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Computational learning of features 
for automated colonic polyp 
classification
Kangkana Bora1, M. K. Bhuyan2, Kunio Kasugai3, Saurav Mallik4 & Zhongming Zhao4,5,6*

Shape, texture, and color are critical features for assessing the degree of dysplasia in colonic polyps. 
A comprehensive analysis of these features is presented in this paper. Shape features are extracted 
using generic Fourier descriptor. The nonsubsampled contourlet transform is used as texture and 
color feature descriptor, with different combinations of filters. Analysis of variance (ANOVA) is applied 
to measure statistical significance of the contribution of different descriptors between two colonic 
polyps: non-neoplastic and neoplastic. Final descriptors selected after ANOVA are optimized using the 
fuzzy entropy-based feature ranking algorithm. Finally, classification is performed using Least Square 
Support Vector Machine and Multi-layer Perceptron with five-fold cross-validation to avoid overfitting. 
Evaluation of our analytical approach using two datasets suggested that the feature descriptors could 
efficiently designate a colonic polyp, which subsequently can help the early detection of colorectal 
carcinoma. Based on the comparison with four deep learning models, we demonstrate that the 
proposed approach out-performs the existing feature-based methods of colonic polyp identification.

Early detection of disease especially cancer can save millions of lives and substantially reduce the healthcare 
and economic burden. Numerous techniques have been developed and routinely used for early detection and 
disease screening, helping our society to reducing the vulnerability of disease at a large  extent1,2. One such tech-
nique is colonoscopy, which has become increasingly popular for early detection and prevention of colorectal 
carcinoma. Colonic polyps occur frequently and are more lethal than other types. ‘Polyp’ generally describes 
a mass of tissue over-grown into the lumen of the gastrointestinal  tract3. The World Health Organization has 
recommended a thorough colonoscopy examination every three years for patients having colonic  polyps4. The 
current process of colonoscopy examination and abnormality detection is based on subjective analysis of the 
level of abnormality present in a polyp. For the colonoscopy examination, an endoscope scans the whole colon 
in real time. When the endoscopists find a polyp, they comprehensively study the characteristics of the polyp and 
assess the level of its abnormality. If the polyp is normal, it can be simply removed through surgical procedures. 
Otherwise, biopsy sample is collected from that region for further examination such as pathological assays. 
Since polyps belonging to different categories have only minimal difference in texture, manual categorization is 
not recommended. Nevertheless, observation bias may lead to an erroneous diagnosis. In this work, automated 
feature analysis is performed for the classification of polyps into two classes, i.e., neoplastic (abnormal) and 
non-neoplastic (normal) polyps.

During the visual examination of the polyps, the physicians check different morphological features including 
shape (sessile or stalked, irregularity in boundary, size of the region, etc.), surface (e.g., irregularity on the surface, 
color change) and contour (namely smooth to lobular, nodular, fingerlike, etc.) to classify them into different 
categories (neoplastic and non-neoplastic). In this work, an efficient automated feature representation scheme is 
proposed for shape, texture, and color features. Andreu-Perez et al5 mentioned the importance of understanding 
the biological processes, which requires the identification and representation of structure-function relationships. 
In this work, we mainly focus on quantifying the morphological features with proper guidance of physicians.
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Colonoscopy image processing has been an area of active research. Studies cover polyp localization and 
 segmentation6, as well as feature analysis for various applications. 3-D reconstruction and polyp segmentation in 
endoscopic videos are also reported in the  literature7. There are many studies of the classification of polyps using 
traditional and deep feature learning based methods. In this work, we propose a feature representation scheme 
for polyp classification. Our goal is to make it more effective on detecting and classifying polyps.

Fu et al8 have worked on a large dataset comprising 365 generated images. They extracted texture features 
from the first component of the principal component transform, representing both spatial and spectral domains. 
Sequential forward selection (SFS) and sequential floating forward selection (SFFS) were used to select the 
input feature vectors for classification using machine learning method support vector machine (SVM). Hafner 
et al9 proposed a color vector field followed by computing the similarity between neighboring pixels to describe 
local texture properties. The resulting feature descriptor is a compact 1D-histogram, which is subsequently 
used for classification by k-nearest neighbors (KNN) classifier. Mesejo et al10 proposed 2D texture features, 2D 
color features, and 3D shape features for a three-class polyp classification. For texture features, invariant gabor 
features and rotational invariant LBP features were used. Shape-DNA and kernel-PCA are used for extracting 
the 3D shape features. Here, PCA refers to principal component analysis. Wimmer et al11 have studied curvelet, 
contourlet, and shearlet transform features. In  reference12, invariant Gabor texture descriptors were explored 
followed by classification using SVM. Engelhardt et al13 proposed color-GLCM and color-LBP features for clas-
sification using SVM. In  reference14, Bag of words descriptors with spatial pyramid matching (SPM) is used for 
polyp classification. Sasmal et al.15 also worked on texture features using Gabor filter banks in the initial stage 
followed by discrete cosine transform (DCT) upon the sub-bands.

Recently, deep learning models have been applied for  classification16–18. Akbari et al19 applied the CNN model 
and achieved an accuracy of 90.28%. Wang et al20 developed a deep learning approach on their own generated 
dataset and achieved sensitivity of 94.38%. Urban et al.21 used VGG16, VGG19, and ResNet50 for their dataset to 
classify colonic polyps. They claimed to achieve an accuracy of 96% for classifying polyps on a generated dataset 
of size 8641 collected from 2000 patients. Sebastian et al22 tried to classify colon polyps based on the Kudo’s 
classification schema using VGG16 filter as feature extraction method and achieved an accuracy of 83%. Chen 
et al.23 have also worked on accurate classification of colorectal polyps using DNN and acheived a sensitivity of 
96.3%. Ozawa et al24 have also applied CNN names as Single Shot Multibox Detector to get sensitivity of 92%. 
A comprehensive review on application of deep learning in colon cancer is provided by Pacal et al25. There are 
some other recent works on endoscopy image analysis with specific focus on gastric cancer, which has greatly 
enhanced the field of computer aided detection and  diagnosis26–29.

In the present work, shape feature is extracted using Generic Fourier Descriptor (GFD), while texture and 
color components are obtained by NonsSubsampled Contourlet Transform (NSCT) with different filters. Analysis 
of Variance (ANOVA) is used to evaluate the statistical significance in the contribution of different feature vec-
tors between two classes. In the next step, feature selection is performed by fuzzy entropy-based feature ranking 
algorithm, resulting in optimized feature set. This feature set is then classified using two popular classifiers: 
Least Square Support Vector Machine (LSSVM) and Multi-Layer Perceptron (MLP). Finally, classifier selection 
is performed based on six measures: accuracy, specificity, sensitivity, precision, f-score, and g-mean. Five-fold 
cross-validation is used for performance evaluation and assessment on over-fitting. Our extensive experiments 
show that the proposed method outperforms the existing feature-based (conventional) approaches for colonic 
polyp detection. To evaluate the robustness of the proposed work, we evaluated the proposed approach by using 
two datasets, a generated dataset and a publicly available dataset. The proposed work is compared with four 
classical deep learning models.

Results
General implementation. All the experiments are performed using MATLAB (The MathWorks, Inc., 
Natick, Massachusetts, United States) and Lenovo pc (3.20 GHz, Intel Core i5, 4 GB Ram, 64 bit OS). Statistical 
works are performed using SPSS, version 16 (Statistical Package for the Social Sciences) (Fig. 1 shows the over-
view of the experimental framework and Fig. 2 shows the dataset used for the study. Details of the same has been 
included in Materials and Methods section.). 

Results before feature selection. Initially, classifications are performed for all the feature sub-sets for 
four datasets, viz. FVDB1−NBI , FVDB1−WL , FVDB2−NBI , and FVDB2−WL , without applying feature optimization. 
Results are shown separately for shape (Fig. 3) and NSCT (Fig. 4) for proper visualization. Accuracy is used 
as an assessment measure for two classifiers, namely LSSVM and MLP. For shape features, accuracy for all the 
datasets (displayed along Y-axis of Fig. 3) are in the range of 75% - 90%. For NSCT, (pyrexc,pkva) filter has the 
best result with accuracy 91.83 % (for FVDB1−NBI ), 88.88% (for FVDB1−WL ), 91.30% (for FVDB2−NBI ) and 85.56% 
(for FVDB2−WL ) by using MLP. It is observed that ‘pyrexc’ NSPF works the best. This filter is derived from 1D 
using the maximal mapping function with two vanishing moments but exchanging two high pass filters. It can 
represent smooth edges efficiently. Further, ‘pkva’ NSDFB works better than ‘sinc’ as it is used to capture the 
high frequency content of the images like smooth contours and directional edges. It has the best PSNR perfor-
mance. Due to this property, ‘pkva’ performs the best on real colonoscopy images, which has complex features to 
interpret. Five-fold cross-validation is applied for training and testing the models. For final accuracy, the average 
accuracy is considered after training and testing for five times. Between feature representation schemes F1 and 
F2, F1 is giving better accuracy than F2. For in-depth analysis of these feature vectors and filters along different 
classes, the ANOVA test is applied which is in the following section.
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Evaluation of statistical significance test and final feature set design. We intended to analyze 
whether feature values were affected significantly along with different classes and transform filters for two dif-
ferent feature representation schemes F1 and F2. To this end, ANOVA was conducted considering the feature 
values as dependable variables (DVs) and the two factors as fixed factors, namely classes and transform filters 
(only for NSCT). In a statistical test of a hypothesis, its significance value indicates how the result is different (or 
better) than that by null hypothesis. A small significance value (p< 0.05) indicates the reliable evidence against 
the null hypothesis. In this case, the two null ( H0 ) and alternate ( H1 ) hypotheses are: 

1. HC
0  : (There exists no significance differences of feature values for different Classes) Vs HC

1  :( Feature values 
differ between classes)

2. HF
0  : (There exist no significance differences of feature values for different filters) Vs HF

1  :( Feature values differ 
between the filters)

Figure 1.  Overview of the proposed work, DB1: Dataset 1, DB2: Dataset 2, C1: Class 1, C2: Class 2.

Figure 2.  Dataset details with sample images, C1: non-neoplastic samples, C2: neoplastic samples. (a) Brief 
information (viz., type, sample class and total number of images for each sample class) of both the datasets, 
DB1 and DB2. (b) The sample images of NBI and WL types for dataset DB1. Interestingly, these images here 
are taken from own generated dataset DB1 obtained from Aichi Medical University, Japan [approved by Aichi 
Medical University ethical committee (January 15, 2018; approval no. 2017-H304)]. Information on the dataset 
is available in Sub-section ‘Clinical Information’. The layout of the complete figure has been generated in Photo 
Image Editor Pixelstyle software which is an open source software (URL to download the software: https ://apps.
apple .com/us/app/photo -image -edito r-pixel style /id124 46492 77?mt=12).

https://apps.apple.com/us/app/photo-image-editor-pixelstyle/id1244649277?mt=12
https://apps.apple.com/us/app/photo-image-editor-pixelstyle/id1244649277?mt=12
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where C= Classes, F= Features.
The results are shown in Table 1.
Observation based on class as a fixed factor As shown in Table 1, for feature representation scheme F1, class 

revealed overall influence of DVs to a highly significant level only for GFD and NSCT for both datasets. For 
feature representation scheme F2, no significant difference is showing along different classes for both datasets. 
For classification, the factor ‘class’ must reveal overall influence of DVs to a highly significant level. On this basis, 
we can conclude that only GFD and NSCT can be used for feature extraction. Moreover, feature representation 
scheme F1 is more efficient than F2 as obtained from the statistical significance test. It can be concluded that 
mean and variance is not sufficient to represent the transform coefficients.

Figure 3.  Result of shape features before feature selection.

Figure 4.  Result of NSCT features before feature selection.

Table 1.  Summary of statistical significance of feature vectors. *Less than ‘5% level of significance’.

GFD

F1 F2

NSCT DWT CRT CVT RT NSCT DWT CRT CVT RT

Class 0.000* 0.000* 0.826 0.671 0.544 0.066 0.000* 0.516 0.072 0.089 0.051

Filters NA 1 0.59 0.321 0.577 0.59 0.964 0.72 1 1 0.814

WL

Class 0.000* 0.000* 0.606 0.121 0.611 0.077 0.000* 0.061 0.061 0.789 0.022

Filters NA 0.1 0.725 0.613 0.217 0.1 0.1 0.1 0.121 0.111 0.112
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Observation based on filters as a fixed factor There is no significant difference in feature values along differ-
ent transform filters for NSCT. Thus, we have decided to consider the filter which is giving best accuracy in the 
classification (from Fig. 4).

The statistical significance of the transforms DWT, CRT, CVT and RT is checked for identifying degree of 
abnormality. The results showed in Table 1 indicate that they were statistically insignificant and feature values 
were not affected along with different classes. Hence, we can conclude that NSCT is a better transform than DWT, 
CRT, CVT, and RT for colonoscopy polyp feature study.

Observation based on correlation Further, we have applied Pearson’s correlation (r) on feature vectors. r is 
a measure of the strength of the association between the two variables. Before considering the final classifica-
tion, it is desirable to perform experiments on uncorrelated data for obtaining higher performances. Result of 
r values is displayed in Fig. 5. In this figure, highly correlated values are marked with black cells. The matrix 
representation will help to understand which feature vectors are highly correlated. As a result, we have found 
that GFD, and NSCT are not correlated but they are independent. However, F1NSCT and F2NSCT are correlated as 
expected because they are obtained from the same coefficients, only with different distribution fitting. Hence, we 
can conclude that GFD, and NSCT are independent with each other, and hence be considered for classification.

Final feature set design. Based on the statistical test ANOVA, we have selected the following feature sets 
for DB1 and DB2.

Shape feature representation using GFD as,

Texture and color feature representation using NSCT (pyrexc,pkva) is as follows. F1 performs better than F2. 
That is why final feature representation scheme for NSCT is F1.

Shape, texture and color features are obtained from the following

Since MLP classifier performance is better than LSSVM, therefore final classifier selected for the study is MLP 
(based on accuracy as selection measure).

Feature selection. Fuzzy based feature ranking is performed in this work. In doing so, fuzzy entropy 
based feature selection is applied for ranking the features. Based on the ranking, feature dimensions of size 
k = 6, 12, 18, 24, . . . ,m have been designed, where m = 36 for GFD and m = 66 for NSCT. The minimum 
feature dimension is considered as 6, because the dimension, as lower than this value would yield low accu-
racy. Accordingly, classification using MLP is performed for all dimensional features. Finally, peak accuracy is 
selected, and corresponding dimensions are obtained. Graph of accuracy along different dimensional features 
are shown in Fig. 6 for shape and Fig. 7 for NSCT. Peak amplitude is displayed in the graphs with its correspond-
ing dimension. There is a significant reduction in feature dimension, which is improving the overall accuracy 
of the classification. A comparative analysis is displayed in Fig. 8 where we can observe the reduction in feature 
dimension along four data sets. Change in accuracy using different feature descriptors GFD (for shape), NSCT 

(1)fv(Shape) = f GFD

(2)fv(texture + color) = f NSCT(pyrexc,pkva)

(3)fv(shape + texture + color) = f GFD ∪ f NSCT(pyrexc,pkva)

Figure 5.  Feature correlation.
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(for texture and color) and GFD+NSCT (for shape, texture, and color) are shown graphically in Fig. 9. We can 
observe the increase in accuracy in all the cases, which proves that feature ranking play a major role in removing 
redundancy. The statistical significance of the final selected feature vectors have been performed using inde-
pendent sample based t-test or student’s t-test30. Here, sig ≤ 0.01 value indicates the ‘1% level of significance’ 
and sig ≤ 0.05 indicates ‘5% level of significance’ . The results are displayed in Table 2, where all the significant 
features are highlighted with the symbool ‘*’.

Results after feature selection. We use six measures, namely accuracy, sensitivity, specificity, precision, 
recall, f-measure, g-mean, to assess performance. All the results along with two different datasets are listed in 
Table 3. The results are highly satisfactory with GFD+NSCT feature, which is giving highest accuracy of 95.24% 
(for DB1-NBI) and 94.68% (for DB1-WL). It is also showing consistent performance in the downloaded data-
base with an accuracy of 95.72% (DB2-NBI) and 94.66% (for DB2-WL). Other measures are listed in Table 3. 
This implies that shape, texture and color are critical in describing the feature of a polyp.

Comparison with the existing work. For fair comparison, we have selected only those existing works 
that mainly concentrated on the classification of polyps using specific features. We have selected DB2-NBI data-
sets for comparison and only two levels of classification (neoplastic and non-neoplastic). Four conventional 
machine learning methods were compared. The comparative results are listed in Table 4. In Approach  110, Invari-
ant Gabor Texture, Rotational Invariant LBP was used for 2D texture feature analysis, while for 2D color features 
they have investigated Color naming, Discriminative Color, Hue, Opponent, color GLCM. And 3D shape fea-
tures were analyzed using Shape-DNA and Kernel- PCA. In Approach  212, Invariant Gabor texture descriptors 
were classified using SVM, Approach  313 uses color GLCM with kNN as classifier. In Approach  414, Bag of Words 
descriptors with Spatial Pyramid matching were applied. In Table 4, our proposed approach outperforms the 
four existing ones for colonic polyp classification.

We did the second comparison with a deep learning work by Urban et al21 (Approach 5 in Table 4). We 
have tested their architecture on the dataset DB2-NBI and achieved an accuracy of 92.6% with loss of 0.2234, 
indicating that our proposed work is efficient enough to generate result as deep learning. Note that the running/
training time of the proposed algorithm is much lower than the compared approaches. Also, our model have 
total control on the feature engineering process unlike the deep learning models where features are very difficult 
to explain, control and interpret.

As a statistical validation, we performed a statistical significance test (paired t-test) of those scores of each 
evaluation metric (e.g., accuracies, sensitivity, specificity, precision, recall, F-score, and G-mean) individually 

Figure 6.  Feature selection in GFD.
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between our proposed method and each state-of-the-art method in pairwise manner and computed a statistical 
significance level (p value). If p value is less than 0.05, the corresponding pairwise comparative result in terms 
of that specified evaluation metric will be statistically significant (i.e., significantly win of our proposed method 
over that other method in terms of the specific evaluation metric). In summary, we obtained 11 significant wins 
among a total of 29 pairwise comparisons in our whole comparison experiments .

Figure 7.  Feature selection in NSCT.

Figure 8.  Change in feature dimension.
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The proposed work is compared with four popular deep learning models, namely  VGG1631,  VGG1931, 
 ResNet5032, and GoogleNet Inception  V333. These models are trained and tested with the limited dataset with 
augmentation. Augmentation method used are cropping, shearing, rotation ( 450, 900, 1200 ) mirroring, skew-
ing (left and right), inverting, and zooming. Different parameters considered are as follows - VGG 16/VGG 19/
ResNet 50: batch-size = 32, epoch = 12, ver-bose = 1. For fine tuned version, we have flattened the last layer, and 
fine-tuned with ReLU activation and adadelta optimizer. For GoogLeNet-V3 fine-tuned model, the hyperparam-
eters in the trained model were: batch-size = 32, number-of-epochs = 12, sgd-learning-rate = 1e–4, momentum 
= 0.9, transformation-ratio = 0.05. Table 5 displayed the results recorded from the experiments performed 
on DB2-NBI. Here GoogleNet Inception V3 the hyperparameters in the trained model were: batch-size = 32, 
number-of-epochs = 12, sgd-learning-rate = 1e–4, momentum = 0.9, and transformation-ratio = 0.05. Here, 
for GoogleNet Inception V3 shows a satisfactory result with an accuracy of 94.79%. Our proposed method 
competes well with an accuracy of 95.7%. Although the deep learning model may work well, currently there are 
not enough large data for training. When sample (feature) size is not large, deep learning models are expected 
to lose power, leading to low prediction.

Materials and methods
Clinical information. In the recent years, there are many studies to explore the applications of computer 
vision in early colonic carcinoma detection. To this end, some researchers have generated own datasets while 
others have used publicly downloaded datasets. Their objectives are different: some have targeted only on locali-
zation of polyps, while others have concentrated on significant frame recognition, classification, among others. 

Figure 9.  Change in accuracy.

Table 2.  Statistical significance test on selected features using fuzzy entropy. *Significant difference in 
Independent Sample t-test w.r.t. classes assigned.

F Sig

DB1_NBI

GFD 4.08 0.044197∗

NSCT 5.28 0.022133∗

NSCT+GDF 5.28 0.022135∗

DB1_WL

GFD 12.50 0.003331∗

NSCT 13.40 0.000331∗

NSCT+GDF 13.42 0.000030∗

DB2_NBI

GFD 0.92 0.340670

NSCT 1.22 0.057600

NSCT+GDF 7.56 0.007670∗

DB2_WL

GFD 0.92 0.345100

NSCT 2.67 0.108229

NSCT+GDF 8.11 0.006175∗
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Table 3.  Results of final classification for three different feature vectors used.

Features
Previous feature 
vector size

New feature 
vector size

Avg. accuracy Avg. sensitivity Avg. specificity Avg. precision Avg. recall Avg. F-measure Avg. G-mean

(±std) (±std) (±std) (±std) (±std) (±std) (±std)

DB1_NBI

GFD 36 18 89.23 (±1.93) 94.05 (±1.43) 82.86 (±1.51) 92.94 (±3.93) 94.05 (±2.03) 93.49 (±1.54) 88.28 (±3.55)

NSCT 66 60 93.33 (±2.64) 93.28 (±3.02) 93.41 (±2.23) 96.26 (±2.42) 94.28 (±3.34) 95.67(±1.99) 93.81 (±3.77)

NSCT+GFD 102 78 95.24 (±0.77)∗ 95.77 (±0.91)∗ 91.79 (±1.33) 96.33 (±0.56) 96.77 (±1.11) 96.56 (±0.23) 94.25 (±1.21)

DB1_WL

GFD 36 30 92.22 (±1.66) 92.12 (±2.33) 90.56 (±3.01) 91.65 (±1.22) 96.31(±0.66) 95.14 (±0.91) 90.12 (±0.66)

NSCT 66 24 92.59 (±1.32) 90.12 (±2.66) 92.88 (±3.78) 92.56 (±0.66) 91.76 (±1.04) 89.56 (±1.78) 89.31(±2.76)

NSCT+GFD 102 78 94.68 (±1.12) 95.11 (±0.78) 92.73 (±1.98) 94.01 (±0.82) 90.16 (±2.79) 94.67 (±0.88) 94.33 (±0.45)

DB2_NBI

GFD 36 18 93.13 (±0.55) 90.00 (±1.78) 90.91 (±1.97) 89.89 (±2.11) 90.00 (±1.47) 94.21 (±0.51) 95.28 (±0.22)

NSCT 66 36 95.12 (±0.45) 96.62 (±0.39) 90.00 (±1.23) 94.62 (±0.67) 94.62 (±0.67) 94.62 (±0.86) 92.28 (±0.99)

textbfNSCT+GFD 102 54 95.72 (±0.77) 95.31 (±0.91) 95.00 (±0.20) 93.22 (±1.00) 92.15 (±1.86) 90.45 (±2.91) 94.67 (±0.67)

DB2_WL

GFD 36 18 94.11 (±1.22) 93.45 (±1.59) 92.55 (±1.77) 92.1 (±1.26) 92.1 (±0.29) 89.76 (±2.11) 89.31 (±0.89)

NSCT 66 24 91.30 (±1.91) 90.61 (±2.10) 90.12 (±2.11) 88.76 (±3.19) 89.54 (±3.20) 88.37 (±3.76) 89.31 (±2.77)

NSCT+GFD 102 42 94.66 (±1.46) 92.22 (±1.21) 90.15 (±2.33) 93.76 (±1.67) 94.14 (±1.42) 90.26 (±1.97) 90.66 (±1.55)

Table 4.  Comparative classification performance of our proposed method in compared to state-of-the-art 
methods. *Significant difference in the corresponding evaluation metric between our proposed method and 
the corresponding method in paired sample t-test. Bold value indicating the best score of the corresponding 
evaluation metric (column) among all methods.

Method
Avg. 
accuracy

Avg. 
sensitivity

Avg. 
specificity

Avg. 
precision Avg. recall Avg. F-Score Avg. G-mean

(±std) (±std) (±std) (±std) (±std) (±std) (±std) (±std)

Proposed Conventional 95.72 (±0.77) 95.31 (±0.91) 95.00 (±0.20) 93.22 (±1.00) 92.15 (±1.86) 90.45 (±2.91) 94.67 (±0.67)

Approach  110 Conventional 89.47 
(±1.56)* 94.55 (±0.52) 76.19 (±3.21) 91.23 

(±1.02)* 94.55 (±1.77) 92.86  
(±1.32)* 84.87 (±2.77)*

Approach  212 Conventional 84.21 (±2.69) 90.91 (±1.78) 66.67 (±3.57) 87.72 (±3.18) 90.91 
(±1.52)*

89.29 
(±2.79)* 77.85 (±2.77)

Approach  313 Conventional 64.47 (±3.97) 74.55 (±4.77) 38.10 (±7.72) 75.93 (±3.77) 74.55 (±5.64) 75.23 (±2.11) 53.29 (±5.42)

Approach  414 Conventional 73.68 (±3.64) 96.18 
(±0.22)*

90.52 
(±0.57)* 73.97 (±2.91) 98.18 

(±0.22)*
84.38 
(±0.57)* 30.58 (±5.11)

Approach  521 Deep Learn-
ing

92.60 
(±1.35)* – – – – – –

Table 5.  Comparative study of accuracy and loss between our proposed method and state-of-the-art deep 
learning models. Bold value indicating the best score of the corresponding evaluation metric (e.g., accuracy or 
loss) among all methods.

Average accuracy Average loss

Proposed 95.72 0.1811

VGG16 82 0.3889

VGG 16 fine tuned 92 0.2054

VGG19 69 0.6894

VGG 19 fine tuned 91.5 0.1823

ResNet50 63 1.2118

ResNet50 fine tuned 68.5 1.1102

GoogleNet Inception V3 90.71 0.3011

GoogleNet Inception V3 fine tuned 94.79 0.2011
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Because of these diversities, comparison with the existing works is not convenient. Challenges of existing studies 
include unavailability of the generated datasets, difficulty in assessing the quality of the images, unavailability of 
ground truths, among  others10. Keeping all these challenges in mind, we have performed our experiments on two 
datasets, one was generated and the other was a public dataset. We attempted to prove that the results obtained 
from the experiments are consistent between the two datasets. For comparison purpose, we have worked on 
benchmark of the publicly available dataset only.

Dr. Kunio Kasugai prepared the generated dataset (DB1) at the Department of Gastroenterology, Aichi Medi-
cal University, Nagakute, Japan, following proper ethical protocols. All methods were carried out in accordance 
with relevant guidelines and regulations. Prior to colonoscopy examination, the consent of the patients from all 
subjects has be collected. For generating the dataset, Kasugai has used both Narrow Band Imaging (NBI) and 
high definition White Light imaging (WL) colonoscopy. Two videos were recorded per patient, one through NBI 
approach and the other through WL approach. Then he identified the keyframes where the polyp is appropri-
ately visible. Only those significant frames are retained in the dataset and used in the experiments. Video frame 
extraction and polyp tracking are not considered in this study, as those are entirely different fields of work. Total 
images included in the study is shown in Fig. 2 along with a sample dataset. Only two classes are included for the 
study, namely neoplastic and non-neoplastic. This study has been approved by Aichi Medical University ethical 
committee (January 15, 2018; Approval No. 2017-H304). The collection of data was approved by the institutional 
review board of Aichi Medical University and the patients were given the opportunity to opt-out. All endoscopic 
images were de-identified prior to their inclusion in the data set.

The dataset2 (DB2) is downloaded from http://www.depec a.uah.es/colon oscop y_datas et/. The details of this 
dataset are given in Fig. 2a. Both the datasets are composed of frames taken from colonoscopy videos captured 
using two modalities, namely Narrow-band Imaging (NBI) and White Light (WL). Ground truths of all the 
images are prepared and verified by the experts.

Overview of the analytical approach. The overview of the proposed work is displayed in Fig. 1. This 
work has five major phases as follows. 

1. Phase 1 - Dataset generation: A dataset has been generated during this phase with two types of images, namely 
NBI (Narrow Band Imaging) and WL (White Light), and with two groups of images in each type, i.e. non-
neoplastic and neoplastic.

2. Phase 2 - Feature extraction: Shape, text and color features are extracted. Shape feature is extracted using 
GFD. Texture and color features are extracted using NSCT with different combination of filters.

3. Phase 3 - Statistical significance test: ANOVA is performed to examine whether there is any significant dif-
ference among feature vectors along multiple classes and filters. Finally, only significant feature descriptors 
are selected for final analysis.

4. Phase 4 - Feature selection and final feature set design: Fuzzy entropy based feature ranking algorithm is used 
for feature optimization.

5. Phase 5 - Classification: Classification is performed using LSSVM and MLP. Assessments are performed 
using six measures. The final classes will give the degree of colorectal carcinoma namely non-neoplastic and 
neoplastic.

A brief description on the methods applied is included in the following sub-sections.

Shape descriptor GFD. During polyp identification and classification, physicians always prioritize shape 
features among all others. Major factors include size of the polyp region, irregularity in the polyp, thickness, etc. 
Some good descriptors are always recommended in the digital domain to quantify the shape features. Shape 
descriptors mainly divided into two broad categories, namely contour-based and shape-based. Contour-based 
shape descriptor only concentrates on boundary information avoiding all shape interiors. However, region-based 
descriptors provide shape information based on all the pixels within a region, which makes it more favorable 
than the contour-based. In many publications, moments are found to represent the region-based shape descrip-
tors. For two examples, Hu et al34 proposed two-dimensional moment invariant and Kim et al35 presented a 
descriptor which is invariant to rotation, scale, and translation. More works can be found in  References36–38. 
Zernike moment is considered to be one such strong shape  descriptor37, but it is unable to capture spectral fea-
tures in the radial direction and does not allow multi-resolution analysis along with those directions. Note that, 
GFD is proved to be the best among all without redundant features and allows multi-resolution feature analysis 
along both radial and angular direction. This concept motivates us to use GFD as shape descriptor. In this work, 
GFD is extracted from the spectral domain by applying 2-D Fourier transform on polar raster sampled image. 
This work is motivated by the work of Zhang et al39 which proved it to be better than MPEG 7.

For an image f(m, n) , Modified Polar Fourier transform can be obtained as follows:

MPFT(̺,ψ) signifies the coefficients along ̺  radial frequency and ψ angular frequency respectively. In Eq. (1), 
0 ≤ r = [(m−md)

2 + (n− nd)
2]1/2 and θi = i(2π/T)(0 ≤ i ≤ T) ; (md , nd) represent center of mass of the 

shape; R and A represents radial and angular resolutions respectively. Here 0 ≤ ̺ < R and 0 ≤ ψ < A.
This is followed by normalization to achieve rotation and scale invariance -

(4)MPFT(̺,ψ) =
∑

r

∑

j

f (r, θi)exp[j2π(
r

R
̺ +

2π i

A
ψ)]

http://www.depeca.uah.es/colonoscopy_dataset/
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where area denotes the area of the bounding circle of the polyp; x and y represent the maximum radial and 
angular frequencies considered, respectively. Since shape features are captured by lower frequencies, first 36 
features are considered for the study with 4 radial and 9 angular frequencies. Therefore, final shape descriptor is:

where I is the binary segmented image and polyp is the region of interest. ‘ || ’ indicates the dimension of the 
feature vector. For 2D shape feature, a single frame is considered where the region of interest is clearly visible. 
This frame is selected by experienced doctors and also ground truth marking of that image is performed. Then, 
segmentation is performed on the ground truth image using K-mean algorithm. Figure 10 displays how the 
binary image I is prepared for shape feature extraction.

Texture and color descriptor. Texture and color descriptors help in quantifying the color changes and 
irregularity on the surface of the polyp. Multi-resolution transforms are chosen for texture and color extraction 
as they have the capability of representing images with fewer coefficients, which can be observed along with mul-
tiple scales, directions, and resolutions. They are localized in both time and frequency domain, whereas no prior 
segmentation technique is needed for analysis. Multi-resolution study presents a new direction for image rep-
resentation on its solid mathematical base. During recent years, much effort has been made in designing direc-
tional representation of images such as  Ridgelet40, Curvelet (CVT)41,42, Contourlets (CRT)43,  NSCT44,45, Ripplet 
(RT)46 and Shearlet (SH)47 (and many more) under the concept of Multi-scale Geometric Analysis. Wimmer 
et al11 have extracted the features using curvelet, contourlet, and shearlet transforms in application to colonic 
polyp detection. In the above mentioned papers, none have attempted to understand the statistical significance 

(5)GFD =
|MPFT(0, 0)|

area
,
|MPFT(0, 1)|

PF(0, 0)
, . . . ,

|MPFT(0, x)|
PF(0, 0)

, . . .
|MPFT(y, 0)|

PF(0, 0)
. . .

|MPFT(x, y)|
PF(0, 0)

(6)f GFD = GFD(I), |f GFD| = 36

Figure 10.  Generation of binary image for shape feature extraction. Column I, II, and III show the original 
image, ground truth image, and binary segmented image, respectively. All images displayed here are taken 
from own generated dataset DB1 collected from Aichi Medical University, Japan [approved by Aichi Medical 
University ethical committee (January 15, 2018; Approval No. 2017-H304)]. The layout of the complete figure 
has been generated in Photo Image Editor Pixelstyle software which is an open source software (download the 
software: https ://apps.apple .com/us/app/photo -image -edito r-pixel style /id124 46492 77?mt=12).

https://apps.apple.com/us/app/photo-image-editor-pixelstyle/id1244649277?mt=12
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of the features, which raises questions on their false positive results. In this work, the statistical relevance of 
DWT, CRT, and RT features were analysed using ANOVA. The results were considered significant by 5% cutoff 
in the statistical analysis (Table 1).

NSCT has the property of flexible multi-scale anisotropy, multidimensional expandability, full shift-invar-
iance, and fast  implementation44,48. It is an improved version of contourlet, where latter is not shift-invariant. 
The proposed work used the Cunha et al48 algorithm to decompose the frequency plane into sub-bands. To this 
end, Nonsubsampled Pyramidal Filter (NSP) is applied to ensure multi-scale anisotropy and Nonsubsampled 
Directional Filter Bank (NSDFB) to provide multi-directional expandability. In performing NSCT, firstly an NSP 
split at each level generates a lowpass version and band- pass version of the image. The latter is obtained from 
the difference between the image and the prediction. Then, an NSDFB decomposes the high-pass sub-band into 
several directional sub-bands. The scheme is iterated repeatedly on the lowpass sub-band. A unit of NSCT is 
shown in Fig. 11. Different combination of pyramidal (pyr) and directional filters (dir) used for NSCT decom-
position are {(pyr, dir) : (9− 7, sinc)(9− 7, pkva)(pyrexc, sinc)(pyrexc, pkva)} . We use NSCT implementation as 
described in Cunha et al48 which is publicly available for coefficient extraction. Before decomposition, the image 
is converted from RGB to YCbCr where ‘Y’ represents the texture information, and ‘Cb’ and ‘Cr’ represents color 
information. This is performed to extract the non-uniform characteristic of the image, which is not possible using 
the RGB model. RGB model is capable of projecting uniform characteristics only. In addition, the ‘Cb’ and ‘Cr’ 
components are not correlated, which makes it more suitable than other models like HSV.

Feature representation for NSCT. Feature descriptors for NSCT are obtained by distribution fitting on the coef-
ficients of each sub-band. Distributions used for this work are Generalized Gaussian Distribution (GGD) and 
Normal Distribution (ND). Then parameters obtained after the fitting are considered as feature descriptors.

NSCT coefficients generation Let us consider a function shown in following equation to explain the transform 
setup:

The Eq. (7) decomposes the image I using ‘pyr’ pyramidal filter and ‘dir’ directional filter with decomposition level 
as ‘decom_level ’, φ is the transform coefficients obtained. The decomposition level considered for NSCT is [1, 2, 2]. 
This indicates that there is three pyramidal decompositions and the number of directional decomposition in each 
pyramid level from coarse to fine resolution is 1, 2, 4, and 4, respectively. The output φ has cell vectors such that - 

1. φ1 = [φ[1]] indicates low pass sub-band image.
2. φ2 = [φ[2, 1],φ[2, 2]] are high pass sub-band.(Obtained from 2nd level decomposition)
3. φ3 = [φ[3, 1],φ[3, 2],φ[3, 3],φ[3, 4]] are four directional sub-band of the next finer pyramidal level.
4. φ4 = [φ[4, 1],φ[4, 2],φ[4, 3],φ[4, 4]] are four directional sub-band of the finest pyramidal level.

φ3 and φ4 are obtained from third level decomposition. Therefore, total sub-bands generated is 
11(= 1+ 2+ 4+ 4) . The three-color planes of YCbCr results in 33 sets of transform coefficients. From each set 
of 33 coefficients, two feature descriptors are extracted (using two different method F1 and F2), which leads to 
a final feature vector of dimension 66.

(7)φ = NSCT(I , ‘pyr’, ‘dir’, decom_level);

Figure 11.  The Nonsubsampled contourlet filter bank. First, the multi-scale decomposition into octave bands 
by means of the nonsubsampled pyramid decomposition followed by the application of a directional filter bank 
to the band-pass channels.
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F1 GGD based feature representation. In this feature representation, the feature of an image I can be repre-
sented as follows

where f
φY
j

α  represents the alpha parameter of the transform coefficients of jth sub-band using Y channel, and 

f
φY
j

β  represents the beta parameter of the transform coefficients of jth sub-band. Similarly, we have to extract 
parameters for the other two-color spaces. GGD is used in modeling when the concentration of values around 
both the mean and the tail behavior is of particular interest.

Here, α and β values are used as feature descriptors. The scale parameter α models the width of the probability 
distribution function (PDF) peak (standard deviation), while the shape parameter β is inversely proportional to 
the decreasing rate of the peak. We apply the Maximum Likelihood method to estimate the parameters α and β.

F2 First order statistics based feature representation. In this feature representation, the feature of an image I 
can be represented as follows

where f
φY
j

µ  represents the mean of the transform coefficients of jth sub-band using Y channel, and f
φY
j

σ  represents 
the variance of the transform coefficients of jth sub-band. The central limit theorem states that under certain 
(fairly common) conditions, the sum of many random variables will follow a normal distribution. Every normal 
distribution is a version of the standard normal distribution whose domain has been stretched by a factor σ (the 
standard deviation) and then translated by µ (the mean value)

where

µ and σ value obtained after normal distribution fitting will represent f
φκ
j

µ  and f
φκ
j

σ  respectively, where φk
i  , repre-

sents the coefficients of k th color channel.

Final feature sets and database design. Shape, texture and color features are analyzed in this study. 
Shape feature is extracted using GFD ( f GFD ). Texture and color features are extracted using NSCT ( f NSCT ). 
For NSCT, four different filters are used which generated the feature vectors f NSCT(9/7,sinc) , f

NSCT
(9/7,pkva) , f

NSCT
(pyrexc,sinc) and 

f NSCT(pyrexc,pkva) , subscript represents the filter names. For an image I, the feature vectors have been generated are as 
follows

Where,

We use two datasets, DB1 (generated) and DB2 (downloaded) ), each with two types: DB1− NBI , DB2− NBI 
(for NBI) and DB1−WL, DB2−WL (for WL). Therefore final feature vectors generated for the study are - 
FVDB1−NBI , FVDB1−WL , FVDB2−NBI and FVDB2−WL . Size of each dataset is M × N  , where M represents total 
number of images and N is the size of feature vectors. M values are available in Fig. 2 and N represents corre-
sponding feature vectors, i.e., 36 for GFD, and 66 for NSCT.

Feature selection. Fuzzy entropy is an extension of Shannon entropy where the latter is a probabilistic 
method opposed to fuzzy entropy, which is a possibility-based method. In the fuzzy entropy-based process, 
fuzzy sets are used in entropy calculations. In this feature selection technique, the required membership of each 
sample along different feature dimensions is measured. In this work, Khushaba et al49 method is used to esti-
mate the membership function. Unlike feature selection techniques like Principal Component Analysis (PCA), 
Independent component analysis (ICA), etc., it does not fully transform the image features. Rather, it helps in 
ranking the features based on their contribution to an assigned class. This property helps in efficient monitoring 
of the features during feature reduction.

Let us consider a feature vector FV = {f1, f2, . . . , fl} , where l is the number of total features. Fuzzy membership 
value that kth vector will be in ith class is -

where ρ is the fuzzification parameter and ǫ is a value to avoid singularity and σ is the standard deviation.

(8)F1(NSCT) = {f
φY
j

α , f
φY
j

β , f
φCb
j

α , f
φCb
j

β , f
φCr
j

α , f
φCr
j

β }

(9)F2(NSCT) = {f
φY
j

µ , f
φY
j

σ , f
φCb
j

µ , f
φCb
j

σ , f
φCr
j

µ , f
φCr
j

σ },

(10)pdf (t;µ, σ) =
1

σ
ϕ(

x − µ

σ
)

(11)ϕ(x) =
1

√
2π

e
1
2
x2

(12)FV = [{f GFD}, {f NSCT }]

(13)f INSCT = [{f NSCT(9/7,sinc)}, {f
NSCT
(9/7,pkva)}, {f

NSCT
(pyrexc,sinc)}, {f

NSCT
(pyrexc,pkva)}, ]

(14)µik = (
�fi − fk�σ
r + ǫ

)
2

ρ−1
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Normalization of the obtained membership values is performed to obtain a standard set of features. In case 
of total c numbers of classes, c numbers of fuzzy sets along each feature f need to be considered. Each of these 
reflects the membership degree in c problem classes. Fuzzy joint probability of a particular feature vector belong-
ing to a class c can be given by the formula

where P(f , ci) gives the degree of contribution of a feature to a particular class. Ui indicates the indices of the 
training vector that belong to class i and T indicates the dimension of feature vector. Joint fuzzy entropy of fea-
tures of each class can be calculated as follows

The complete fuzzy entropy can be obtained from

Marginal entropy H(f) can be found as H(f ) = −PfSi logPfXi , where Xi indicate the c numbers of fuzzy sets and 
P(fXi can be calculated as,

Marginal class entropy H(C) = −Pci logPci . Then mutual information (MI) between particular feature and 
class label can be calculated using formula

In this fuzzy entropy based feature selection method, features are ranked based on increasing and decreasing 
value of MI based on the application.

Classification. Two well-known classifiers,  LSSVM44,47,50 and  MLP51, are used in this study. These two indi-
vidual classifiers were selected because of their diversity in performance. All the classifiers were trained and 
tested individually for the two datasets. The above model is tested and trained with images of the datasets by 
applying the five-fold cross-validation  technique52. Main objective of the work is to perform  classification53–55 
where each level signifies the degree of dysplasia in colonic polyps.

Discussion
In this work, we propose a novel approach to quantify shape, texture, and color features for detecting the stages 
of dysplasia in polyps. Our work indicates that the shape features to be extracted by GFD, while texture and color 
features to be extracted by NSCT. ANOVA tests suggest that GFD and NSCT features are significantly different 
between the two classes (neoplastic and non-neoplastic). Among all the filters of NSCT, we have considered 
(pyrexc,pkva) filters. This is followed by feature optimization using fuzzy entropy based feature ranking algorithm, 
which could reduce the feature dimensions significantly and also increase the overall accuracy of the classifier 
MLP. An achieved accuracy of 95.24% in generated dataset and 95.72% in public dataset proved the efficiency 
of our work. The features obtained are highly efficient in distinguishing polyps irrespective of datasets. We also 
demonstrate that our method outperforms the four existing ones.

This work only focuses on single frames selected by the doctors. In future, we will integrate it with video 
tracking and automatic frame selection. The future work also includes the study of 3D features of the polyps. 
In addition, we can implement our analytical approach into a computational tool for easy use. Furthermore, in 
future, we will extend this framework with more computational strategies in terms of the analysing of the inte-
grated multi-modal (multi-omics) data of biomedical image and next-generation sequenced array data together 
for various disease.
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