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Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai, China

B cell precursor acute lymphoblastic leukemia (BCP-ALL) is a blood cancer that originates
from the abnormal proliferation of B-lymphoid progenitors. Cell population components
and cell–cell interaction in the bone marrow microenvironment are significant factors for
progression, relapse, and therapy resistance of BCP-ALL. In this study, we identified
specifically expressed genes in B cells and myeloid cells by analyzing single-cell RNA
sequencing data for seven BCP-ALL samples and four healthy samples obtained from a
public database. Integrating 1356 bulk RNA sequencing samples from a public database
and our previous study, we found a total of 57 significant ligand–receptor pairs (24
upregulated and 33 downregulated) in the autocrine crosstalk network of B cells. Via
assessment of the communication between B cells and myeloid cells, another 29 ligand–
receptor pairs were discovered, some of which notably affected survival outcomes. A
score-based model was constructed with least absolute shrinkage and selection operator
(LASSO) using these ligand–receptor pairs. Patients with higher scores had poorer
prognoses. This model can be applied to create predictions for both pediatric and adult
BCP-ALL patients.

Keywords: BCP-ALL, scRNA-seq, ligand–receptor pairs, machine learning, prognosis
INTRODUCTION

B cell precursor acute lymphoblastic leukemia (BCP-ALL) is a hematological malignant neoplasm
caused by the abnormal proliferation and accumulation of B-lymphoblastic progenitor cells in the
bone marrow (1). Although the 5-year survival rate of pediatric BCP-ALL has surpassed 90% in
some developed countries, it remains a main factor in cancer-related death in children and has high
morbidity (2, 3). Chemotherapy and targeted therapy are effective treatments for the majority of
incipient BCP-ALL patients. However, about 15–20% of such patients will relapse within 5 years,
become drug resistant, and eventually die (4). This is in part due to the high heterogeneity of BCP-
ALL and to extensive remodeling of the immune microenvironment (5).

Bulk RNA sequencing (RNA-seq) is widely used to analyze the transcriptomic landscape of BCP-ALL.
It can reflect the average expression level of various cell types in bone marrow or peripheral blood as a
whole. However, our knowledge of the microenvironment of leukemia cells is limited to only bulk RNA-
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seq data. As single-cell RNA sequencing (scRNA-seq) technology
in cancer research becomes increasingly promoted and applied, it
has come to provide insights into the analysis of the complexity of
cellular composition as well as the heterogeneity of the tumor
microenvironment (TME) (6, 7). The use of scRNA-seq can help
us gain a deep understanding of the pathogenesis of BCP-ALL (5).

TME plays a crucial role in tumorigenesis and tumor progression,
drug tolerance, and immune infiltration (8). The process of tumor
development is inhibited by immune cells, and conversely, tumor
cells secrete immunoregulatory factors and constantly reshape the
microenvironment, leading to a change in the microenvironment in
favor of tumor growth and invasions (9–12).

The communication among various cells in TME is mainly
mediated through ligand–receptor interactions either in soluble or
membrane bound form (13). Checkpoint inhibitors that operate
based on the ligand–receptor interaction have become powerful
tools for clinical therapy (14). In recent years, several studies have
been conducted on the cell–cell crosstalk of TME based on
scRNA-seq. For example, Kumar et al. characterized cell–cell
communication across all cell types in the microenvironment of
mouse tumor models, including melanoma, breast cancer, and
lung cancer, and found that the expression of individual ligand–
receptor pairs was closely linked to tumor growth rate (15). By
analyzing single-cell data in glioma, Shi et al. found that cellular
interactions between glioma stem cells and tumor-associated
macrophages could affect the prognosis of glioma patients (16).
These works provide the references and analytical workflow for
cell–cell communications.

However, current research on cell–cell communication focuses
on solid tumors. Our understanding of intercellular interactions in
leukemia, such as BCP-ALL, remains limited. Previous research has
found the extensive remodeling of the TME in BCP-ALL, and a
non-classic mononuclear subpopulation is enriched within the
myeloid compartment. This subpopulation has prognostic
implications for BCP-ALL (5). How myeloid cells affect
tumorigenesis and the communication between myeloid and
neoplastic B cells in the BCP-ALL TME has not been fully
explored. To investigate cell–cell communication in BCP-ALL in
depth, we analyzed scRNA-seq data of seven BCP-ALL samples and
four healthy samples. Among the seven BCP-ALL samples, five of
them are ETV6-RUNX1 fusion. They belong to low-risk subtype
and occurs mostly in children. Two of them are BCR-ABL1 fusion
(also called Ph+), which belong to high-risk subtype (17, 18). Totally
57 ligand–receptor pairs were found in the autocrine crosstalk
network of tumor-related B cells, and 29 were detected in the
paracrine crosstalk network between B cells and myeloid cells. A
robust least absolute shrinkage and selection operator (LASSO)
regression model was constructed using ligand–receptor pairs to
predict prognoses for both pediatric and adult BCP-ALL patients.
MATERIALS AND METHODS

Datasets
The scRNA-seq data related to BCP-ALL in recent five years was
searched from Gene Expression Omnibus (GEO, https://www.
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ncbi.nlm.nih.gov/geo/) and only the dataset GSE134759 was
found. Bulk RNA-seq and clinical data of BCP-ALL used for
survival analysis and prognostic model construction was
downloaded from the Therapeutically Applicable Research to
Generate Effective Treatments (TARGET, https://ocg.cancer.
gov/programs/target). The TARGET ALL P2 cohort with 532
samples was obtained by R package TGCAbiolinks (v2.16.3).
And 133 primary diagnosis BCP-ALL samples whose definition
was primary blood derived cancer (bone marrow) were used in
the downstream analysis. Another bulk RNA-seq and the clinical
dataset was collected from five significant patient cohorts (19–
26), including 1,223 BCP-ALL cases available from our previous
study (17). This dataset was used for Spearman’s correlation
calculation and prognostic model validation. The 36 tumor
cohorts of The Cancer Genome Atlas (TCGA) used for
validating the model were downloaded via R package
TGCAbiolinks (v2.16.3). Ligand–receptor pairs were collected
from several public databases (13, 27).

scRNA-seq Data Analysis
All steps for scRNA-seq data processing and cell–cell
communication analysis as well as for the machine learning
model development described below were performed with R
(v4.0.1). For the seven BCP-ALL and four healthy samples, cells
for which less than 500 genes or over 10% genes derived from the
mitochondrial genome were first filtered out. To remove
doublets, cells with more than 5,000 genes were also filtered.
All of the 11 samples were preprocessed and normalized using
SCTransform, with default parameters implemented in Seurat
(v3.5.1) package individually (28, 29). Seurat anchor-based
integration method was used to correct the batch and merge
multiple samples (30). Cell-type annotation was performed by R
package cellassign (v0.99.21) in conjunction with manual
comparison of the expression of marker genes among different
clusters (31). The pheatmap (v1.0.12) was used to plot heatmap
for cell-type annotation using 5,000 randomly selected cells. This
was only done to plot the heatmap. The inferCNV (v1.4.0) was
used to calculate the copy number variation (CNV) levels of
tumor samples.

Cell–Cell Communication Analysis
The differential expression of genes between the BCP-ALL
samples and healthy samples separately for B cells and myeloid
cells was compared using MAST (v1.14.0) (32). Significant genes
with adjusted P-value < 0.05 were mapped to ligand–receptor
pair databases. To further investigate the correlations in the
ligand–receptor pairs, Spearman’s correlation coefficient was
calculated to check the co-expression level of individual pairs.
Any pair with an adjusted P-value < 0.05 and coefficient > 0.3
was considered to be significant. Gene set enrichment analysis
(GSEA) was performed using fgsea (v1.14.0). Pathway
enrichment analysis was performed using clusterProfiler
(v3.16.1) (33).

Survival Analysis
Kaplan-Meier and log-rank tests were performed using the
survival (v3.2-3) and survminer (v0.4.8) packages to construct
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and compare survival curves for the LASSO prediction model or
specific genes. For specific genes, the patients were divided into
high- or low-expression groups according to the mean
expression of this gene, and P-value < 0.05 was considered to
denote significance.

Machine Learning Model Development
The LASSO regression model implemented in the glmnet (v4.0-
2) package was fitted to predict the patient prognosis based on
ligand–receptor pairs between B cells and myeloid cells. LASSO
regression penalizes the data-fitting standard by eliminating
predictive variables with less information to generate simpler
and more interpretable models. To evaluate the variability and
reproducibility of the estimates produced by the LASSO Cox
regression model, we repeated the regression fitting process for
each of the 1,000 leave-10%-out cross-validation evaluations.
Genes with non-zero coefficient estimates were retained across
all 1,000 evaluations. For each of these genes, the final model
coefficient was taken as the average of the coefficient estimates
obtained for the set of cross-validation evaluations. The recursive
partitioning survival model available in the rpart (v4.1-15)
package was used to dichotomize patients into low- and high-
score groups. Multivariable Cox-proportional hazard model was
used to check the independent prognostic effect. The risk group
was defined by our previous study (17). In pediatric BCP-ALL,
patients with TCF3-PBX1, ETV6-RUNX1/-like, DUX4 fusions,
ZNF384/ZNF362 fusions, and high hyperdiploidy (51–65/67
chromosomes) were defined as low-risk. Patients with
hyperdiploidy (≤50 chromosomes), PAX5 and CRLF2 fusions
were defined as intermediate-risk. While patients with MEF2D
fusions, BCR-ABL1/Ph-like, and KMT2A fusions were defines as
high-risk. And in adult BCP-ALL, patients with DUX4 fusions,
ZNF384/ZNF362 fusions, and hyperdiploidy were defined as
intermediate-risk, and patients with MEF2D fusions, TCF3-
PBX1, BCR-ABL1/Ph-like, and KMT2A fusions were defined as
high-risk (17).
RESULTS

Cellular Heterogeneity Within the Immune
Microenvironment of BCP-ALL
To delineate the cellular diversity of the BCP-ALLmicroenvironment,
we analyzed the scRNA-seq data for seven newly diagnosed
BCP-ALL samples (five with ETV6-RUNX1 and two with BCR-
ABL1, Ph+) and four healthy samples. After initial quality control
was conducted (see methods), and all samples were merged using
anchor-based integration, 58,518 cells (Figure 1A) were enrolled
for downstream analyses (38,860 from BCP-ALL, 19,658 from
healthy samples). Little difference was seen in the cell distribution
of tumor and normal samples (Figure 1B). This may be due to the
special sample preparation method for BCP-ALL, where 20%
CD19+ B cells was mixed with 80% CD19-CD45+ non-B cells (5).
The profiles separated by subtype of BCP-ALL were also very
similar (Figure S1A). Cell-type annotation was performed using
cellassign (31), and then the top genes upregulated in each cluster
Frontiers in Oncology | www.frontiersin.org 3
were examined and visualized (Figure S1B).All 58,518 cells were
assigned to six distinct cell types: B cells (25.2%), erythrocytic cells
(0.7%), hematopoietic stem and progenitor cells (HSPC 3.1%),
myeloid cells (11.1%), natural killer (NK) cells (6.3%), and T cells
(53.5%, Figures 1C, D). All 11 samples contained each of the six
cell types (Figure 1E). After assessing the differences of non-
tumor cell subsets between BCP-ALL and healthy samples, only
the proportion of myeloid cells was significantly different (Figure
S1C), which could imply a special role for myeloid in the bone
marrow of BCP-ALL. According to the expression level of MME
(an important cell surface marker in the diagnosis of human ALL),
the vast majority of B cells present in neoplastic samples were
leukemic cells of a pre-B phenotype (Figures 1F, S1B). The
malignity of these B cells was also confirmed by inferred CNV
level. Among the different cell types in the seven BCP-ALL
samples, B cells had the highest CNV level (Figure S1D). A
comparison of the CNV level of B cells between BCP-ALL and
healthy samples found a significant difference (Figure 1G).

Specific Ligand–Receptor Pairs Reveal an
Autocrine Crosstalk Network in BCP-ALL
The cell–cell communication level can be reflected in the
expression of ligands and their special receptors. For this
reason, first, we detected the intracellular communication
network of B cells. Only those ligand–receptor pairs in B cells of
BCP-ALL samples that had significantly high or low expression
passed the filtration. We supposed that these pairs were more
closely associated with leukemogenesis. As shown in Figure S2A,
we performed differential expression testing between tumor B cells
and non-tumor B cells. Then, these genes were mapped to public
ligand–receptor databases (see Materials and Methods) (13, 27).
And 152 upregulated and 206 downregulated genes were
identified. Finally, the expression correlation between the
individual ligands and their corresponding receptors was
examined using bulk RNA-seq data obtained from our previous
study (17). Only the 296 samples with ETV6-RUNX1 and BCR-
ABL1 subtypes were used. After these strict criteria were applied,
24 upregulated and 33 downregulated ligand–receptor pairs were
detected in total (seeMaterials and Methods, Figures 2A, B, S3A,
B, Tables S1, S2).

In the upregulated pairs, the B-cell leukemogenesis gene
FZD6 and its ligand CTHRC1 were upregulated in several solid
tumors, associated with increased cell migration and tumor
invasion (34, 35). The analytical results showed that FZD6 and
CTHRC1 were both highly expressed in the B cells of tumor
samples (Figure 2C). It should be noted that APP is highly
expressed in acute myeloid leukemia (AML), which may
promote cancer cell proliferation and metastasis (36). In our
results, we found that APP and its binding partner TNFRSF21
were also highly expressed in tumor-related B-cells (Figure S2B).
MDK (a cytokine and growth factor with complex biological
functions involved in cancer development and progression) (37),
together with its two receptors (SDC1 and GPC2) were highly
expressed in the B-cells of BCP-ALL samples (Figures S2C, D).

Among the downregulated pairs, the receptor genes TLR4,
ITGB2, and LRP1, located in the center of the ligand–receptor
March 2021 | Volume 11 | Article 639013
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A
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D E F
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FIGURE 1 | Single-cell profiling and cell-type identification in both healthy and BCP-ALL samples. (A) Distribution of 58,518 cells from 11 samples shown by uniform
manifold approximation and projection (UMAP). (B) UMAP plot showing similar cell distributions in normal and tumor samples. (C) Gene expression heatmap of
marker genes for the identification of six cell types. (D) UMAP visualization of six marker-based cell types. Cell types are colored as in (C). (E) Stacked barplots
showing the frequencies of six cell types in all of the 11 samples. Cell types are colored as in (C). (F) Expression level of MME of B cells from normal and tumor
samples. (G) Inferred CNV level of B cells from normal and tumor samples.
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network, with three to four ligands connected respectively
(Figure 2B). This may imply that they play an important role
in anti-tumorigenesis. Previous studies on these genes suggested
that TLR4 is required for protective immune response and to kill
cancer cells (Figure 2D) (38). ITGB2 has been found to
participate in cell adhesion and cell-surface mediated signaling
Frontiers in Oncology | www.frontiersin.org 5
(39). Lower expression of LRP1 is associated with the aggressive
phenotypes and inferior clinical outcomes in some cancers (40,
41). It should be noted that ITGAM also has low expression in
the B cells of tumor samples (Figure S2E). This has been
reported as negative regulator of immune suppression and a
target for cancer immune therapy (42).
A B

C

D

E

FIGURE 2 | Autocrine ligand–receptor pairs network in tumor-related B cells. (A, B) Ligand–receptor pairs that were upregulated (A) and downregulated (B) in B
cells. Red and green squares represent ligands and receptors, respectively, and arrows point from ligands to receptors. (C, D) Spearman correlation coefficients of
two ligand–receptor pairs (CTHRC-FZD6 and S100A9-TLR4). (E) GSEA of the hallmark pathways in tumor-related B cells.
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We also conducted GSEA on B cells in BCP-ALL and healthy
samples (Figure 2E). The enriched pathways in the HALLMARK
database of neoplastic B cells were correlated with cell cycle
progressions, such as the E2F targets and the G2M checkpoint,
suggesting that most B cells in neoplastic samples are immature
B cell progenitors. Other canonical tumor-related pathways, such
as the MYC targets and the p53 pathway, were also enriched in
neoplastic B cells (Figure 2E).

Cell–Cell Communication From B Cells to
Myeloid Cells
Previous studies have reported that myeloid cells might play a
central role in the immune microenvironment of BCP-ALL (5,
43). Investigation of the crosstalk of B cells with myeloid cells
is important for understanding the BCP-ALL TME. Thus, we
performed differential expression testing between the myeloid
cells of tumor samples and healthy samples. Ligands that were
highly expressed in B cells and the receptors that were highly
expressed in myeloid cells were selected. After calculating the
Spearman’s correlation coefficient, 11 ligand–receptor pairs
were identified (Figures 3A, S5A, B, Table S3). Interestingly,
we found that some of these 11 ligand–receptor pairs were the
same as those found in the autocrine crosstalk of B cells, such
as UBC-LDLR and MDK-GPC2 (Figures S4A, B). This partly
indicates the consistency in the process of leukemogenesis
within the bone marrow environment. Of note, patients with
higher expression level for UBC tend to have worse clinical
outcomes (Figure 3B). MDK has similar survival trends
(Figure 3C). The other ligand–receptor pairs that were
specifically present in the crosstalk of B cells to myeloid
cells, also have a crucial influence on tumorigenesis. For
example, ABCA1 is an auspicious therapy target in prostate
cancer (Figure S4C) (44). A previous study has shown that
high expression of ADRB2 is significantly linked to early
treatment failure in ALL (45) (Figure S4D). In the survival
analyses of these specially expressed ligand–receptor pairs,
patients with higher expression of LIN7C or NRTN are prone
to poor prognosis (Figures 3D, E). Gene Ontology (GO)
analysis indicated that these 11 ligand–receptor pairs are
mainly associated with the biological processes of cell
migration and cell development (Figure 3F).

Cell–Cell Communication From Myeloid
Cells to B Cells
We also further identified cell–cell communication frommyeloid
cells to B cells, built on the expression of differentially expressed
ligand–receptor pairs. Ligands and receptors that were separately
highly expressed in myeloid and B cells were tested. In all, 18
ligand–receptor pairs passed the strict criteria (Figures 4A, S6A,
B, Table S4), and about half of them match autocrine pairs of
tumor-related B cells. This suggested that many interactions
could be simultaneously activated by malignant or normal cells
in the process of leukemogenesis. Intriguingly, the ligand B2M
had three receptors, indicating its important role in crosstalk
from myeloid cells to B cells (Figures S4E–G). And patients with
higher expression level for B2M tended to have worse OS (Figure
Frontiers in Oncology | www.frontiersin.org 6
4B). We also found that LAMB1 and its receptor ITGB4 were
overexpressed in myeloid cells and B cells, respectively (Figure
S4H). Patients with higher expression of LAMB1 have a superior
prognosis (Figure 4C). ITGB4 is also a significant prognostic
indicator tested by the TARGET cohort (Figure 4D). Besides,
patients with higher expression of HRAS and VEGFB have worse
prognoses (Figures 4E, F, S4I, J). Both of them are closely related
to tumorigenesis and progression. GO analysis indicated that
these ligand–receptor pairs in the crosstalk from myeloid cells to
B cells were mainly related to leukocyte migration, cell
proliferation, and cell activation (Figure 4G).

LASSO Model Based on Ligand–Receptor
Pairs Precisely Predicted BCP-ALL
Patient Prognosis
The results of cell–cell communication in BCP-ALL revealed that
significantly expressed ligand–receptor pairs might play a key
role in leukemogenesis and progression. A machine learning
model was built to predict the prognosis for BCP-ALL patients
based on these pairs identified above. The principal component
analysis was performed, with the expression level of ligand–
receptor pairs in 14 different BCP-ALL subtypes which were
classified in our previous study (17). The result showed little
difference in the expression level of these ligand–receptor pairs
across all the 14 BCP-ALL subgroups (Figure S7A).

To develop the prognostic model, a curated TARGET cohort
with 133 BCP-ALL samples was used as training cohort and
samples from our previous BCP-ALL cohort were used as
validation cohort (see methods). The overall process is shown
in Figure 5A (46, 47). First, we fitted a LASSO regression model
using the expression levels of ligand–receptor pairs. After
performing 1,000 leave-10%-out cross-validation replications,
the coefficients of 18 genes were found to be non-zero in at
least one of these 1,000 evaluations (Table S5). And the
coefficients of 11 genes were presented in at least 950 of 1,000
analyses (Figure S7B). Then we calculated an LR (ligand–
receptor) score for each patient using the expression of these
15 genes, weighted by the regression coefficients, as defined in the
LASSO model. The equation is LR score = (ITGB4 × −0.263) +
(SDC1 × 0.177) + (GPC2 × −0.13) + (TLR6 × −0.0838) +
(CEACAM1 × −0.0607) + (JAG1 × 0.058) + (NOTCH3 ×
0.0501) + (LDLR × −0.0469) + (ACVR2B × −0.0511) + (SLIT2
× −0.0191) + (TIE1 × −0.00592). We further used a recursive
partitioning Cox regression model to dichotomize patients. After
pruning the regression tree, patients in the curated TARGET
cohorts with different LR scores were divided into a low-LR score
group (n = 65, 50%), and a high-LR score group (n= 65, 50%).
The overall survival (OS) of these two groups is remarkably
different. Higher LR scores were predictive of inferior OS in
TARGET cohort (HR = 8.27, 95% CI = 4.27–16.04, p < 0.0001)
(Figure 5B).

To further confirm the robustness of the LASSO model, an
independent cohort with 295 pediatric and 85 adult BCP-ALL
patients was used as a validation cohort (19, 24, 25, 48). The LR
score was computed with the equation defined above. A similar
result was observed in pediatric patients. Based on the recursive
March 2021 | Volume 11 | Article 639013
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portioning cutoff, the high-LR score group (n=61, 21%)
demonstrated worse OS than the low-LR score group (n = 234,
79%), and the range of HR was 4.56 (95% CI = 2.08–10,
p < 0.0001, Figure 5C). Although these ligand–receptor pairs
were identified using scRNA-seq data of pediatric BCP-ALL
patients, the prognostic power of the LR score in the 97 adult
BCP-ALL patients (17) was also significant (HR = 2.99, 95% CI =
1.26–7.14, p = 0.009, Figure S7C). Multivariate analysis was
performed with the Cox-proportional hazard model to check the
Frontiers in Oncology | www.frontiersin.org 7
individual risk factor. In the pediatric validation cohort, after
adjusting for gender and risk group, the LR score remained an
independent predictor of worse OS (HR = 2.45, 95% CI = 1.06–
5.7, p = 0.036 Figure 5D). The same was true for the adult
validation cohort (HR = 2.8, 95% CI = 1.18–6.8, p = 0.019, Figure
S7D). All of these results demonstrate that the robust machine
learning model built with ligand–receptor pairs has promise for
identifying high-risk BCP-ALL patients and may have a role as a
primary consideration for developing different treatment strategies.
A

C

F

D E

B

FIGURE 3 | Cell–cell-communication from B cells to myeloid cells. (A) Ligand–receptor pairs of the signaling network from B cells to myeloid cells. Red and green
squares represent ligands and receptors, respectively, and arrows point from ligands to receptors. (B–E) Kaplan-Meier survival for UBC, MDK, LIN7C, and NRTN in
curated TARGET BCP-ALL P2 cohort. (F) GO pathway enrichment analysis for ligand–receptor pairs in the crosstalk from B cells to myeloid cells.
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FIGURE 4 | Cell–cell-communication from myeloid cells to B cells. (A) Ligand–receptor pairs of the signaling network from myeloid cells to B cells. Red and green
squares represent ligands and receptors, respectively, and arrows point from ligands to receptors. (B–F) Kaplan-Meier survival for B2M, LAMB1, ITGB4, HRAS, and
VEGFB in the curated TARGET BCP-ALL P2 cohort. (G) GO pathway enrichment analysis for ligand–receptor pairs in the crosstalk from myeloid cells to B cells.
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DISCUSSION

Cellular composition and cell–cell communication are two
important aspects of TME. In hematological malignant
neoplasms, such as BCP-ALL, a deep understanding of cell–cell
interactions in the bone marrow can help us to investigate the
leukemogenesis and progression and support the development of
new drugs and therapies. In the current omics studies of BCP-
ALL, which mainly focus on bulk RNA-seq, the promotion of
scRNA-seq reveals the landscape of TME at cellular level
resolution and make it possible to investigate the cell–cell
communications. In this work, we analyzed a large scale of
Frontiers in Oncology | www.frontiersin.org 9
scRNA-seq profile in seven BCP-ALL pediatric samples and
four healthy samples. By classifying and identifying each cell
cluster (Figures 1D, E), we found B cells from both BCP-ALL
and healthy samples were mixed. This may indicate that the
biological characteristics of proliferating tumor B cells were
presented in a way that was similar to normal B cells.
However, compared to both B cells from healthy samples and
other cell types from BCP-ALL samples, tumor B cells had higher
CNV level (Figure 1G), revealing that the accumulation of
genetic abnormalities was mainly focused on B cells during
leukemic progression.
A B

C

D

FIGURE 5 | LR score based on LASSO regression model predicts inferior OS in pediatric BCP-ALL patients. (A) Overall scheme for constructing LASSO prognostic model.
(B, C) High LR scores predict poor OS in the TARGET and pediatric validation cohort, respectively. (D) Forest plot of multivariable Cox-proportional hazard model showing LR
score as an independent prognostic factor for OS in the pediatric validation cohort. Within forest plot, * indicates P-value < 0.05, *** indicates P-value < 0.001.
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T cells appeared in the largest proportion in the TME of BCP-
ALL. Although previous studies of solid tumors have explored the
interaction between T cells and tumor cells (49, 50), other work
revealed that myeloid cells also play an important role in the TME
of BCP-ALL (5). However, our understanding of the interactions
involved in myeloid cells in TME remains limited. In this study, we
focused on the two ways to explore the cell–cell communication: the
autocrine way for B cells of tumor samples, and the paracrine way
between myeloid cells and malignant B cells. Interestingly, this
revealed that a considerable number of ligand–receptor pairs were
closely associated with tumorigenesis and progression. For example,
the CTHRC1-FZD6 pair and the APP-TNFRSF21 pair may
significantly promote tumorigenesis and the proliferation of
cancer cell (34–36). And the LAMB1-ITGB4 pair has been
hypothesized to be involved in tumor invasion and EMT (51).
LAMB1 has also been shown to be a potential biomarker for some
cancers, such as colorectal cancer and multiple myeloma (52, 53).
Pairs of UBC-LDLR and MDK-GPC2 are widely overexpressed in
various cell types of the BCP-ALL bone marrowmicroenvironment,
participating in many processes of tumor development (37, 54). The
ligand gene B2M takes center stage in the crosstalk from myeloid
cells to B cells. It has been demonstrated in several studies that the
elevated expression level of B2M is historically associated with poor
outcome in several lymphoproliferative disorders, such as AML,
myelodysplastic syndrome, and ALL (55). Similar results were
found in our study (Figure 4B). Several genes in ligand–receptor
pairs showed significant correlations with the clinical outcomes of
pediatric BCP-ALL patients. To better predict prognosis, a machine
learning model based on LASSO regression was built based on the
determined ligand–receptor pairs. In the pediatric validation cohort,
the prognosis for the high-LR score group was significantly worse
than for the low-LR score group. Although these ligand–receptor
pairs were assessed with pediatric BCP-ALL samples, our prognostic
model achieved good performance in the adult validation cohort.
This suggests that the prognostic model could help support the
clinical decisions for both adult and pediatric BCP-ALL patients.
And to further test the predictive efficiency of LR score, we applied
our model in 36 tumor cohorts of TCGA. The results showed that
LR score had good predictive power in a considerable number of
tumors, such as acute myeloid leukemia (AML), skin cutaneous
melanoma (SKCM) and uveal melanoma (UVM), of which AML
was the most significant. It may indicate that LR score has strong
predictive potential for prognosis in hematological malignant
neoplasms (Figure S8).
Frontiers in Oncology | www.frontiersin.org 10
In conclusion, via integrated analyses of scRNA-seq and bulk
RNA-seq data for BCP-ALL, we presented a comprehensive
landscape of the autocrine crosstalk network of neoplastic B
cells and the paracrine communication network between B cells
and myeloid cells. Based on the significant ligand–receptor pairs,
a LASSO regression model was built to predict the prognoses for
both pediatric and adult patients. These identifications shed light
on BCP-ALL pathogenesis and have the potential to improve the
clinical diagnosis for BCP-ALL patients.
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