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Abstract: Utilizing McMurry reactions of 4,4′-dihydroxybenzophenone with appropriate carbonyl
compounds, a series of 4-Hydroxytamoxifen analogues were synthesized. Their cytotoxic activity was
evaluated in vitro on four human malignant cell lines (MCF-7, MDA-MB 231, A2058, HT-29). It was
found that some of these novel Tamoxifen analogues show marked cytotoxicity in a dose-dependent
manner. The relative ROS-generating capability of the synthetized analogues was evaluated by cyclic
voltammetry (CV) and DFT modeling studies. The results of cell-viability assays, CV measurements
and DFT calculations suggest that the cytotoxicity of the majority of the novel compounds is mainly
elicited by their interactions with cellular targets including estrogen receptors rather than triggered
by redox processes. However, three novel compounds could be involved in ROS-production and
subsequent formation of quinone-methide preventing proliferation and disrupting the redox balance
of the treated cells. Among the cell lines studied, HT-29 proved to be the most susceptible to the
treatment with compounds having ROS-generating potency.

Keywords: tamoxifen analogues; McMurry coupling; molecular rearrangement; cytotoxic activity;
mechanism of action; redox properties; cyclic voltammetry; DFT modeling; ROS; quinone-methides

1. Introduction

Selective Estrogen Receptor Modulators (SERMs) represent one of the most important
classes of drugs with a wide spectrum of possible applications, including chemotherapy
for breast cancer and treatment of hormonal deficiencies related to Estrogen, and others [1].
Besides SERM activity, some members of this drug family feature other types of the mech-
anism of action capable of inducing a large variety of unexpected biological responses
including effects not related to the original SERM mechanism. A well-known example
is Tamoxifen, the most important representative of first-class SERMs. Tamoxifen’s main
application is the treatment and/or prevention of breast cancer most frequently occurring
among post-menopausal women, but this drug proved to be applicable for the treatment of
infertility both in women and men [2,3], or for the prevention of gynecomastia [4]. Aside
from Tamoxifen’s SERM activity explored in the indications listed above, its function in
the generation of Reactive Oxygen Species (ROS) is also well-documented concerning
adverse effects [3,5]. ROS including, e.g., superoxide anion and hydroxyl radicals, are
involved in signal transmission pathways regulating cell growth, differentiation, survival,
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inflammation and immune response. In an imbalanced cellular state, ROS with a concen-
tration above the normal level induces oxidative stress, leading to cell death [6]. Upon
the effect of ferrocene-containing analogues of Tamoxifen (e.g., Ferrocifen), the ROS level
is significantly increased compared to that generated by Tamoxifen [7,8]. Consequently,
ferrocene-containing Tamoxifen analogues display cytotoxicity not only on Estrogen Re-
ceptor positive (ER+) breast cancer cells, but also on ER-independent cell lines, due to the
ROS-generating ability of the organometallic agents playing a predominant role in their
activity [7]. The formation of ROS proceeds along a radical chain reaction pathway initi-
ated by a radical cation-generating single electron transfer (SET); ionization is necessarily
implicated in such processes [6]. The potential of a compound to undergo ionization can
directly be assessed through its half-wave oxidation potential measured by Cyclic Voltam-
metry (CV) whose value is also affected by the experimental conditions. The intrinsic
electron donor character of a molecule can also be estimated by DFT calculations providing
HOMO energy and adiabatic ionization energy [9,10] considered as quantitative theoretical
descriptors of the feasibility of the first SET to an oxidizing agent.

On the one hand, as mentioned above, certain side effects might be the consequence
of ROS-generation, but on the other hand, ROS-dependent pathways can be explored in
triggering cytotoxic effects in malignant cells [11–15]. In this context, the main purpose
of this comparative study was to assess at least the approximate contribution of struc-
turally fine-tunable ROS-generation to the cytotoxic activity of systematically designed
4-Hydroxytamoxifen analogues by comparing their cytotoxic activity to their redox proper-
ties determined by CV measurements and DFT calculations.

2. Results
2.1. Design and Synthesis of Novel Tamoxifen Analogues

Regarding the fact that 4-Hydroxytamoxifen (1) is an active metabolite of Tamoxifen
with SERM activity, besides hydroxylation, the replacement of the solubility-enhancing
N,N-dimethylaminoethoxy substituent for a hydroxyl group is expected to increase not
only the target-binding affinity, but also the feasibility and rate of ROS production. Thus,
we first selected 4-Hydroxytamoxifen-related diphenol 2 as a simplified reference model for
our current comparative research directed to synthesis and biological evaluation of novel
homo/heterobicyclic analogues of 2 (Scheme 1) complemented with electrochemical and
DFT analysis of their redox properties. We considered the targeted 4-Hydroxytamoxifen
analogues with general formula I, having ring size-controlled different steric arrangements
and at least partly heteroatom-influenced tendency to undergo oxidation, as suitable models
for the approximate assessment of the contribution of highly stereostructure-dependent
receptor signaling pathways and ROS-related mechanisms to cytotoxic activity. (For the
sake of simplicity, the term “4-Hydroxytamoxifen”, describing the real molecular structures,
was replaced by the term “Tamoxifen” in the residual part of the text.).

Molecules 2022, 27, 6758 2 of 25 
 

 

vention of gynecomastia [4]. Aside from Tamoxifen’s SERM activity explored in the in-
dications listed above, its function in the generation of Reactive Oxygen Species (ROS) is 
also well-documented concerning adverse effects [3,5]. ROS including, e.g., superoxide 
anion and hydroxyl radicals, are involved in signal transmission pathways regulating 
cell growth, differentiation, survival, inflammation and immune response. In an imbal-
anced cellular state, ROS with a concentration above the normal level induces oxidative 
stress, leading to cell death [6]. Upon the effect of ferrocene-containing analogues of 
Tamoxifen (e.g., Ferrocifen), the ROS level is significantly increased compared to that 
generated by Tamoxifen [7,8]. Consequently, ferrocene-containing Tamoxifen analogues 
display cytotoxicity not only on Estrogen Receptor positive (ER+) breast cancer cells, but 
also on ER-independent cell lines, due to the ROS-generating ability of the organometal-
lic agents playing a predominant role in their activity [7]. The formation of ROS proceeds 
along a radical chain reaction pathway initiated by a radical cation-generating single 
electron transfer (SET); ionization is necessarily implicated in such processes [6]. The 
potential of a compound to undergo ionization can directly be assessed through its 
half-wave oxidation potential measured by Cyclic Voltammetry (CV) whose value is also 
affected by the experimental conditions. The intrinsic electron donor character of a mol-
ecule can also be estimated by DFT calculations providing HOMO energy and adiabatic 
ionization energy [9,10] considered as quantitative theoretical descriptors of the feasibil-
ity of the first SET to an oxidizing agent. 

On the one hand, as mentioned above, certain side effects might be the consequence 
of ROS-generation, but on the other hand, ROS-dependent pathways can be explored in 
triggering cytotoxic effects in malignant cells [11–15]. In this context, the main purpose of 
this comparative study was to assess at least the approximate contribution of structurally 
fine-tunable ROS-generation to the cytotoxic activity of systematically designed 
4-Hydroxytamoxifen analogues by comparing their cytotoxic activity to their redox 
properties determined by CV measurements and DFT calculations.  

2. Results 
2.1. Design and Synthesis of Novel Tamoxifen Analogues 

Regarding the fact that 4-Hydroxytamoxifen (1) is an active metabolite of Tamoxifen 
with SERM activity, besides hydroxylation, the replacement of the solubility-enhancing 
N,N-dimethylaminoethoxy substituent for a hydroxyl group is expected to increase not 
only the target-binding affinity, but also the feasibility and rate of ROS production. Thus, 
we first selected 4-Hydroxytamoxifen-related diphenol 2 as a simplified reference model 
for our current comparative research directed to synthesis and biological evaluation of 
novel homo/heterobicyclic analogues of 2 (Scheme 1) complemented with electrochemi-
cal and DFT analysis of their redox properties. We considered the targeted 
4-Hydroxytamoxifen analogues with general formula I, having ring size-controlled dif-
ferent steric arrangements and at least partly heteroatom-influenced tendency to undergo 
oxidation, as suitable models for the approximate assessment of the contribution of 
highly stereostructure-dependent receptor signaling pathways and ROS-related mecha-
nisms to cytotoxic activity. (For the sake of simplicity, the term “4-Hydroxytamoxifen”, 
describing the real molecular structures, was replaced by the term “Tamoxifen” in the 
residual part of the text.).  

 
Scheme 1. Design of novel Tamoxifen analogues. Scheme 1. Design of novel Tamoxifen analogues.

It must be emphasized here that we have put particular focus on analogues of type
I with embedded electron-donating aromatic groups capable of increasing their propen-
sity to generate ROS. Accordingly, employing reported protocols, we prepared substi-
tuted 1,5,6,7-tetrahydro-4H-indol-4-one (3–5) [16] and 1,5,6,7-tetrahydro-4H-indazol-4-one
derivatives (7, 8) [17] (Scheme 2) planned to serve as coupling partners in such McMurry
reactions that were expected to construct pyrrolo-and pyrazolo-condensed Tamoxifen mod-
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els. Attempting to achieve a selective synthesis of 7, we have also observed the formation
of its regioisomer (8) in a ratio of 40% of the product mixture. As we have failed so far to
separate the components, the mixture of 7 and 8 was used in the subsequent MCMurry
coupling reaction.
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Scheme 2. Synthesis of 1,5,6,7-tetrahydro-4H-indol-4-one and 1,5,6,7-tetrahydro-4H-indazol-4-
one derivatives.

For comparing the apoptotic efficiency of ROS-generation pathways to that of signal
transductions initiated by target-binding, we also undertook the implication of ferrocene-
containing Tamoxifen-analogues in our biological-, physicochemical- and DFT studies.
Thus, besides the emblematic 4,4′-(2-ferrocenylbut-1-ene-1,1-diyl)diphenol 18 [18] and the
racemic planar chiral ferrocene derivative (38), of which synthesis and in vitro cytotoxicity
on pancreatic and breast cancer cell lines have also been reported by our team [19], we also
envisaged the synthesis and comprehensive study of the racemic form of aza-analogues
(35–37) expected to have extended basic target-binding regions along with significantly
increased propensity to undergo ROS-generating oxidation by single electron-transfer
(SET), which is facilitated by the presence of aminoferrocene moiety with enhanced HOMO
energy and electron-density (Scheme 3). Secondary amine 12, the parent molecule of the
crucial ferrocene-containing components of the McMurry coupling, was accessed by a
two-step procedure involving iodoferrocene-mediated Goldberg-type N-ferrocenylation
of azetidin-2-one (9) [20] followed by TFA-catalyzed ring expansion [21] of the result-
ing intermediate 11 (Scheme 3). The N-alkylation of highly air-sensitive 12 with benzyl
bromide and 4-fluorobenzylbromide afforded less air-sensitive benzylated derivatives 13
and 14, respectively.
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For the synthesis of the targeted Tamoxifen analogues, we have applied McMurry
reactions in the course of which 4,4′-dihydroxybenzophenone (15) was coupled with a
variety of acyclic-, cyclic/heterocyclic- and organometallic ketone components in the
presence of zinc dust and TiCl4 (Scheme 4).
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Most reactions performed by a well-established protocol [22] allowed the isolation
of the targeted analogue in low-to-mediocre yield, while the reactions with coupling
components 3, 12, 13 and 14 afforded the appropriate desired olefins (30, 35, 36 and 37)
only in traces as detected by NMR analysis of the crude products which could not be
isolated in pure form due their rapid uncontrolled decomposition.

It is also of note that the McMurry reaction of 4 afforded the targeted Tamoxifen
analogue (31) and ketone 31a isolated in a non-negligible yield (18%). Its formation can be
rationalized in terms of the pinacol rearrangement of primary McMurry intermediate 39
proceeding via a resonance-stabilized carbocation (39′) that undergoes 1,2-aryl-migration
accompanied by the regeneration of the carbonyl group (Scheme 5).
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It has been demonstrated by Jaouen et al. that methoxy-substituents induce a smaller
cytotoxic effect at a lower rate of ROS generation compared to those produced by the phenol
counterparts [23]. Accordingly, by coupling 4,4′-dimethoxybenzophenone with three
representative ketones (3, 16 and 41) under standard McMurry conditions, we prepared
methyl ethers 42–44 as reference models (Scheme 6) of which comparative assays were
expected to allow us to estimate the extra-contribution of the hydroxyl groups to ROS-
related activity relative to that contributed by methoxy groups on the identical positions of
the molecular skeleton.
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Compound 42 is the dimethylated analogue of 1, which was accessible by direct
reductive coupling of ketones 15 and 16. To prepare 30 in an alternative way, we attempted
to perform borontribromide-mediated demethylation of 43, but the reaction resulted in
a complex mixture of undefined materials. Under the same conditions, demethylation
of 44 was accompanied by fission of the furane ring generating intermediate 45 of which
Friedel-Crafts type recyclization on one of the pending 4-hydroxyphenyl rings afforded
indene 46 (Scheme 7). In the subsequent experiments, we used 46 as trihydroxy analogue
of 1 because we assumed that the electrochemical and ROS generating properties of 46 are
similar to those of an acyclic counterpart with a cleaved five-membered ring.
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The assigned 1H- and 13C-NMR signals of the novel hybrid compounds, unambigu-
ously identified by 2D-HMQC- and HMBC connectivities, are consistent with their struc-
tures. (The spectra are listed in the Supplementary Materials).

2.2. Evaluation of the Novel Tamoxifen Analogues for Their Antiproliferative Activity on Human
Malignant Cell Lines

Applying the MTT assay, the in vitro cytostatic effect was studied on ER(+) MCF-
7 [24] and ER(−) MDA-MB-231 [25] human breast adenocarcinoma cells, A2058 human
melanoma [26] and HT-29 human colorectal carcinoma [27] cell lines. While breast cancer
cell lines were obvious targets in our studies, the selection of A2058 cells can be justified
by evidenced estrogen-mediated signaling disclosed in melanoma cells [28]. Finally, since
Tamoxifen inhibits the growth of colorectal cancer cells [29], the HT-29 cell line was also
included into these assays. To estimate the contribution of the ROS-induced apoptotic
pathways to target-related antiproliferative effects, the flexible and conformationally rigid
redox-active ferrocene derivatives 18 and 38, respectively, were used as reference com-
pounds. On the other hand, isatin-derived analogue 28 served as a positive control with
identified ER-mediated anticancer activity [22]. The MTT assays of the novel and reference
compounds disclosed a dose-dependent cytostatic effect on the investigated cell lines. The
majority of the tested compounds exhibited an antitumor effect within a concentration
range of ca. 3−50 µM, in most cases in marked cell-line dependent manner (Table 1). It is
of interest that, besides 28 with demonstrated ER transactivation-inhibitory activity and
ferrocene-containing references (18 and 38), having mainly ROS-mediated effects, fused
pyrrole 43 and indene 46 were identified as the most potent antiproliferative compounds in
our cell-viability assays.

2.3. Electrochemical Measurements

As we aimed at assessing the approximate contribution of ROS generation to the
cytotoxic activity of the novel Tamoxifen analogues, we envisaged evaluating their ability
to form a radical cation. Accordingly, all tested compounds including reference models 18,
28 and 38 were first subjected to cyclic voltammetric (CV) analysis providing quantitative
information about their tendency to undergo one-electron oxidation as reflected from their
cationic peak potential (Epc, Table 1). It must be noted here that the Epc values measured
for 43 and 46, two of the promising novel organic Tamoxifen analogues, suggest that
their marked antiproliferative potency can at least partly be attributed to ROS-initiated
mechanism of action, as discussed in more detail in Section 3.

Figures 1–3 show some selected results of the cyclic voltammetric experiments. In
these figures, the cyclic voltammograms recorded at a high purity Pt wire (99.99%, geomet-
ric surface area: A = 8.1 mm2) in contact with blank solution (0.1 M Bu4NClO4 in MeCN)
are compared to the CV-s recorded at the same Pt wire in contact with the same solution
containing 1 mM 42, 43, 18, respectively. Further results are outlined in the Supplementary
Materials. It should be noted that the geometric surface area of the electrode is not neces-
sarily equal to its “real” surface area during the different measurements, and it may result
in slight differences in the current densities calculated from directly measured current
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data. As discussed in the experimental section, in the CV experiments, NaCl-saturated
calomel electrode was used as a reference electrode and ferrocene was chosen as a standard
reference material that shows a very stable one-electron redox process. The complete CV
records and experimental parameters of the reference ferrocene and all the other Tamoxifen
analogues are presented in Figures S1–S5 in the Supplementary Materials.

Table 1. Structure-activity analysis of the synthetised Tamoxifen analogues in terms of their in vitro
cytotoxicity on four human tumor cell lines (expressed in IC50 values) and their ROS-generating
potency characterized by experimental cationic peak potentials (Epc) supplemented with EHOMO and
adiabatic ionization energy (Ei) resulted from DFT modeling studies.

Compound
IC50/µM Epc

[V]
EHOMO, v

1

[eV]
Ei, v

1

[eV]
EHOMO, a

2

[eV]
Ei, a

2

[eV]
EHOMO, w

3

[eV]
Ei, w

3

[eV]MCF-7 MDA-MB 231 A2058 HT-29

2 56.7 51 14.2 20. 8 0.936 −5.526 6.635 −5.72 5.361 −5.728 5.344
18 3.4 7.9 12.09 4.4 0.483 −5.351 5.877 −5.503 4.550 −5.509 4.529
23 53.7 52.3 23.53 27.6 0.752 −5.396 6.496 −5.581 5.224 −5.589 5.209
24 56.7 55.3 35.07 38.1 0.698 −5.389 6.476 −5.577 5.218 −5.584 5.201
25 >100 >100 28.15 27.9 1.224 −5.438 6.531 −5.604 5.247 −5.61 5.229
26 >100 >100 >50 >50 0.698 −5.459 6.55 −5.637 5.28 −5.644 5.263
28 6.2 15.5 >50 5.7 0.437 −5.567 6.683 −5.793 5.447 −5.801 5.43
31 48.3 53.7 >50 15.7 0.637 −4.986 5.966 −5.34 4.774 −5.356 4.759
31a 44.5 40 >50 >50 0.752 −5.599 6.989 −5.774 5.528 −5.782 5.503
32 >100 100 27.6 >50 0.615 −5.318 6.263 −5.532 5.017 −5.542 4.999
334 37.8 49.6 19.22 >50 0.781 −5.294 6.25 −5.619 5.018 −5.637 5.002
38 33.1 43.9 >50 15.5 0.354 −5.26 5.902 −5.434 4.572 −5.441 4.551
42 19.3 20 >50 >50 1.265 −5.434 6.501 −5.685 5.327 −5.696 5.311
43 15.9 17.8 >50 7.6 0.742 −5.318 6.375 −5.307 4.796 −5.325 4.782
44 n.d. 45.7 28.77 15 0.895 −4.968 5.944 −5.552 5.170 −5.559 5.153
46 14.07 48.8 13.5 14.9 0.752 −5.313 6.460 −5.573 5.234 −5.492 5.087

1 Calculated in vacuum. 2 Calculated in acetonitrile. 3 Calculated in water.
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Bu4NClO4 in MeCN and (blank solution (orange curve)) (B) 0.1 M Bu4NClO4 + 1 mM 18 in MeCN. 
Scan rate: v = 1 V/s. (The assignment of the peak pair p−–p+ is discussed in the “Supplementary 
Materials”: Section 2.2 and Figures S1 and S2.). 
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neutral compounds and the corresponding radical cationic species with doublet electron 
configuration generated by removing one electron from the parent molecules. (Since the 
comparative modeling studies also implicated ferrocene-containing compounds, we 
opted for B3PW91 as functional, which has been found superior to B3LYP in providing a 
more reliable and realistic description of bonding parameters close to experimental data 
in metal-based fragments [34,35]). The adiabatic ionization energy [Ei] [9,10] was ob-
tained as the difference in the total electron energy values calculated for the optimized 
structures of the analyzed compounds and their radical cationic counterparts. As solva-
tion can highly modify the relative stability of the neutral parent compounds and the 
appropriate radical cations with significantly enhanced dipole moment, single-point en-
ergy calculations were performed on the optimized structures by the IEFPCM solvent 
model [36] using the dielectric constants of water and acetonitrile that represent the 
conditions of biological systems and CV experiments, respectively.  

A comparison of Ei data calculated for vacuum and the modeled solvents unam-
biguously indicates that ionization (Table 1) is highly facilitated by the polar media that 
render extra stability to the radical cations having substantially larger dipole moment 
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Bu4NClO4 in MeCN and (blank solution (orange curve)) (B) 0.1 M Bu4NClO4 + 1 mM 18 in MeCN.
Scan rate: v = 1 V/s. (The assignment of the peak pair p−–p+ is discussed in the “Supplementary
Materials”: Section 2.2 and Figures S1 and S2).
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2.4. DFT Calculations

Since the Epc values are supposed to be markedly influenced by several factors not
relevant to ROS-generation potency under biological conditions, including diffusion, ionic
strength, interactions with the electrode surface and attenuated coordination of the solvent
acetonitrile molecules to the cationic species [20,30,31], we also undertook complemen-
tary DFT studies envisaged to get intrinsic information encoded by molecular structure
about the redox character of the tested Tamoxifen analogues. The computations were
carried out by B3PW91 functional [32] using the DGTZVP basis set [33] for the neutral com-
pounds and the corresponding radical cationic species with doublet electron configuration
generated by removing one electron from the parent molecules. (Since the comparative
modeling studies also implicated ferrocene-containing compounds, we opted for B3PW91
as functional, which has been found superior to B3LYP in providing a more reliable and
realistic description of bonding parameters close to experimental data in metal-based frag-
ments [34,35]). The adiabatic ionization energy [Ei] [9,10] was obtained as the difference
in the total electron energy values calculated for the optimized structures of the analyzed
compounds and their radical cationic counterparts. As solvation can highly modify the
relative stability of the neutral parent compounds and the appropriate radical cations with
significantly enhanced dipole moment, single-point energy calculations were performed
on the optimized structures by the IEFPCM solvent model [36] using the dielectric con-
stants of water and acetonitrile that represent the conditions of biological systems and CV
experiments, respectively.

A comparison of Ei data calculated for vacuum and the modeled solvents unambigu-
ously indicates that ionization (Table 1) is highly facilitated by the polar media that render
extra stability to the radical cations having substantially larger dipole moment than the neu-
tral parent molecules. In this regard, acetonitrile and water seem to exert a similar impact
on ionization energy. The relatively low Ei values calculated for the ferrocene derivatives
18 and 38 are in agreement with their ROS-induced cytotoxicity. On the other hand, the
exceptionally low cationic peak potentials (Epc) measured for these organometallic models
might refer to the cation-stabilizing coordination of the acetonitrile molecules to the iron
center of the ferricenium cations [20].

Besides ionization energy, the HOMO level of the parent neutral molecules can also be
regarded as the measure of their propensity to undergo ionization by one-electron oxidation;
thus, EHOMO values of the tested models calculated in vacuum and the polar solvents are
also listed in Table 1. Since solvation also decreases the total energy of the polar, yet
neutral molecules as the consequence of lowering the energy level of their bonding MO’s,
the marked polarity-induced drop in the EHOMO data of the tested Tamoxifen analogues
would suggest that polar media suppress ionization of the tested products. However,
the polarity-induced stabilization of radical cations having enhanced dipole moments is
substantially larger than that computed for the appropriate neutral Tamoxifen analogues
with a smaller dipole moment. Consequently, the relative stability of a radical cation and
its neutral parent molecule, which is equivalent to the adiabatic ionization energy of the
latter one, is significantly lowered when calculated in a polar medium relative to that
calculated in vacuum. Thus, adiabatic ionization energy (Ei) can be regarded as a more
reliable theoretical descriptor for the redox character of a neutral molecule than its HOMO
energy level.

3. Discussion

Except for the ferrocene-based reference compounds 18 and 38 comparison of the mea-
sured IC50 values with Epc, EHOMO and Ei values do not show unambiguous correlation
between the cytotoxicity of the novel Tamoxifen analogues and their ability to form radical
cations suggesting that the receptor-binding mediated mechanism of actions rather than
electron-transfer-related processes are dominant in their antiproliferative effect. However,
it is of note that, although reference model 28 has been identified as an antiproliferative
agent with confirmed SERM [22] activity, we found this compound efficient on HT-29
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and triple-negative MDA-MB-231 cell lines pointing to its action(s) by other mechanism(s)
which might be target-mediated and/or partly associated with ROS-production. The
view about the feasibility of ROS-mediated mechanism in the action of 28 is apparently in
line with the low cationic peak potential (Epc = 0.437 V) measured in acetonitrile for this
model. Due to its extensively delocalized “push–pull” electron system comprising two
donor 4-hydroxylphenyl moieties and acceptor carbonyl group at the terminal positions,
28 is assumed to undergo O-deprotonation more readily compared to other investigated
Tamoxifen analogues without any electron-acceptor terminal. Thus, the low Epc value
might be associated with the lowered redox potential of a significant amount of anionic
species with enhanced overall electron-density formed in equilibrium deprotonation un-
der the experimental conditions. Thus, the relatively high adiabatic ionization energy
(Ei,w = 5.430 eV) calculated in water for the neutral molecule does not seem a relevant
descriptor of the redox properties of this isatin-derived model. We suggest that under
physiological conditions in a tumor cell ROS-mediated dehydrogenation of 28 taking place
with sequential deprotonation-promoted SET steps constructs quinone-methide 47 also
comprising an N-acylimine-activated cyclic alkene as an additional electrophilic residue
(Scheme 8a). According to our hypothesis in the subsequent step 47 alkylates, two equiva-
lents of cellular nucleophiles including, e.g., glutathione, thioredoxine- and ribonucleotid
reductases (47→48), finally disrupted redox balance and proliferation in cancer cells. In
this regard, it is of pronounced importance that thioredoxine reductases are often over-
expressed in cancer cells [37–44]. Supporting this view about the mechanism of action, it
has been disclosed that electrophilic quinone-methides (QMs), produced in ROS-mediated
sequential SET steps promoted by deprotonation, are active species that exert a cytotoxic
effect through reacting with cellular nucleophilic targets critical to maintaining homeostasis
of the tumor cells [45–52].

The relatively low cationic peak potential and ionization energy determined for 43
(Epc = 0.742 V, Ei,w =4.78 eV) also emerged as one of the most potent compounds presented
in this work. This could be connected to its ROS-mediated mechanism of action suggested
for 28, implicating the formation of a reactive bis-Michael acceptor 49 (Scheme 8b). In the
subsequent step, this alkylating agent also reacts with two equivalents of sulfur and/or
selenium-donor nucleophiles vital to proliferation and/or redox balance (49→50), trigger-
ing such cellular processes that eventually lead to cell death. On the other hand, based on
its highly electron–donor character N-methyl derivative 31 (Epc = 0.637 V, Ei,w = 4.76 eV),
the closely related structural analogue of 43 would also be expected to exert an antitumor
effect via the formation and subsequent transformations of a reactive intermediate type 49
(Scheme 8b). However, this electron donor purely organic compound displayed convincing
activity exclusively on HT-29 cells (Table 1). This suggests that, besides target-binding
initiated signal-transductions, redox-based mechanisms might prominently contribute to
an antiproliferative effect on this cell line. This assumption could be supported by recent
studies demonstrating that ROS is extensively implicated in drug-induced antiproliferative
effects on HT-29 and other colon cancer cells [43,44,53–55].

Finally, triphenol 46 with a modified Hydroxytamoxifen skeleton of enhanced rigidity
also emerged as a potent antiproliferative structure among the novel Tamoxifen analogues.
We assume that its cytostatic effect can be mainly due to signal-inducing binding interac-
tions with targets, including estrogen receptors in MCF-7 cells, attenuated by a mechanism
of action involving ROS-mediated stepwise generation of quinone-methides 51, 52 and 56
(Scheme 8c), which knockdown homeostasis- and proliferation-maintaining sulfur and/or
selenium-donor cellular nucleophiles by alkylation (51→ 54, 52→ 55 and 56→ 57). Al-
though the experimental and theoretical findings on the electron–donor character of 46
(Epc = 0.752 V, Ei,w = 5.09 eV) would not justify the operation of a redox-initiated mecha-
nism, it is reasonable to assume that equilibrium deprotonation on the trihydroxylated
skeleton takes place readily under physiological conditions to generate electron-rich phe-
nolates enhancing the feasibility of ROS-mediated SET processes.
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4. Materials and Methods

All fine chemicals were obtained from commercially available sources ((Merck (Bu-
dapest, Hungary), Fluorochem (Hadfield, UK), Molar Chemicals (Halásztelek, Hungary),
VWR (Debrecen, Hungary)) and used without further purification. DMF and TEA were
distilled from calcium hydride, and THF was distilled from Na-benzophenone. Merck
Kieselgel (230–400 mesh, 60 Å) was used for flash column chromatography. The 1H- and
13C-NMR spectra of all compounds were recorded in CDCl3 or DMSO-d6 solution in 5 mm
tubes at RT, on a Bruker DRX-500 spectrometer (Bruker Nano GmbH, Karlsruhe, Germany)
at 500.13 (1H) and 125.76 (13C) MHz and Avance NEO 400 spectrometer (Bruker Nano
GmbH, Karlsruhe, Germany) at 400.16 (1H) and 100.62 (13C) MHz, with the deuterium
signal of the solvent as the lock and TMS as the internal standard. The HSQC, HMBC,
COSY and NOESY spectra, which support the exact assignments of 1H- and 13C- NMR
signals, were obtained by using the standard Bruker pulse programs. For each compound
characterized in this session, the numbering of atoms used for the assignment of 1H- and
13C-NMR signals do not correspond to IUPAC rules reflected in the given systematic names.
The identification of the positions of the hydroxyphenyl rings on the molecular skeleton
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was based on the cross-peaks gathered from NOESY experiments. Elemental analysis was
performed on a Vario EL III CHN analyzer (Elementar Analysensysteme GmbH, Langensel-
bold Germany). All DFT calculations determining optimized structures and energy of the
neutral compounds, and their radical cations were carried out using Gaussian 09 software
(Gaussian Incorporation, Pittsburgh, PA, USA) package [56]. The optimized structures are
available from the authors. A Metrohm Autolab PGSTAT 302N (SelectScience, Corston,
UK) electrochemical workstation controlled by the Autolab Nova software was used in all
electrochemical experiments.

4.1. Synthesis of Novel Coupling Components for McMurry Reactions
4.1.1. 1-Ferrocenylazetidin-2-one (11) (Scheme 9)

Azetidin-2-one (0.36 g, 5.0 mmol, 1.0 eq.) was dissolved in DMF-TEA 1:1 (10 mL), then
K2CO3 (2.05 g, 15.0 mmol, 3.0 eq.), CuI (0.95 g, 5.0 mmol, 1.0 eq.), PdCl2(PPh3)2 (87.5 mg,
0.125 mmol, 2.5%) and 1:1 mixture of iodoferrocene and ferrocene (3.40 g, 5.5 mmol, 1.1 eq.)
were added. The reaction mixture was stirred under argon, at 110 ◦C for overnight, cooled
down, filtrated and brine (30 mL) was added to the solution. The precipitated solid was
filtered off, washed with brine and water then purified by column chromatography on
silica, using DCM as eluent. The product was crystallized EtOH.
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Scheme 9. Structure of 11 with the numbering of atoms used for the assignment of NMR data.

Yellow solid; Yield: 0.91 g (65%); Mp: 152.6–154.2 ◦C; 1H-NMR (DMSO-d6): 4.46 (t,
J = 1.9 Hz, 2H, H2′ and H5′), 4.23 (s, 5H, η5-C5H5), 4.02 (t, J = 1.9 Hz, 2H, H3′ and H5′),
3.44 (t, J = 4.4 Hz, 2H, H4), 2.98 (t, J = 4.4 Hz, 2H, H3); 13C-NMR (DMSO-d6): 165.2 (C2), 94.9
(C1′), 69.0 (η5-C5H5), 64.8 (C3′ and C4′), 59.1 (C2′ and C5′), 39.6 (C4), 36.9 (C3). Anal. calcd.
for C13H13FeNO: C, 61,21%; H, 5.14%; N, 5.49%. Found: C, 61,37%; H, 5.20%; N, 5.76%.

4.1.2. 1,2-Dihydroferroceno[b]pyridin-4(3H)-one (12) (Scheme 10)

1-Ferrocenylazetidin-2-one 11 (2.60 g, 10.2 mmol, 1.0 eq.) was dissolved in 1,2-
dichloroethane (40 mL), and the solution was cooled to 0 ◦C. To the reaction mixture,
trifluoromethanesulfonic acid (1.80 mL, 3.10 g, 20.6 mmol, 2.0 eq.) was added dropwise
over 5 min, and the mixture was stirred at 0 ◦C for an additional 30 min; during this period,
the reaction was followed by TLC. When the reaction was completed, the mixture was
poured into water and extracted with DCM six times. The combined organic phases were
extracted with brine, dried on Na2SO4, and the solvent was evaporated. The residue was
purified by filtration through silica gel.
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Deep red solid; Yield: 1.07 g (41%); Mp: 112.6–114.8 ◦C (dec.); 1H-NMR (DMSO-d6):
4.62 (br t, 1H, H5), 4.30 (br t, 1H, H6), 4.28 (br t, 1H, H7), 4.20 (s, 5H, η5-C5H5), 3.58 (td,
J = 12.1 Hz, 3.2 Hz, 1H, H2α), 3.36 (m, 1H, H2β), 2.99 (br s, 1H, H1), 2.56 (dt, J = 16.9 Hz,
3.1 Hz, 1H, H3α), 2.31 (td, J = 16.9 Hz, 3.1 Hz, 1H, H3β); 13C-NMR (DMSO-d6): 202.1 (C4,
from 1H-13C HMBC crosspeaks), 114.0 (C7a), 69.4 (η5-C5H5), 67.0 (C6), 64.8 (C4a), 60.9 (C5),
58.1 (C7), 44.4 (C2), 39.3 (C3). Anal. calcd. for C13H13FeNO: C, 61.21%; H, 5.14%; N, 5.49%.
Found: C, 61.49%; H, 5.23%; N, 5.60%.
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4.1.3. 1-Benzyl-1,2-dihydroferroceno[b]pyridin-4(3H)-one (13) (Scheme 11)

1,2-Dihydroferroceno[b]pyridin-4(3H)-one (12) (0.16 g, 0.63 mmol, 1.0 eq.) benzyl bro-
mide (0.11 mL, 0.95 mmol, 1.5 eq.) and Cs2CO3 (0.62 g, 1.90 mmol, 3.0 eq.) were dissolved
in DMF (8 mL). The reaction mixture was stirred under argon, at room temperature for
overnight. After 12 h of stirring, the reaction mixture was poured into water, extracted
with EtOAc three times. The combined organic phases were washed with brine and LiCl to
remove DMF completely, dried on Na2SO4, and the solvent was evaporated. The residue
was purified by column chromatography on silica gel, using DCM:MeOH (80:1) as eluent.
The product was crystallized from water.
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Scheme 11. Structure of 13 with the numbering of atoms used for the assignment of NMR data.

Red solid; Yield: 88.2 mg (40%); Mp: 78.3–79.6 ◦C (dec.); 1H-NMR (DMSO-d6): 7.45 (d,
J = 7.5 Hz, 2H, H10 and H14), 7.38 (t, J = 7.5 Hz, 2H, H11 and H13), 7.30 (t, J = 7.4 Hz, 1H,
H12), 4.55 (br ~t, 1H, H5), 4.37 (br ~t, 1H, H6), 4.34 (br ~t, 1H, H7), 4.31 (s, 5H, η5-C5H5),
3.83 (br s, 1H, H8α), 3.80 (br s, 1H, H8β), 3.04 (m, 2H, H2α and H2β), 2.39 (d, J = 17.1 Hz,
1H, H3α), 2.23 (m, 1H, H3β); 13C-NMR (DMSO-d6): 201.4 (C4), 138.2 (C9), 128.9 (C10 and
C14), 128.8 (C11 and C13), 127.7 (C12), 116.9 (C7a), 68.8 (η5-C5H5), 67.1 (C6), 64.7 (C4a),
61.3 (C5), 58.2 (C7), 57.1 (C8), 50.0 (C2), 39.4 (C3). Anal. calcd. for C20H19FeNO: C, 69.58%;
H, 5.55%; N, 4.06%. Found: C, 69.32%; H, 5.33%; N, 4.29%.

4.1.4. 1-(4-Fluorobenzyl)-1,2-dihydroferroceno[b]pyridin-4(3H)-one (14) (Scheme 12)

1-Benzyl-1,2-dihydroferroceno[b]pyridin-4(3H)-one (13) (0.20 g, 0.80 mmol, 1.0 eq.),
4-flourobenzyl bromide (0.15 mL, 1.20 mmol, 1.5 eq.) and Cs2CO3 (0.78 g, 2.40 mmol,
3.0 eq.) were dissolved in 10 mL DMF. The reaction mixture was stirred under argon, at
room temperature for overnight. After 12 h of stirring, the reaction mixture was poured
into water, extracted with EtOAc three times. The combined organic phases were washed
with brine and LiCl to remove DMF completely, dried on Na2SO4, and the solvent was
evaporated. The residue was purified by column chromatography on silica gel, using
DCM:MeOH (80:1) as eluent. The product was crystallized from water.
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Scheme 12. Structure of 14 with the numbering of atoms used for the assignment of NMR data.

Red solid; Yield: 0.14 g (48%); Mp: 85.1–87.2 ◦C (dec.); 1H-NMR (DMSO-d6): 7.49 (t,
J = 8.3 Hz, 2H, H10 and H14), 7.21 (t, J = 8.8 Hz, 2H, H11 and H13), 4.54 (br s, 1H, H5), 4.40
(br ~t, 1H, H6), 4.34 (s, 1H, H7, overlapped by η5-C5H5), 4.31 (s, 5H, η5-C5H5, overlapped
by H7), 3.83 (br s, 1H, H8α), 3.79 (br s, 1H, H8β), 3.02 (m, 2H, H2α and H2β), 2.41 (d,
J = 16.5 Hz, 1H, H3α), 2.22 (m, 1H, H3β); 13C-NMR (DMSO-d6): 201.4 (C4), 163.1 (C12),
160.7 (C9), 130.8 (C10 and C14), 116.8 (C7a), 115.6 (C11 and C13), 68.8 (η5-C5H5), 67.2 (C6),
64.7 (C4a), 61.3 (C5), 58.2 (C7), 56.3 (C8), 49.9 (C2), 39.4 (C3). Anal. calcd. for C20H18FFeNO:
C, 66.14%; H, 5.00%; N, 3.86%. Found: C, 66.35%; H, 4.92%; N, 3.99%.
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4.2. General Method for McMurry Reactions

Zinc dust (1.57 g, 24.0 mmol, 6.0 eq.) was suspended in THF (50 mL) and 2.19 mL
(3.79 g, 20 mmol, 5.0 eq.) TiCl4 was added dropwise to the suspension which was then
held at reflux for 2 h and cooled down to 0 ◦C. To the resulting mixture, the appropriate
ketone (4.0 mmol (1.0 eq.) and 4,4′-dihydroxybenzophenone 15 (0.86 g, 4.0 mmol, 1.0 eq.)
or bis(4-methoxyphenyl)methanone 40 (0.97 g, 4.0 mmol, 1.0 eq.) dissolved in 15 mL of
THF was added in one portion. The reaction mixture was stirred at reflux temperature for
5 h, cooled down to room temperature, and poured into a solution of 15 g K2CO3 dissolved
in 200 mL water. The formed precipitate was filtered off, and the filtrate was extracted with
DCM three times. The combined organic phase was washed with brine, dried on Na2SO4,
and the solvent was evaporated. The residue was purified by column chromatography on
silica gel, using DCM:n-hexane (1:1–10:1) or DCM or DCM:MeOH (60:1–10:1) as eluent. The
products characterized below were crystallized by different mixtures of MeOH and water.
4,4′-(2-Phenylbut-1-ene-1,1-diyl)bis(methoxybenzene) 42 has been characterized [57].

4.2.1. 4,4′-((2,3-Dihydro-1H-Inden-1-Ylidene)methylene)diphenol (23) (Scheme 13)

Beige solid; Yield: 0.66 g (52%); Mp: 172.6–173.9 ◦C; 1H-NMR (DMSO-d6): 9.43 (s, 1H,
C18OH), 9.41 (s, 1H, C12OH), 7.22 (d, J = 7.3 Hz, 1H, H7), 6.99–7.07 (overlapping m’s, 3H,
H6, H16 and H20), 6.91 (d, J = 8.4 Hz, 2H, H10 and H14), 6.82 (t, J = 7.4 Hz, 1H, H5), 6.75 (d,
J = 8.4 Hz, 2H, H11 and H13), 6.70 (d, J = 8.4 Hz, 2H, H17 and H19), 6.31 (d, J = 8.2 Hz, 1H,
H4), 2.85 (m, 4H, H1α, H1β, H2α and H2β); 13C-NMR (DMSO-d6): 156.2 (C12), 155.9 (C18),
137.6 (C3a), 136.7 (C8), 135.6 (C7a), 133.7 (C5), 132.5 (C3), 132.2 (C10 and C14), 130.5 (C9),
129.7 (C16 and C20), 127.4 (C7), 126.7 (C6), 126.5 (C5), 125.7 (C4), 115.5 (C17 and C19),
114.8 (C11 and C13), 30.9 (C2), 28.4 (C1). Anal. calcd. for C22H18O2: C, 84.05%; H, 5.77%;
Found: C, 83.86%; H, 5.82%.
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White solid; Yield: 0.30 g (44%); Mp: 211.8–213.2 ◦C; 1H-NMR (DMSO-d6): 9.41 (s, 1H,
C19OH), 9.27 (s, 1H, C13OH), 7.07 (d, J = 7.6 Hz, 1H, H8), 6.98 (d, J = 7.6 Hz, 1H, H7), 6.92
(d, J = 8.5 Hz, 2H, H17 and H21), 6.85–6.61 (overlapping m’s, 6H, H5, H6, H11, H15, H18
and H20), 6.54 (d, J = 8.5 Hz, 2H, H12 and H14), 2.73 (t, J = 6.4 Hz, 2H, H1α and H1β), 2.50 (t,
J = 6.2 Hz, 2H, H3α and H3β), 1.76 (t, J = 6.3 Hz, 2H, H2α and H2β); 13C-NMR (DMSO-d6):
156.6 (C19), 156.3 (C13), 139.2 (C8a), 138.1 (C4a), 137.9 (C9), 135.0 (C16), 134.8 (C10), 132.2
(C11 and C15), 131.6 (C17 and C21), 130.3 (C5), 128.4 (C8), 126.5 (C7), 124.8 (C6), 115.3 (C18
and C20), 115.2 (C12 and C14), 30.6 (C3), 29.4 (C1), 24.2 (C2). Anal. calcd. for C23H20O2: C,
84.12%; H, 6.14%; Found: C, 84.30%; H, 6.01%.
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4.2.3. 4,4′-(Chroman-4-Ylidenemethylene)diphenol (25) (Scheme 15)

White solid; Yield: 0.52 g (39%); Mp: 226.1–228.2 ◦C; 1H-NMR (DMSO-d6): 9.43 (s, 1H,
C19OH), 9.37 (s, 1H, C13OH), 6.90 (td, J = 7.7 Hz, 1.2 Hz, 1H, H7), 6.97–6.75 (overlapping
m’s, 4H, H11, H15, H17 and H21), 6.68 (d, J = 8.5 Hz, 2H, H18 and H21), 6.66 (d, J = 8.2 Hz,
1H, H8), 6.63 (dd, J = 8.0 Hz, 1.2 Hz, 1H, H5), 6.61 (d, J = 8.3 Hz, 2H, H12 and H14), 6.39
(td, J = 7.6 Hz, 0.8 Hz, 1H, H6), 4.14 (t, J = 5.3 Hz, 2H, H2α and H2β), 2.52 (t, J = 5.3 Hz,
2H, H3α and H3β); 13C-NMR (DMSO-d6): 156.9 (C19), 156.8 (C13), 154.8 (C8a), 137.0
(C9), 134.1 (C10), 133.8 (C16), 132.3 (C11 and C15), 131.9 (C17 and C21), 130.2 (C5), 128.4
(C7), 126.4 (C4), 123.4 (C4a), 119.2 (C6), 116.9 (C8), 115.8 (C12 and C14), 115.2 (C18 and
C20), 67.0 (C2), 29.6 (C3). Anal. calcd. for C22H18O3: C, 79.98%; H, 5.49%; Found: C,
80.12%; H, 5.30%.
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4.2.4. 4,4′-(Thiochroman-4-Ylidenemethylene)diphenol (26) (Scheme 16)

Light yellow solid; Yield: 0.65 g (47%); Mp: 135.2–138.4 ◦C (dec,); 1H-NMR (DMSO-d6):
9.43 (s, 1H, C19OH), 9.27 (s, 1H, C13OH), 7.03 (dd, J = 7.9 Hz, 0.9 Hz, 1H, H5), 6.91 (td,
J = 7.2 Hz, 1.2 Hz, 1H, H6), 6.90 (d, J = 8.6 Hz, 2H, H17 and H21), 6.84 (d, J = 8.5 Hz, 1H,
H8), 6.70 (d, J = 8.6 Hz, 2H, H18 and H21), 6.66 (d, J = 8.6 Hz, 2H, H11 and H15), 6.61 (td,
J = 7.2 Hz, 1.2 Hz, 1H, H7), 6.48 (d, J = 8.6 Hz, 2H, H12 and H14), 2.93 (dd, J = 7.4 Hz, 5.9 Hz,
2H, H3α and H3β), 2.61 (dd, J = 7.5 Hz, 6.0 Hz, 2H, H2α and H2β); 13C-NMR (DMSO-d6):
156.9 (C19), 156.5 (C13), 140.0 (C4), 137.3 (C8a), 134.9 (C9), 134.2 (C10), 133.8 (C16), 132.2
(C11 and C15), 131.5 (C4a, C17 and C21), 130.4 (C8), 127.2 (C6), 126.7 (C5), 123.6 (C7), 115.5
(C18 and C20), 115.2 (C12 and C14), 29.6 (C2), 28.3 (C3). Anal. calcd. for C22H18O2S: C,
76.27%; H, 5.24%; S, 9.25%; Found: C, 76.00%; H, 5.46%, S, 9.39.
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4.2.5. 4,4′-((1-Methyl-1,5,6,7-Tetrahydro-4H-Indol-4-Ylidene)methylene)diphenol (31)
(Scheme 17)

Beige solid; Yield: 0.30 g (23%); Mp: 182.0–184.6 ◦C; 1H-NMR (DMSO-d6): 9.21 (s, 1H,
C18OH, partly overlapped by C12OH), 9.19 (s, 1H, C12OH, partly overlapped by C18OH),
6.83 (d, J = 6.7 Hz, 2H, H10 and H14, partly overlapped by H16 and H20), 6.82 (d, J = 6.8 Hz,
2H, H16 and H20, partly overlapped by H10 and H14), 6.61 (d, J = 6.8 Hz, 4H, H11, H13,
H17 and H19), 6.22 (d, J = 3.0 Hz, 1H, H2), 4.49 (d, J = 3.0 Hz, 1H, H3), 3.32 (s, 3H, CH3,
overlapped by HDO signal of the solvent), 2.52 (t, J = 6.2 Hz, 2H, H7α and H7β), 2.32 (dd,
J = 8.0 Hz, 5.7 Hz, 2H, H5α and H5β), 1.73 (p, J = 6.0 Hz, 2H, H6α and H6β); 13C-NMR
(DMSO-d6): 156.1 (C12), 155.7 (C18), 136.1 (C9), 135.1 (C15), 131.7 (C16 and C20), 131.6
(C7a), 131.3 (C10 and C14), 130.5 (C8), 129.3 (C4), 120.5 (C2), 118.9 (C3a), 115.5 (C11 and
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C13), 114.9 (C17 and C19), 106.5 (C3), 33.0 (CH3), 30.5 (C7), 24.3 (C6), 22.2 (C5). Anal. calcd.
for C22H21NO2: C, 79.73%; H, 6.39%; N, 4.23%; Found: C, 79.98%; H, 6.23%; N, 4.01%.
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4.2.6. (4-Hydroxyphenyl)(4-(4-Hydroxyphenyl)-1-Methyl-4,5,6,7-Tetrahydro-1H-Indol-4-
yl)methanone (31a) (Scheme 18)

Brownish white solid; Yield: 0.23 g (16%); Mp: 177.7–179.2 ◦C; 1H-NMR (DMSO-d6):
10.04 (s, 1H, C11OH), 9.26 (s, 1H, C18OH), 7.28 (d, J = 8.8 Hz, 2H, H16 and H20), 6.83 (d,
J = 8.6 Hz, 2H, H9 and H13), 6.64 (d, J = 8.6 Hz, 2H, H10 and H12), 6.56 (d, J = 8.8 Hz,
2H, H17 and H19), 6.46 (d, J = 2.9 Hz, 1H, H2), 5.46 (d, J = 2.9 Hz, 1H, H3), 3.39 (s, 3H,
CH3), 2.55–2.35 (overlapping m’s, 3H, H5α, H7α and H7β partly overlapped by DMSO-d5

signal of the solvent), 1.72 (m, 1H, H6α), 1.63 (m, 1H, H5β), 1.46 (m, 1H, H6β); 13C-NMR
(DMSO-d6): 200.0 (C14), 160.9 (C18), 156.1 (C11), 137.3 (C8), 133.0 (C16 and C20), 129.9
(C7a), 129.6 (C15), 128.5 (C9 and C13), 120.5 (C2), 116.3 (C3a), 115.6 (C10 and C12), 114.6
(C17 and C19), 107.7 (C3), 56.7 (C4), 37.7 (C5), 33.2 (CH3), 21.5 (C6), 19.2 (C7). Anal. calcd.
for C22H21NO3: C, 76.06%; H, 6.09%; N, 4.03%; Found: C, 75.82%; H, 6.48%; N, 3.89%.
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Scheme 18. Structure of 31a with the numbering of atoms used for the assignment of NMR data.

4.2.7. 4,4′-((1-Acetyl-1,5,6,7-Tetrahydro-4H-Indol-4-Ylidene)methylene)diphenol (32)
(Scheme 19)

White solid; Yield: 0.59 g (41%); Mp: 131.9–141.6 ◦C; 1H-NMR (DMSO-d6): 10.13 (s,
1H, C12OH), 9.34 (s, 1H, C18OH), 7.26 (d, J = 8.9 Hz, 2H, H10 and H14), 7.16 (d, J = 3.6 Hz,
1H, H2), 6.87 (d, J = 6.7 Hz, 2H, H16 and H20), 6.68 (d, J = 6.7 Hz, 2H, H17 and H19), 6.59 (d,
J = 8.9 Hz, 2H, H11 and H13), 5.75 (d, J = 3.6 Hz, 1H, H3), 2.80 (t, J = 6.3 Hz, 2H, H7α and
H7β), 2.47 (m, 1H, H5α, overlapped by DMSO-d5 signal of the solvent), 2.44 (s, 3H, CH3),
1.84 (m, 1H, H5β) 1.60 (m, 1H, H6α), 1.53 (m, 1H, H6β); 13C-NMR (DMSO-d6): 170.1 (CO),
161.1 (C12), 156.4 (C18), 135.3 (C15), 132.7 (C10 and C14), 131.5 (C7a), 130.8 (C8), 129.0 (C9),
128.6 (C16 and C20), 123.6 (C3a), 120.5 (C2), 115.8 (C17 and C19), 115.6 (C4), 114.9 (C11 and
C13), 112.9 (C3), 35.8 (C5), 25.5 (C7), 24.2 (CH3), 19.6 (C6). Anal. calcd. for C23H21NO3: C,
76.86%; H, 5.89%; N, 3.90%; Found: C, 77.02%; H, 5.80%; N, 3.75%.
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Scheme 19. Structure of 32 with the numbering of atoms used for the assignment of NMR data.

4.2.8. 4,4′-((1-Methyl-1,5,6,7-Tetrahydro-4H-Indazol-4-Ylidene)methylene)diphenol (33)
(Scheme 20)

Yellow solid; Yield: 0.22 g (16%); Mp: 264.3–269.5 ◦C (dec.); 1H-NMR (DMSO-d6):
9.33 (s, 1H, C18OH), 9.27 (s, 1H, C12OH), 6.87 (d, J = 8.4 Hz, 2H, H16 and H20, partly
overlapped by H10 and H14), 6.85 (d, J = 8.6 Hz, 2H, H10 and H14, partly overlapped by
H16 and H20), 6.68 (d, J = 8.3 Hz, 2H, H11 and H13), 6.63 (d, J = 8.4 Hz, 2H, H17 and H19),
5.83 (s, 1H, H3), 3.55 (s, 3H, CH3), 2.59 (t, J = 5.9 Hz, 2H, H7α and H7β), 2.35 (dd, J = 6.2 Hz,
5.3 Hz, 2H, H5α and H5β), 1.74 (p, J = 5.7 Hz, 2H, H6α and H6β); 13C-NMR (DMSO-d6):
156.6 (C18), 156.1 (C12), 140.0 (C7a), 135.9 (C3), 135.5 (C9), 133.9 (C15), 133.1 (C8), 131.2
(C10 and C14), 131.1 (C16 and C20), 126.5 (C4), 117.9 (C3a), 116.0 (C11 and C13), 115.1 (C17
and C19), 35.7 (CH3), 29.7 (C5), 23.8 (C6), 21.5 (C7). Anal. calcd. for C21H20N2O2 (33 and
33a): C, 75.88%; H, 6.06%; N, 8.43%; Found: C, 76.02%; H, 6.20%; N, 8.26% (30 and 33a,
see below).
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Scheme 20. Structure of 33 with the numbering of atoms used for the assignment of NMR data.

The sample contains ca. 17% of isomer 4,4′-((2-methyl-2,5,6,7-tetrahydro-4H-indazol-
4-ylidene)-methylene)diphenol (33a) as an inseparable component identified by NMR
measurements (Scheme 21).
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Scheme 21. Structure of 33a with the numbering of atoms used for the assignment of NMR data.

H-NMR (DMSO-d6): 9.33 (s, 1H, C18OH), 9.27 (s, 1H, C12OH), 6.87 (4H, H10, H14,
H16 and H20), 6.71 (d, J = 8.7 Hz, 2H, H11 and H13), 6.63 (2H, H17 and H19), 5.86 (s, 1H,
H3), 3.47 (s, 3H, CH3), 2.53 (t, J = 6.0 Hz, 2H, H7α and H7β), 2.37 (m, 2H, H5α and H5β),
1.69 (p, J = 5.5 Hz, 2H, H6α and H6β); 13C-NMR (DMSO-d6): 156.6 (C18), 156.1 (C12), 149.5
(C7a), 127.9 (C3), 135.5 (C9), 133.9 (C15), 133.6 (C8), 131.2 (C10 and C14), 131.1 (C16 and
C20), 126.5 (C4), 117.6 (C3a), 116.3 (C11 and C13), 115.1 (C17 and C19), 38.8 (CH3), 30.5
(C5), 24.5 (C6), 24.0 (C7).
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4.2.9. 4,4′-((3,4-Dihydro-2H-Ferroceno[a]benzo)methylene)diphenol (38) (Scheme 22)

Orange solid; Yield: 1.15 g (66%); Mp: 168.4–170.6 ◦C (dec.); 1H-NMR (DMSO-d6): 9.29
(s, 1H, C12OH), 9.26 (s, 1H, C18OH), 7.02–6.82 (overlapping m’s, 4H, H10, H14, H16 and
H20), 6.73 (d, J = 8.0 Hz, 2H, H11 and H13), 6.44 (d, J = 8.4 Hz, 2H, H17 and H19), 4.11 (br
d, 1H, H7), 3.96 (s, 5H, η5-C5H5), 3.82 (t, J = 2.2 Hz, 1H, H6), 2.92 (br d, 1H, H5), 2.66 (m,
1H, H4α), 2.61 (m, 1H, H2α), 2.26 (m, 1H, H4β), 2.24 (m, 1H, H2β), 1.89 (m, 1H, H3α), 1.56
(m, 1H, H3β); 13C-NMR (DMSO-d6): 156.4 (C12), 156.0 (C18), 135.7 (C9), 135.2 (C8), 135.1
(C15), 132.1 (C1), 130.9 (C10 and C14), 130.7 (C16 and C20), 115.7 (C11 and C13), 115.1 (C17
and C19), 86.8 (C4a), 81.9 (C7a), 70.3 (η5-C5H5), 67.0 (C6), 66.8 (C7), 65.9 (C5), 31.3 (C2),
25.6 (C4), 24.6 (C3). Anal. calcd. for C27H22FeO2: C, 74.32%; H, 5.54%; Found: C, 74.56%;
H, 5.62%.
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4.2.11. 3-(Bis(4-Methoxyphenyl)methylene)-2,3-Dihydrobenzofuran (44) (Scheme 24)

Yellow solid; Yield: 0.63 g (44%); Mp: 152.3–154.7 ◦C; 1H-NMR (CDCl3): 7.17 (d,
J = 8.1 Hz, 2H, H10 and H14), 7.08 (t, J = 7.6 Hz, 2H, H16 and H20), 7.04 (t, J = 7.8 Hz, 1H,
H6), 6.92 (d, J = 8.2 Hz, 2H, H11 and H13), 6.84 (d, J = 8.3 Hz, 2H, H17 and H19), 6.80 (d,
J = 8.1 Hz, 1H, H7), 6.57 (t, J = 7.6 Hz, 1H, H5), 6.40 (d, J = 7.7 Hz, 1H, H4), 5.26 (br s, 2H,
H2α and H2β), 3.84 (s, 3H, C12′OCH3), 3.79 (s, 3H, C18′OCH3); 13C-NMR (CDCl3): 163.9
(C7a), 159.0 (C12), 158.6 (C18), 134.9 (C15), 133.8 (C9), 132.6 (C3), 132.1 (C8), 130.7 (C10 and
C14), 129.5 (C16 and C20), 129.4 (C6), 126.2 (C3a), 124.2 (C4), 120.1 (C5), 114.3 (C11 and
C13), 113.8 (C17 and C19), 110.2 (C7), 75.6 (C2), 55.3 (C12′OCH3 and C18′OCH3). Anal.
calcd. for C23H20O3: C, 80.21%; H, 5.85%; Found: C, 79.92%; H, 6.21%.
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4.2.12. 2-(2-Hydroxyphenyl)-3-(4-Hydroxyphenyl)-1H-Inden-6-ol (46) (Scheme 25)

Yield: 0.21 g (61%); beige solid; Mp: 242.7–245.1 ◦C; 1H-NMR (DMSO-d6): 9.34 (s, 1H,
C17OH), 9.28 (s, 1H, C1OH), 9.18 (s, 1H, C10OH), 7.09–6.93 (overlapping m’s, 3H, H12,
H15 and H19), 6.96 (td, J = 7.5 Hz and 1.7 Hz, 1H, H3), 6.90 (d, J = 2.2 Hz, 1H, H9), 6.78 (m,
2H, H2 and H5), 6.67 (d, J = 8.6 Hz, 2H, H16 and H18 partly overlapped by H11), 6.64 (dd,
J = 8.1 Hz and 2.1 Hz, 1H, H11 partly overlapped by H16 and H18), 6.54 (td, J = 7.4 Hz and
1.1 Hz, 1H, H4), 3.71 (s, 2H, H8α and H8β); 13C-NMR (DMSO-d6): 156.7 (C17), 155.7 (C1
and C10), 145.5 (C8a), 139.2 (C14), 137.6 (C12a), 137.1 (C13), 130.4 (C15 and C19), 131.5 (C5),
128.2 (C3), 126.6 (C7), 125.1 (C6), 120.5 (C12), 119.0 (C4), 116.1 (C2), 115.6 (C16 and C18),
113.4 (C11), 111.8 (C9), 41.9 (C8). Anal. calcd. for C21H16O3: C, 79.73%; H, 5.10%; Found: C,
79.46%; H, 5.46%.
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4.3. Electrochemical Characterizations, Experimental Conditions

All electrochemical measurements were carried out at room temperature (23.0 ± 0.5 ◦C).
The solutions were purged with oxygen-free argon (Linde 5.0) before use, and an inert gas
blanket was maintained throughout the experiments. A Metrohm Autolab PGSTAT 302N
potentiostat (controlled by the Autolab Nova Software) was used in cyclic voltammetric and
impedance measurements. Cyclic voltammetry experiments were performed in a standard
three-electrode cell arrangement in which a platinum wire (A = 8.1 mm2) in contact with
acetonitrile solutions containing 0.1 M tetrabutylammonium perchlorate (Bu4NClO4) and
1 mM sample served as the working electrode, and a platinum wire as the counter electrode.
An aqueous NaCl-saturated calomel electrode (SSCE) and the mid-point (half-wave) poten-
tial of the ferrocene/ferrocenium (Fc/Fc+) redox couple (as an internal reference system)
were used as potential references for the measurement of the electrode potentials. The aque-
ous electrolyte solution in the SSCE and the acetonitrile solution at the working electrode
were separated by a glass stopcock arrangement which effectively prevented mixing of the
solutions. Cyclic voltammetric curves were recorded in the potential range of −1.80 V to
2.0 V vs. SSCE at v = 1 V/s sweep rate. All potentials in the figures showing the results of
electrochemical experiments are referenced simultaneously to the ferrocene/ferrocenium
redox couple and to SSCE. This type of representation was first introduced as reported
in detail [58]. The E1/2,Fc/Fc+ value with respect to SSCE was determined in acetonitrile
solutions containing a 0.1 M Bu4NClO4 supporting electrolyte (see Figure S1). The liquid
junction potential was not corrected. The observed value (E1/2,Fc/Fc+ = (438 ± 5) mV vs.
SSCE, see the caption in Figure S1) is in fairly good agreement with earlier results [59–61].
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4.4. Cell Culturing and Cytostasis Assay

MCF-7 and MDA-MB-231 cells were cultured in DMEM medium supplemented with
10% FBS, 2 mM L-glutamine, penicillin–streptomycin antibiotics mixture (50 IU/mL and
50 µg/mL, respectively), 1 mM sodium pyruvate and 1% non-essential amino acid mixture.
A2058 and HT-29 cells were cultured in RPMI-1640 medium supplemented with 10% FBS,
2 mM L-glutamine, penicillin-streptomycin antibiotics mixture (50 IU/mL and 50 µg/mL,
respectively). The cultures were maintained at 37 ◦C in a humidified atmosphere with 5%
CO2. The cells were grown to confluency and 24 h before the treatment; they were divided
into 96-well tissue culture plates with the initial cell number of 5.0 × 103 cells/well. The
cells were treated with the compounds in 200 µL final volume containing 1.0 v/v% DMSO
at 6.4 × 10−4–50 µM concentration range overnight at 37 ◦C, whereas control cells were
treated with serum-free medium only or with DMSO (c = 1.0 v/v%) at the same conditions.
After incubation, cells were washed twice with serum-free medium. Following that, cells
were cultured for further 72 h in 10% serum-containing medium at 37 ◦C; then, MTT-
solution (at c = 0.37 mg/mL final concentration) was added to each well. The respiratory
chain [62] and other electron transport systems [63] reduce MTT and thereby form non-
water-soluble violet formazan crystals within the cell [64]. The amount of these crystals
can be determined by spectrophotometry and serves as an estimate for the number of
mitochondria and hence the number of living cells in the well [65]. After 3 h of incubation
with MTT, the cells were centrifuged for 5 min at 2000 rpm and then the supernatant was
removed. The obtained formazan crystals were dissolved in DMSO (100 µL) and optical
density (OD) of the samples was measured at λ = 540 nm and 620 nm, respectively, using
ELISA Reader (iEMS Reader, Labsystems, Finland). OD620 values were subtracted from
OD540 values. The percent of cytostasis was calculated with the following equation:

Cytostatic effect (%) = [1 − (ODtreated/ODcontrol)] × 100

where values ODtreated and ODcontrol correspond to the optical densities of the treated and
the control wells, respectively. In each case, two independent experiments were carried out
with 4 parallel measurements. Cytostasis was plotted as a function of concentration, and
the half maximal inhibitory concentration was calculated based on a sigmoid curve fitted
on the data points using Microcal™ Origin2018 software. IC50 represents the concentration
of a compound that is required for 50% inhibition expressed in micromolar units.

5. Conclusions

A series of novel 4-Hydroxytamoxifen analogues was synthetized and evaluated
for their in vitro cytostatic and redox properties. The results of cell-viability assays, CV
measurements and DFT calculations suggest that the antiproliferative activity of the potent
members of the novel Tamoxifen analogues is mainly elicited by their interactions with
targets including estrogen receptors. However, it can be assumed that—prominently in
HT-29 cells—the target-related effect of model compounds comprising fused pyrrole ring
or three hydroxyphenyl groups is probably attenuated by ROS-mediated action. This
oxidative mechanism is supposed to implicate the formation of highly reactive bis-Michael
acceptor quinone methide-based intermediates capable of alkylating sulfur- and selenium
donor cellular nucleophiles such as glutathione, thioredoxine- and ribonucleotid reductases
vital to maintaining proliferation and redox balance of the cancer cells. The structure–
activity relationships (SAR) and cell-selectivity disclosed in this contribution might be
explored in the design of further small potent molecules having electronically tunable
Tamoxifen-related scaffolds of which enhanced anticancer potency is associated with
synergistic cooperation of ROS-mediated effects and non-oxidative signal transductions
initiated by binding to different targets.
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spectra: S2–S18; Electrochemical characterization, experimental: S19–S22; Cell culturing and cytosta-
sis assay: S23; Cyclic voltammograms recorded at a platinum wire (A = 8.1 mm2) in contact with
(A) 0.5 mM; (B) 0.25 mM ferrocene + 0.1 M Bu4NClO4 in MeCN. v = 50 mV/s; E = 0.05–0.77 V vs.
SSCE: Figure S1; Cyclic voltammograms recorded at Pt (surface area A = 8.1 mm2) in contact with
(A) 0.1 M Bu4NClO4 + 1 mM 18 in MeCN; (B) 0.1 M Bu4NClO4 + 1 mM 38 in MeCN; (C) 0.1 M
Bu4NClO4 + 0.5 mM ferrocene in MeCN. Scan rate: (A,B) v = 1 V/s; (C) v = 0.05 V/s: Figure S2; Cyclic
voltammograms recorded at Pt (surface area A = 8.1 mm2) in contact with 0.1 M Bu4NClO4 + 1 mM 1;
23; 24; or 25 in MeCN. Scan rate: v = 1 V/s: Figure S3 Cyclic voltammograms recorded at Pt (surface
area A = 8.1 mm2) in contact with 0.1 M Bu4NClO4 + 1 mM 26; 28; 31; or 31a in MeCN. Scan rate:
v = 1 V/s Figure S4. Cyclic voltammograms recorded at Pt (surface area A = 8.1 mm2) in contact with
0.1 M Bu4NClO4 + 1 mM 32; 33; 44; or 46 in MeCN. Scan rate: v = 1 V/s: Figure S5

Author Contributions: Conceptualization, A.C. and F.H.; methodology, C.D., T.J., A.C., R.O.-S. and
S.B.; software, T.J. and S.B.; validation, G.G.L., S.B., I.S. and R.O.-S.; formal analysis, S.B., I.S. and
R.O.-S.; investigation, C.D., T.J., I.S., R.O.-S., K.J.S., G.G.L. and A.C.; resources, G.G.L. and A.C.; data
curation, C.D., T.J., S.B. and A.C. writing—original draft preparation, C.D., T.J., K.J.S., G.G.L. and
A.C.; writing—review and editing, K.J.S., G.G.L., F.H. and A.C.; visualization, C.D., T.J., K.J.S. and
A.C.; supervision, G.G.L., F.H. and A.C.; project administration, T.J.; funding acquisition, G.G.L. and
A.C. All authors have read and agreed to the published version of the manuscript.

Funding: The research was funded by the National Research, Development, and Innovation Office
Grant Number K_129037, K_129210 and VEKOP-2.3.2-16-2017-00013 (GGL), Hungary, the ELTE
Thematic Excellence Program supported by the Hungarian Ministry for Innovation and Technology
grant number SzintPlusz_1117, and the János Bolyai research grant of the Hungarian Academy of
Sciences grant number BO/00381/22.

Institutional Review Board Statement: Not applicable.

Informed Consent Statement: Not applicable.

Data Availability Statement: The data generated and analyzed during our research are not avail-
able in any public database or repository but will be shared by the corresponding author upon
reasonable request.

Acknowledgments: We thank Dániel Hutai for the technical assistance in the synthetic work.

Conflicts of Interest: The authors declare no conflict of interest.

References
1. Goldstein, S.R.; Siddhanti, S.; Ciaccia, A.V.; Plouffe, L., Jr. A pharmacological review of selective oestrogen receptor modulators.

Hum. Reprod. Update 2000, 6, 212–224. [CrossRef]
2. Kotoulas, I.G.; Cardamakis, E.; Michopoulos, J.; Mitropoulos, D.; Dounis, A. Tamoxifen treatment in male infertility. I. Effect on

spermatozoa. Fertil. Steril. 1994, 61, 911–914. [CrossRef]
3. Obrero, M.; David, V.Y.; Shapiro, D.J. Estrogen Receptor-dependent and Estrogen Receptor-independent Pathways for Tamoxifen

and 4-Hydroxytamoxifen-induced Programmed Cell Death. J. Biol. Chem. 2002, 277, 45695–45703. [CrossRef] [PubMed]
4. McDermott, M.T.; Hofeldt, F.D.; Kidd, G.S. Tamoxifen therapy for painful idiopathic gynecomastia. South. Med. J. 1990, 83,

1283–1285. [CrossRef]
5. Badia, E.; Morena, M.; Lauret, C.; Boulahtouf, A.; Boulle, N.; Cavaillès, V.; Balaguer, P.; Cristol, J.P. Effect of tamoxifen and

fulvestrant long-term treatments on ROS production and (pro/anti)-oxidant enzymes mRNA levels in a MCF-7-derived breast
cancer cell line. Breast Cancer-Tokyo 2016, 23692–23700. [CrossRef]

6. Dewaele, M.; Maes, H.; Agostinis, P. ROS-mediated mechanisms of autophagy stimulation and their relevance in cancer therapy.
Autophagy 2010, 6, 838–854. [CrossRef]

7. Lu, C.; Heldt, J.M.; Guille-Collignon, M.; Lemaître, F.; Jaouen, G.; Vessières, A.; Amatore, C. Quantitative Analyses of ROS and
RNS Production in Breast Cancer Cell Lines Incubated with Ferrocifens. ChemMedChem 2014, 9, 1286–1293. [CrossRef]

8. Pigeon, P.; Wang, Y.; Top, S.; Najlaoui, F.; Garcia Alvarez, M.C.; Bignon, J.; Jaouen, G. A New Series of Succinimido-ferrociphenols
and Related Heterocyclic Species Induce Strong Antiproliferative Effects, Especially against Ovarian Cancer Cells Resistant to
Cisplatin. J. Med. Chem. 2017, 60, 8358–8368. [CrossRef] [PubMed]

9. Boldyrev, A.I.; Simons, J.; Zakrzewski, V.G.; von Niessen, W. Vertical and adiabatic ionization energies and electron affinities of
new silicon-carbon (SinC) and silicon-oxygen (SinO) (n = 1–3) molecules. J. Phys. Chem. 1994, 98, 1427–1435. [CrossRef]

https://www.mdpi.com/article/10.3390/molecules27196758/s1
https://www.mdpi.com/article/10.3390/molecules27196758/s1
http://doi.org/10.1093/humupd/6.3.212
http://doi.org/10.1016/S0015-0282(16)56705-3
http://doi.org/10.1074/jbc.M208092200
http://www.ncbi.nlm.nih.gov/pubmed/12244117
http://doi.org/10.1097/00007611-199011000-00013
http://doi.org/10.1007/s12282-015-0626-7
http://doi.org/10.4161/auto.6.7.12113
http://doi.org/10.1002/cmdc.201402016
http://doi.org/10.1021/acs.jmedchem.7b00743
http://www.ncbi.nlm.nih.gov/pubmed/28895732
http://doi.org/10.1021/j100056a010


Molecules 2022, 27, 6758 22 of 24

10. Zhan, C.G.; Nichols, J.A.; Dixon, D.A. Electron affinity, electronegativity, hardness, and electron excitation energy: Molecular
properties from density functional theory orbital energies. J. Phys. Chem. A. 2003, 107, 4184–4195. [CrossRef]

11. Marchi, S.; Giorgi, C.; Jan, M.; Suski, J.M.; Agnoletto, C.; Bononi, A.; Bonora, M.; De Marchi, E.; Missiroli, S.; Patergnani, S.; et al.
Mitochondria-Ros Crosstalk in the Control of Cell Death and Aging. J. Signal Transd. 2012, 2012, 329635. [CrossRef] [PubMed]

12. Robbins, D.; Zhao, Y. Oxidative Stress Induced by MnSOD-p53 Interaction: Pro- or Anti-Tumorigenic? J. Signal Transd. 2012, 2012,
101465. [CrossRef]

13. Barreca, M.; Ingarra, A.M.; Raimondi, M.V.; Spanò, V.; De Franco, M.; Menilli, L.; Montalbano, A. Insight on pyrimido [5,4-g]
indolizine and pyrimido [4,5-c] pyrrolo [1,2-a] azepine systems as promising photosensitizers on malignant cells. Eur. J. Med.
Chem. 2022, 237, 114399. [CrossRef]

14. Barreca, M.; Spanò, V.; Raimondi, M.V.; Bivacqua, R.; Giuffrida, S.; Montalbano, A.; Barraja, P. GPCR inhibition in treating
lymphoma. ACS Med. Chem. Lett. 2022, 13, 358–364. [CrossRef]

15. Labbozzetta, M.; Barreca, M.; Spanò, V.; Raimondi, M.V.; Poma, P.; Notarbartolo, M.; Montalbano, A. Novel insights on [1,2]
oxazolo [5,4-e] isoindoles on multidrug resistant acute myeloid leukemia cell line. Drug Dev. Res. 2022, 83, 1331–1341. [CrossRef]
[PubMed]

16. Ueda, K.; Amaike, K.; Maceiczyk, R.M.; Itami, K.; Yamaguchi, J. β-Selective C-H arylation of pyrroles leading to concise syntheses
of lamellarins C and I. J. Am. Chem. Soc. 2014, 136, 13226–13232. [CrossRef]

17. Spano, V.; Parrino, B.; Carbone, A.; Montalbano, A.; Salvador, A.; Brun, P.; Vedaldi, D.; Diana, P.; Cirrincione, G.; Barraja, P.
Pyrazolo[3,4-h]quinolines promising photosensitizing agents in the treatment of cancer. Eur. J. Med. Chem. 2015, 102, 334–351.
[CrossRef]

18. Top, S.; Tang, J.; Vessières, A.; Carrez, D.; Provot, C.; Jaouen, G. Ferrocenyl hydroxytamoxifen: A prototype for a new range of
oestradiol receptor site-directed cytotoxics. Chem. Commun. 1996, 8, 955–956. [CrossRef]

19. Kalabay, M.; Szász, Z.; Láng, O.; Lajkó, E.; Pállinger, É.; Duró, C.; Jernei, T.; Csámpai, A.; Takács, A.; Kőhidai, L. Investigation of the
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