
Identification of breast cancer patients
based on human signaling network
motifs
Lina Chen1*, Xiaoli Qu1*, Mushui Cao1*, Yanyan Zhou1, Wan Li1, Binhua Liang2, Weiguo Li1,
Weiming He3, Chenchen Feng1, Xu Jia1 & Yuehan He1

1College of Bioinformatics Science and Technology, Harbin Medical University, Harbin, Hei Longjiang Province, China Postal
code:150081, 2National Microbology Laboratory, Public Health Agency of Canada, 3Institute of Opto-electronics, Harbin Institute
of Technology, Harbin, Hei Longjiang Province, China Postal code: 150080.

Identifying breast cancer patients is crucial to the clinical diagnosis and therapy for this disease.
Conventional gene-based methods for breast cancer diagnosis ignore gene-gene interactions and thus may
lead to loss of power. In this study, we proposed a novel method to select classification features, called
‘‘Selection of Significant Expression-Correlation Differential Motifs’’ (SSECDM). This method applied a
network motif-based approach, combining a human signaling network and high-throughput gene
expression data to distinguish breast cancer samples from normal samples. Our method has higher
classification performance and better classification accuracy stability than the mutual information (MI)
method or the individual gene sets method. It may become a useful tool for identifying and treating patients
with breast cancer and other cancers, thus contributing to clinical diagnosis and therapy for these diseases.

B
reast cancer is a heterogeneous disease, and identification of this disease is a major clinical challenge. The
recovery rate of patients diagnosed in the earliest stages of breast cancer approaches 95%1. Genome-wide
high-throughput expression data provide a valuable platform to identify disease markers for breast can-

cer2,3. However, data for individual gene do not discover the molecular mechanisms responsible for these
determinations4, and individual signatures are less reproducible in different breast cancer groups5. In contrast,
network-based methods for classification have been shown to be more reproducible than methods based on
individual genes6. However, existing available methods cannot determine whether signal transduction was
systematically disturbed in tumor cells. Disruption of the signaling network might trigger key signals such as
cell proliferation or evading growth suppressors for uncontrolled growth and promoting tumor progression; it
might also inhibit tumor-suppressors, leading to an imbalance between cell growth and apoptosis7.Changes in the
signaling network not only indicate disruptions leading to carcinogenesis, but also reveal the changes in express-
ion-correlated differential between normal and tumor conditions8. Therefore, a better approach to classifying
breast cancer samples may be exploiting datasets covering both the human signaling network and breast cancer
gene expression profiles.

Mutual information is widely used as a generalized correlation measure9. Cicek AE et al. proposed a new
multivariate technique (ADEMA) based on MI to identify expected metabolite level changes with respect to a
specific condition, and showed that ADEMA predicts De Novo Lipogenesis pathway metabolite level changes in
samples with Cystic Fibrosis (CF) better than the prediction method based on the significance of individual
metabolite level changes. ADEMA results had up to 31% higher accuracy as compared to other classification
algorithms10. Network motifs are small, repeated and conserved biological units ranging from molecular domains
to small reaction networks, and thus serve as building blocks of network structures6,11. Lizier JT et al. investigated
the role of two- and three-node motifs in contributing to local information storage12. Choi J et al. adopted the
Typed Network Motif Comparison Algorithm (TNMCA) to infer novel drug indications using topology of given
network13.Shellman ER et al. presented a comparative analysis of motif distributions in the metabolic networks of
21 species across six kingdoms of life14. Wu SF et al. explored the mechanisms of cervical carcinoma response to
epidermal growth factor (EGF) using network motifs in the regulation network15. Yuji Zhang et al. presented a
novel network motif-based approach that integrates biological network topology and high-throughput gene
expression data to identify markers not as individual genes but as network motifs. To determine significant
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network motifs, researchers calculated their activity score based on
MI using gene expression data, which was more reproducible than
individual gene markers selected without network information6. The
MI method requires standardization and discretization of expression
data in the calculation of activity score, which may reduce the
authenticity of the data. It guarantees the authenticity of data to start
directly from the original expression data and assess significance of
motifs using the expression correlation among genes.

Here, we propose a network motif-based method for selecting
high-stability significant expression-correlation differential motifs
(HSCDMs) to classify breast cancer samples by integrating the
human signaling network and gene expression profiles. SSECDM
method could potentially be applied to the identification of breast
cancer patients using unknown samples.

Results
Network motifs. We applied Cytoscape16 to analyze the global
properties of the human signaling network. Cytoscape is a software
environment that is used to display, analyze and edit graphical
network. With network data imported into Cytoscape, and the
network analysis plugin selected, Cytoscape can comprehensively
analyze the signaling network. The signaling network followed a
power law degree distribution and displayed the small world
property. Genes were labeled if they were cancer genes in the
network. It was found that the average degrees of the whole
network, the cancer genes and the breast cancer genes were 6.3,
9.97 and 23.44, respectively. These results suggest that cancer
genes, especially breast cancer genes, have pivotal positions in the
signaling network (Fisher’s exact test, p 5 0.002 for the genes of the
whole network and the breast cancer genes, and p 5 0.041 for the
cancer genes and the breast cancer genes, respectively).

To explore the role of cancer-associated motifs in the signaling
network, we screened the basic skeleton of three-node motifs17. We
found 11,150 significant network motifs (p , 0.05) that appeared at
least five for 1000 random disturbances on the human signaling
network using FANMOD18. Of them, 3549 motifs were associated
with cancer.

HSCDMs. Using four expression profiles (GSE5364, GSE9574,
GSE15852, GSE20437, the same platform GPL96) with disease and
normal samples downloaded from the GEO database (Table 1), we
first calculated expression-correlation differential scores for each
motif, and then plotted them against the normal distribution
(Figure 1).

To improve the stability of our method, we selected the significant
expression-correlation differential motifs (SCDMs) that occurred in
at least two datasets and defined them as HSCDMs (Table 2). Fifty-
six HSCDMs (labeled M1 to M56) were found in the four expression
profile datasets. It was shown that, 51 of the identified HSCDMs
(91%) were associated with breast cancer19–23(Supplementary table 1).

M1 occurred in four datasets, and M2 occurred in three datasets,
M3–M56 occurred only in two datasets. 81.18% (69/85) of the genes
in 56 HSCDMs were associated with breast cancer. All of the three
genes of each motif in M1–M35 and two genes of any motif in M36–
M51 are highly associated with breast cancer. For example, BCL2,
BINP3 and MAP2K1 in M1 were reported in literature (Figure 2).
BCL2 is a known cancer gene of chronic lymphocytic leukemia, and
is a highly prognostic factor for breast cancer24. BINP3 protect cells
from virus-induced cell death, and is a prognostic marker in breast

Figure 1 | Normal distribution plotted against expression correlation differential scores for breast cancer expression profile dataset GSE5364. X-axis:

expression-correlation differential score for network motifs. Y-axis: number of network motifs. Red arrow: score at which p-value equals 0.05.

Table 1 | The number of gene expression profile datasets for breast
cancer applied in this study

Sample GSE5364 GSE9574 GSE15852 GSE20437 GSE27562

Normal 13 15 43 18 31
Tumor 183 14 43 24 116

Table 2 | The number of SCDMs shared different expression pro-
files. 56 significantly differential motifs were obtained after remov-
ing redundancies

GSE5364 GSE9574 GSE15852 GSE20437 Total

GSE5364 — 12 7 8 27
GSE9574 12 — 11 6 17
GSE15852 7 11 — 19 19
GSE20437 8 6 19 — —
Total 27 17 19 — 56 *
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cancer25, as well as an anti-cancer target26. MAP2K1 (known as
MEK1) integrates many biochemical signals, and is involved in mul-
tiple cellular processes, including proliferation, development and
differentiation. Suppression of MEK1 blocked MED28-induced
MMP2 activation, cellular migration, and invasion in breast cancer
cells. Moreover, MED28 is highly expressed in breast cancer, over-
expression of which enhanced cellular migration and up-regulated
MMP2 and MEK1 expression27.Three genes in M2 (AKT1, HSP90
and GEF) were reported to be related with breast cancer (Figure 2).
Recurrent somatic mutations in AKT1 are found in breast cancer28.
HSP90 is an important anti-cancer target, and its inhibition can
induce cell cycle arrest and apoptosis in human breast cancer cells29.
GEF can induce apoptosis in MCF-7 breast cancer cells, and is also a
breast cancer target gene in clinical therapy30. CBP was found in M10,
M11, M16, M22, M31 and M33. CBP/p300-interacting transactiva-
tor with Glu/Asp-rich carboxy-terminal domain 2 (CITED2) is a
member of the CITED family and is exclusively recruited to the
promoter region of the FVII gene specifically in breast cancer cells31.
CITED2 was recently verified to be over expressed in human breast
tumors relative to normal mammary epithelium32. c-JUN, the first
cellular overexpressed proto-oncogene in human breast cancer33, was
found in M10, M11 and M22. The activation of CTBP1 (C-terminal
binding protein 1), which was found in M11, could be a potential
biomarker for breast cancer development since CTBP1 could down-
regulated Brca1 and E-cadherin in breast cancer34. CREB (found in
M16, M37, M41, M45–M48, M51, and M54) played an important
role in antimigratory in breast cancer cells35. We note that our can-
cer-associated motifs were based on all types of cancer genes. It could
be believed that mapping breast cancer expression profile datasets to
HSCDMs, we could obtain highly associated genes of breast cancer.

Therefore, the identified HSCDMs were demonstrated to be assoc-
iated with breast cancer. In contrast, traditional differential express-
ion analysis did not identify the majority of the genes in the identified
HSCDMs (Table 3).

To investigate the importance of HSCDMs in terms of topological
properties of the network, each HSCDM was individually removed
from the signaling network. For each derived network, we then

calculated the average number of neighbors and the characteristic
path length. Next, each random non-HSCDMs were individually
removed from the signaling network to generate reference networks,
and the calculations were repeated. This randomization process was
performed 100 times, generating 100 randomized networks. The
average number of neighbors was significantly lower when
HSCDMs were removed than when random non-HSCDMs were
removed, and the characteristic path length was significantly longer
when HSCDMs were removed than when random non-HSCDMs
were removed (Figure 3, permutation test, P , 0.05). These results
imply that HSCDMs play a prominent biological role in the signaling
network.

Classification of HSCDMs. Classification accuracy was estimated
by using leave-one-out cross validation (LOOCV), with the average
expression level of genes in the 56 identified HSCDMs as
classification features and a Support Vector Machine (SVM) as the
classifier. The classification performances of four kernel functions
(linear, quadratic, polynomial and radial basis kernel functions) were
evaluated. The classification accuracy was highest and most stable
when the linear kernel function was used (Table 4). Therefore, we
chose linear kernel function in our subsequent analyses.

Because the number of samples might influence classification accu-
racy, the dataset with the largest number of samples (GSE5364) was
divided into proportional gradients and each defined proportion was
compared to 100 randomized selections with the same number of
samples (Figure 4). It showed that the sample gradient increased, the
classification accuracy increased. Even in small gradient, classification
accuracy of our method was higher than 85%. In Table 5, the clas-
sification accuracies for the other three expression profilings with small
sample sizes were also higher than 80%. As we know, in the case of
large samples, any method could improve the classification accuracy.
Our method not only confirmed this, but also had high classification
accuracies among the small sample sizes. These results suggested that
our method had good stability of classification accuracy.

Classification evaluation based on individual gene sets. We com-
pared the classification accuracy of HSCDMs to the classification
accuracy of individual gene sets, i.e. HSCDMs’ genes, breast cancer
genes, breast cancer marker genes (70 marker genes in Materials),
and a set containing both breast cancer genes and breast cancer
marker genes (Table 5). In Table 5, the classification accuracy of
our classification feature in GSE5364 dataset (large sample), was
slightly higher than ones of other classification features. However
for the other three expression profilings (small sample, GSE9574,
GSE15852, GSE20437), the classification accuracy of our method
was almost higher than ones of all individual gene approaches. At
the same time for expression profilings of small sample size, the
classification accuracy of the HSCDMs’ genes as classification
feature was slightly higher than ones with the other individual gene
classification features. It suggested the HSCDMs’ genes may be highly

Figure 2 | High stable significant differential motifs. Solid lines represent

activating or inhibitory interactions. Dotted lines represent physical

interactions. Nodes in pink or green represent cancer-associated or non-

cancer-associated genes, respectively.

Table 3 | Motif genes and differential genes identified from the traditional variance analysis. Boldface indicates the genes associated with
breast cancer, Boldface and italics indicate the known breast cancer genes

Gene Type GeneName
Literature

Confirmed Rate

85 motif
genes

ABL1,AKT1,BAD,BCL2,CASP10,CASP9,CBP,CCNB1,CDK2,CDK5,c-JUN,CREB,CTBP1,EGFR,
ERK2,FAS,GEF,Gia,GSK3A,GTP,Hsp90,IKK2,IL12RB2,JAK1,JAK2,JNKK1,MAPK11,MAPK9,
MDM2,MAP2K1,MAP2K2,MGLUR1,p14ARF,p38,p53,p65,P73,PAK1,PDGFRA,PKAc,PP2A,
RAF1,RAC1,RSK2,SHP1,SHP2,SMAD2,SMAD3,SMAD4,SMO,SRC,SRF,STAT1,STAT3,TCF,TIF2,
BAP31,ERBIN,ILK,IRS2,KSR,NCK,PDGFR,PKA,PPP1CC,PPP2R5C,RASGAP,SAM68,TFIIB,BNIP3,FAP-1,
FRS2,GRP1,HBEGF,LZK,MLK3,MSK2,SOCS,ARNIP,BPAG2,EPS8,GAB2,HAT1,KRT18,RAP30

81.18%

31 differential
genes

ATF3,Catalase,CAVEOLIN,CAV2,CD36,DD,MKP1,EGR1,F3,FHL1,FOS,FOSB,GHR,Gai,NUR77,
c-JUN,LEP,LPL,PDE2,PPARG,I1,RIIb,RGS2,TGFBR3,SPRY,HERP1,FIBRONECTIN,Tb,HSP27,Noxa,TopoII

71%
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involved in development of breast cancer, which was confirmed
through literature reviewed that 81% (69/85) of the HSCDMs’
genes were association with breast cancer. These results indicated
that HSCDMs had not only a higher classification accuracy, but
also higher classification accuracy stability. To further demonstrate
the classification accuracy stability of our method, we chose
GSE27562 (Table 1) on another platform (GPL570), and classified
it using different classification features, the classification accuracy of
different classification features were displayed in the last column of
Table 5.

Classification evaluation based on mutual information. To further
assess the performance of HSCDMs, we compared our results with
those of another method based on mutual information for screening
significant differential motifs36,6. The MI method applies an activity
score to select classification features. First, as with our method, we
identified network motifs within the human signaling network using
FANMOD (p , 0.05, number of occurrences five or greater). Second,
we calculated the activity score of each motif. Fitting a distribution of
these scores, we defined significant mutual information differential
motifs (SMIDMs) (permutation test, p , 0.05). To improve the
stability of this method, we generated four groups of SMIDMs
from four datasets (GSE5364, GSE9574, GSE15852 and
GSE20437). SMIDMs occurring in at least two datasets were
defined as high-stability significant mutual information differential

motifs (HSMIDMs). We consider HSMIDMs to be classification
features for positively identifying breast cancer samples. We found
6 HSMIDMs occurring in three datasets and 73 HSMIDMs
occurring in two datasets, respectively. Third, we used these 79
HSMIDMs and the 56 HSCDMs found by SSECDM method as
features for classifying the four breast cancer sample sets. ROC
curves, which reflect the sensitivity and specificity for the two
methods showed that the MI method AUC score was lower than
the SM score (MI_AUC 5 0.7567, SM_AUC 5 0.8125). These
results suggested that our approach had superior classification
performance.

Discussion
We proposed a network motif-based method for selecting classifica-
tion features for the patients with breast cancer that integrates
human signaling network and gene expression profiles. In this study,
we compared the expression-correlation difference between normal
and tumor conditions, using SCDMs generated from the signaling
network. By screening SCDMs from multiple breast cancer datasets,
HSCDMs were identified. HSCDMs were validated as cancer-assoc-
iated motifs, and individual genes from the HSCDMs were also vali-
dated as susceptible genes or prognostic factors for breast cancer by
reviewing the recent literatures. Compared with the naive Bayes
classifier, the SVM classifier had better classification performance
using 56 HSCDMs as classification features (Table 6). Naive
Bayesian classifier is based on a simple assumption that attributes
are conditional independent when target value was given. The
assumption is often not met in practical applications, which influ-
ences the correct classification of Naive Bayesian classifier. However,
SVM classifier could optimize itself, and output the optimized
results. It was found that the majority of genes in HSCDMs were
not identified by differential expression analysis alone (Table 3).
SSECDM method was then compared to MI and the method based
on individual genes. It was shown that SSECDM method for clas-

Figure 3 | Network topology characteristics for high-stability significant differential motifs. (A) Average number of neighbors. (B) Characteristic path

length. Red dots: Average number of neighbors and characteristic path length of original signaling network,signaling network with motif M1 removed,

signaling network with motif M2 removed (2GSE). Box plots summarize results from 100 random networks.

Table 4 | Classification accuracy of four kernel functions

Kernel function GSE5364 GSE9574 GSE15852 GSE20437

Linear 0.9745 0.8276 0.8488 0.8095
Quadratic 0.9694 0.6207 0.6279 0.6667
Polynomial 0.949 0.7586 0.8488 0.7381
RBF 0.9337 0.4828 0.0698 0.5714
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sifying breast cancer samples using the four datasets had the highest
accuracy for predicting breast cancer.

Furthermore, our results suggest that HSCDMs can potentially
serve as prognostic markers of breast cancer. Assuming that a larger
expression correlation differential score for a motif, implies a shorter
survival time, this score could predict the survival time of breast
cancer patients. To test this hypothesis, we obtained three datasets
of breast cancer expression profiles with survival information
(GSE1456, GSE3494 and GSE6532), and analyzed the relationship
between survival time and HSCDMs. We found that 15 of the iden-
tified HSCDMs (26.8%) were significantly negatively correlated with
the survival time of breast cancer patients (t-test, p , 0.05), suggest-
ing that these motifs with negative correlation could be promising
potential prognostic markers of breast cancer. These motifs with
negative correlation could add value to clinical application.

In conclusion, our method is capable of improving the accuracy of
identifying patients with breast cancer, and may aid in the clinical
diagnosis and therapy of breast cancer and other types of cancer.

Methods
We proposed a novel method to select classification features, called ‘‘Selection of
Significant Expression-Correlation Differential Motifs’’. SSECDM method applied a
network motif-based approach for selecting high-stability significant expression-
correlation differential motifs to classify breast cancer samples by integrating the
human signaling network and gene expression profiles (Figure 5). We further
describe each step below.

Materials. A human signaling network was obtained from a previous study, which
contains 5089 interactions among 1634 genes37. The three types of interactions
addressed are activation, inhibition, and physical interaction.

A list of 458 cancer-associated genes was obtained from the Cancer Gene Census
database38 (Downloaded in 2011). A list of 70 marker genes for breast cancer were
obtained from a previous study39,6.

To integrate the gene expression and signal network datasets, we mapped the gene
expression value of each gene onto the network. Gene expression datasets were
extracted from the GEO database40 (Table 1).

Selection of classification features. The classification features were selected by
screening for significant changes in gene expression between normal and tumor
conditions. First, we extracted network motifs based on the human signaling network.
Second, significant expression-correlation differential motifs were identified by
comparing the network motif expression-correlation differential score for normal
and tumor conditions using the gene expression datasets. Finally, to improve the
method’s stability, we obtained four groups of SCDMs from the four datasets. SCDMs
that were found in at least two datasets were called high-stability significant
expression-correlation differential motifs. We consider the average expression level of
genes in HSCDMs to be classification features for positively identifying breast cancer
samples.

Figure 4 | The influence of different sample gradients on classification accuracy. X-axis: the proportion of normal samples to tumor samples. Y-axis:

classification accuracy using the given normal-to-tumor sample proportion. Box plot summarizes 100 randomized selections of normal and tumor

samples.

Table 5 | Classification accuracy of different features. The five clas-
sification features of classification accuracy were shown, the first
row refers to the classification accuracy of HSCDMs, the other four
rows were the classification accuracy of individual gene sets clas-
sification method. BC represents breast cancer

Feature GSE5364 GSE9574 GSE15852 GSE20437 GSE27562

Motifs 0.9745 0.8276 0.8488 0.8095 0.9592
Motifs’ genes 0.9592 0.6552 0.8372 0.7857 0.9456
BC genes 0.9490 0.5517 0.7093 0.6905 0.8639
Marker genes 0.9694 0.6552 0.7674 0.6667 0.9184
BC & Marker

genes
0.9745 0.5862 0.8488 0.6905 0.9184

Table 6 | Classification accuracy of different classifiers

classifier GSE5364 GSE9574 GSE15852 GSE20437

SVM 0.9745 0.8276 0.8488 0.8095
Bayes 0.9388 0.7931 0.6977 0.7381
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Cancer-associated motifs. We applied FANMOD18 to select network motifs. A
network motif was defined based on the criterion that the number of occurrences
must be at least five, and also must be significantly higher than that used in
randomized networks. The significance test was carried out on 1000 randomized
networks, and a pattern with p , 0.05 was considered statistically significant.

Furthermore, we mapped the cancer genes to network motifs, and defined the
cancer-associated motifs if the network motifs contained at least of one cancer genes.

HSCDMs. Given a particular motif M with E1, E2 and E3 representing the three edges
of M, the expression-correlation differential score S was defined:

S(M)~
Xn

k~1

abs(Ek{E0k),n~3 ð1Þ

Ek~ pearson (X,Y)j j

~

P
(X{X )(Y{ Y )

(

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiPn
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s
)(

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiPn
i~1
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s
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����������
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0
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0
)2
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)

����������
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Where (X, Y) and (X9, Y9) are the gene expression values under normal and tumor
conditions, respectively. Ek and Ek’ are the Pearson Correlation Coefficients of the kth

edge connecting two genes under normal and tumor conditions, respectively.
Based on the expression-correlation differential score of each motif, we simulated

the distribution of these scores, and then defined SCDMs (permutation test,
p , 0.05).

We identified SCDMs that occurred in at least two datasets and defined those as
HSCDMs. We then used the average expression level of genes in HSCDMs as clas-
sification features to identify patients with breast cancer.

Classification and evaluation. We applied the SVM method, using four different
kernel functions (linear, quadratic, polynomial and radial basis kernel) to classify
patients with breast cancer. We then applied LOOCV to estimate the performance of
our classification.
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