithm can enhance its
accuracy by incorporating relevant clinical informa-
tion. These algorithms can combine the decision score
generated from fundoscopic analysis along with the
clinical variable to arrive at a more accurate prediction.
For instance, the presence of symptoms, such as eye
pain, headaches, and nausea, can be strong diagnos-
tic indicators for acute angle-closure glaucoma.26
Demographic features, such as age, gender, and ethnic-
ity, are also useful aspects to consider as ocular diseases
are more present in certain populations than others.27

There are several barriers to real world imple-
mentation. As described above, the limited sensitiv-
ity and specificity metrics limit the efficacy of such
a model as a screening tool. Additionally, a product
offering this type of automated feature should be
designed for continuous development and monitor-
ing of the model’s performance. Thus, both label-
ing and diagnostic capacity should be looped to

allow for periodic auditing and tracking of changes
to performance metrics. The product should then be
piloted in a controlled setting to observe and analyze
effects on clinical outcomes and practice manage-
ment (e.g. number of patients screened, types of
pathologies detected, stage of disease when detected,
vision outcomes, and cost savings) that outweigh the
monetary and non-monetary costs associated with the
new technology. Once clinical outcomes and costs are
better characterized, a discussion among stakeholders
regarding risk assessment for data privacy, algorithm
failure, auditing, and medico legal responsibility can
take place for safe, controlled implementation.

To conclude, we demonstrated that an ensemble
neural network approach with a modified classification
loss can be used to perform automated screening for
28 different ocular pathologies using fundus photogra-
phy. Further work needs to be performed to evaluate
the performance of these algorithms in clinical practice
with real world data from diverse populations.
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