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The etiology and pathogenesis
of type 1 diabetes – A
personal, non-systematic
review of possible causes,
and interventions

Karsten Buschard*

Bartholin Instituttet, Rigshospitalet, Copenhagen, Denmark
In this review after a lifelong research career, my personal opinion on the

development of type 1 diabetes (T1D) from its very start to clinical manifestation

will be described. T1D is a disease of an increased intestinal permeability and a

reduced pancreas volume. I am convinced that virus might be the initiator and

that this virus could persist on strategically significant locations. Furthermore,

intake of gluten is important both in foetal life and at later ages. Disturbances in

sphingolipid metabolism may also be of crucial importance. During certain

stages of T1D, T cells take over resulting in the ultimate destruction of beta

cells, which manifests T1D as an autoimmune disease. Several preventive and

early treatment strategies arementioned. All together this review hasmore new

theories than usually, and it might also be more speculative than ordinarily. But

without new ideas and theories advancement is difficult, even though

everything might not hold true during the continuous discovery of the

etiology and pathogenesis of T1D.
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Introduction

Type 1 Diabetes (T1D) has been studied intensively during the last 5 decades to

understand, prevent, or even cure the disease. It is established that it is autoimmune and

thus at the very end driven by T cells (1). Also, that autoantibodies exist and that these

can be used for diagnoses (2). Various attempts have been tried to arrest T1D; these

include mainly immune depressing therapies like anti-lymphocyte serum (3) and other

immune antibodies (4) as well as antigen treatments with beta-cell autoantigens like

Glutamic Acid Decarboxylase (GAD) (5) or insulin (6). Twin studies have shown that
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about 50% of the T1D disposition is inherent, the rest is of

environment reason (7). Other kind of studies are on the same

line (8). However, the disease incidence has increased and more

than doubled in the last decades (9), meaning that the

importance of the environment factors may have increased. As

mentioned later in this review, tissue types are the most

significant inherent components, but many others exist with

association either to the beta cells or to the immune system.

Regarding the etiology, most scientist but not all think that

enterovirus are the most likely candidates (10, 11) but also stress

of the beta cells must be of importance (12). This settles the scene

for this review, hopefully with new ideas and new thoughts.

This is a personal review with which I will explain a complete

story of the development of type 1 diabetes (T1D) from the first

etiology through the pathogenesis to the establishment of the

disease. The review is personal because not everything is proven,

and some parts are theoretical (T). This will be mentioned as just

indicated. However, references will be used as much as possible.

What are the initiating factors of T1D? I am convinced that

virus, most likely enterovirus, is involved for several reasons. Very

good animal studies exist to prove this, and here I should mention

the EncephaloMyoCarditis (EMC) M-strain virus model. In 1976

(13) and 1983 (14) we showed that healthy BALB/c mice within a

week develop diabetes in about 1/3 of the animal cases. This most

likely depended on the T cell immune system since nude mice (13,

14), antiglobulin-treated mice (15), and BALB/c ByJ mice given

anti-T-cell antibodies (16), did not develop diabetes. Thus, these

models were dependent on the T cells just like in human T1D.

Several other strains of the virus have been used. The EMC-D strain

also lead to development of diabetes but this was toxic by itself

against the beta cells, like poliovirus against neural cells, and not

relying on the immune system (17); it more resembled the toxic

diabetes seen nearly exclusively in South Korea and Japan.

However, the vast majority of humans with T1D are dependent

on the immune system, the reason why immune suppressive

treatment, such as an anti-lymphocyte immunoglobulin can be
FIGURE 1

Schematic drawing of various factors involved in development of Type 1 Di
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used with beneficial effect (18). In humans there are good

arguments for virus involvement: T1D is most commonly seen in

themonths of autumn during which enterovirus infections aremost

frequent, and there are several indications showing presence of virus

especially in stool (10, 19, 20). In recent years samples and biopsies

from new human T1D cases have also shown footprints of virus

infections in islet tissue (21). On the other hand, virus is not present

in significant amounts in human patients. Although another study

disagrees (22), it has been found that there is a 37% lower risk of

T1D in youngsters after vaccination against rotavirus (23). This is

not a final proof of the involvement of virus but a strong argument

that enterovirus might be involved in the pathogenesis of T1D.

A new player for virus might be interferon alpha. Either

induced by the virus infection or given therapeutically for

example against melanoma or hepatitis C (24, 25), interferon

alpha can induce 2,5-synthetase (26) and RNAseL that in turn

can fight virus but also RNA from the host cells themselves.

mRNA from these compounds have been found increased in

islets from newly diagnosed human T1D patients (27). The

significance of this is supported by gene polymorphisms between

several genes in this cascade and T1D (27). Interestingly,

interferon alpha responsiveness is increased in whole blood

cells from patients with T1D and from NOD mice also (28).

In beta cells 2,5-synthetase is substantially more common than

in alpha cells which may add an explanation to the fact that only

beta cells are hurt and not alpha cells (26). Thus, it is a possibility

(T) that virus infection in a beta cell acts indirectly as described

by injuring RNA of various enzymes, including the sphingolipid

involved ones (see later), and thereby commence the

development of T1D (Figure 1).
The intestine

Regarding the microbiota, Akkermansia muciniphila is

known to be present at a lower amount at the diagnosis of
abetes.
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T1D (29). Further, more Bacteroides are seen at diagnosis of T1D

and this is supposedly not an advantage (30); abundance of

Bacteroides is associated with less production of butyrate which

is protective in the pathogenesis of T1D (31). It is likely that the

intestinal bacterial flora directly or through endotoxins

influences L cells that produce GLP-1 and GLP-2 (32). This is

important as it offers an explanation for the interaction between

the intestinal flora, glycaemic control, and body mass index (32).

Also, virus can influence the intestinal flora; there is a

connection between enterovirus and dysbiosis of bacteria (33).

A main hallmark of T1D is the increased intestinal

permeability. This has been described using the method of

absorption of the lactulose:mannitol ratio. It revealed that the

permeability is increased in newly diagnosed T1D patients (34).

This has been demonstrated also in patients having diabetes for

more than 4 years as well as in a subject with pre-T1D or

antibody-positive patients (34). It is not known whether such a

potential patient has an increased permeable intestinal barrier

function even before he becomes antibody positive. This might

be a permanent characteristic of that person. In favor of this

hypothesis, first degree relatives also have increased intestinal

permeability compared to controls (35). Several environmental

factors are known to affect the permeability. (1) Enteroviruses.

Enteroviruses per se effect the enterocytes (36). However, it is

difficult to imagine that an enterovirus infection persists during

decades so this alone might not be the cause of increased

permeability through many years, as just described. (2)

Akkermansia. A. muciniphila is known to decrease the

permeability of the intestine which happen through an

interesting mechanism; the Akkermansia bacteria is degrading

the mucus layer close to the enterocytes but the result is that

more mucin is produced and the intestinal barrier is tightened

(37). (3) Gluten. Intake of gluten is known to increase the

permeability (38). (4) CXCR3 ligands. These include various

chemokines released in the intestinal environment which

through the upregulation and MyD88-dependent zonulin will

increase the permeability (35). (5) Serine palmitoyltransferase.

Sphingolipid de novo biosynthesis in which serine

palmitoyltransferase is important for the intestinal barrier

function (39). Thus, it must be concluded that T1D is a

disease of a relatively leaky intestine and that several factors

might contribute to this. Apart from permeability and intestinal

flora, compartments seem to be of importance. In a human study

of fecal transplantation from colon to duodenum, autolog Tx

showed significantly better results than allogen Tx on glycemic

values among recent T1D patients (40). This interesting area

must be developed further in the coming years.
Beta-cell activity

Hyperactivity of insulin secretion has been found in patients

with prediabetes (41). This may per se give more ER-stress which
Frontiers in Endocrinology 03
in principle might increase the risk of odd insulin molecules that

potentially might be immunogenic; these include wrongly

spliced insulin and deamidated glutamin insulin (12).

Furthermore, the volume of pancreas has been found

substantially lowered in patients with T1D; in relation to body

weight, pancreas volume was only 55% of the control values,

whereas in patients with type 2 diabetes (T2D) it was not

significantly reduced (42). Also, pre-T1D patients with disease-

associated autoantibodies showed lower pancreas weights; when

having one autoantibody they displayed 75% of the control value

(43). Whether also healthy family members have a lower

pancreas volume is not known for sure. Since the islets

constitute only about 1% of the pancreas volume, it is

obviously the exocrine pancreas is reduced during T1D but

also the number of islets might be affected (44). Due to these

data, it must be considered as part of the T1D pathogenesis to

have a lower exocrine pancreatic volume. The reason might be

related to the affected nerve stimulation of the organs as

discussed below in relation to the sphingolipids.

Another explanation for the low pancreas weight should also

be mentioned (T): A few generations ago, before intake of

refined sugar products became common, the main stress factor

for beta cells was high amounts of fat, which uptake into the cells

depends on insulin. A diet containing a high percentage of fat

requires high quantities of lipase and consequently high activity

of the exocrine pancreas. Thus, the endocrine and exocrine

function are interdependent. Interestingly, individuals that are

prone to develop T2D are often pyknic individuals, who as arctic

people may have experienced a cold climate which have led them

to eat a high fat diet. In contrast, individuals who develop T1D

are often slim and tall with no tradition for gannet food. Thus,

these individuals may likely have a small pancreas, hence a small

beta-cell mass combined with a higher intake of refined sugar

products which might lead to beta-cell stress and higher risk

of T1D.

Lower beta-cell volume should be more stressed by intake of

Western food. However, lack of rest for the beta cells could be

more important than experience of stress (T). Hence, intake of

food each other day only, reduces the incidence of diabetes in

NOD mice (45).
Sphingolipid

Glycosphingolipids are supposed to play an important role

in the metabolism and function of the beta cells (46). In many

ways, beta cells resemble neural cells. This is supported by novel

findings that co-transplantation of human pancreatic islets with

neural stem cells increases beta-cell proliferation and vascular

regrowth (47). Also, during the foetal development of beta cells,

stem cells from neural ectoderm are found in situ at the beta cells

(48). Supposedly these neural cells somehow influence the beta

cells. Very likely, this could also be the case regarding
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sphingolipids including sulfatide (49); these compounds are

intensively present in the myelin tissue surrounding the

nerves, having the function of facilitating electric impulses

(50). In beta cells, especially sulfatide is important. It facilitates

folding of proinsulin and insulin. This process seems to be

important since in newly diagnosed T1D patients, the amount

of sulfatide is substantially lower as later discussed. In these

patients, there is an accumulation of proinsulin with an

increased proinsulin to insulin ratio (51), and up to 20% of

the proinsulin molecules are misfolded (52). Also, at low pH

sulfatide preserves the insulin crystals (53, 54). Sulfatide

facilitates exocytosis and afterwards opens the potassium

channels so that the individual beta cells can rest to build up

new secretory granules close to the cell membrane, meanwhile

other beta cells take over the secretory responsibilities (55, 56).

Furthermore, sulfatide inhibits cytokine secretion (57), it is

antagonistic to TLR4 (58), and also, sulfatide may hinder or

reduce the amount of TLR4 molecules at target cells for LPS (59),

and it facilitates NKT cells after presentation by CD1 molecules

(60, 61); in other words, sulfatide has anti-inflammatory effects.

Regarding insulin resistance, the level of sulfatide in the blood is

highly inverse correlated to this (62).

For normal production of sulfatide, serine uptake is

important. First, serine is used to synthesize ceramide,

hereafter beta-Galactosyl-Ceramide (beta-GalCer), and finally

sulfatide. All the enzyme systems are well known (63). If, for

some reason, serine is not bound in sufficient amounts to its

receptor, alanine and glycine can take over, but then deoxy

sphingolipids are synthesized (64). Physiologically, these

compounds do not act the same way as sulfatide in the beta

cell, and furthermore they are potentially apoptotic (65). In

neural cells, it has been described that lowering plasma deoxy

sphingolipids by oral L-serine supplement alleviates neuropathy

in diabetic rats (66). In T2D patients low plasma serine and high

deoxydihydroceramide are associated with diabetic neuropathy

(67). In NODmice treatment with L-serine in the drinking water

reduced the diabetes incidence from 71% to 43% (68).

Interestingly, during progression of human T1D, the serine

levels in peripheral blood has been found to decrease (69).

In humans at diagnosis of T1D, we have found that in the

islets, the amount of sulfatide is only 23% of that seen in non-

diabetic controls (70). In a new study from the TEDDY group,

low plasma levels of sphingomyelin are correlated to

development of islets autoimmunity (71). Furthermore, we

have found that several but not all enzymes involved in the

sulfatide trail measured in the islets at mRNA level, have been

downgraded at T1D diagnosis (70). When co-factors are

considered it could be more than 50% lower activity of a

specific enzyme. This can explain the anticipated higher deoxy

sphingolipid and ceramide levels in pre-diabetic islets (T) to

T1D in the genes of several enzymes involved in the sphingolipid

metabolism; the odds risk for having T1D compared to control

persons is up to 1.47 (70).
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Another possible explanation for the presence of deoxy

sphingolipids in the islets is suggested (T). These could also be

provided by neural cells in the islets that are damaged by

neuropathy and which are present in relatively high amounts

(72). This fits well with the fact that deoxy sphingolipids have

been found in neural cells (73) and that neural cells in the islets

can be conserved by treatment of fenofibrate (72). Interestingly,

the type A enteroviruses actually seem to be more frequent in

healthy persons than the type B (74). The type A viruses are

more associated with neurological manifestations whereas the

type B viruses are more associated with gastrointestinal

manifestations. In the case of T1D (T) this might be due to

infection of both Coxsackie A and B strains maybe more or less

simultaneously (19).

The changes in the sphingolipid enzymes in the islets, which

are seen at diagnosis of T1D simultaneously with a state of

anergy for at least one third of the beta cells (75), might have a

normal physiological reference in fasting or even hibernation.

For this function, it might be imagined that the potassium

channels are opened and stay as such (T). This could happen

if sulfatide in the channels is not broken down which might be

the case if arylsulfatase is reduced as it actually is in islets of

newly diagnosed T1D patients (70). Also, it might be anticipated

that sulf-lac-cer could be active in opening the potassium

channels, maybe more than sulfatide as a defence of nature for

preserving a vulnerable beta cell in danger (T). This is likely the

case in T2D in which sulf-lac-cer can be detected in peripheral

blood (62). Interestingly, the enzyme pathway from ceramide to

lactosyl-ceramide is the only one which is upregulated in the

newly T1D islets (70).

Beta cells seems not to be 100% synchronized. It may be that

only some of the cells is anergic (70), which have the

consequence that the non-anergic ones are hyperactive and

thus more vulnerable. Due to creation of defective ribosomal

products (DRiPs, see later) these cells might be victims of attack

from the immune system whereas at the same time the anergic

beta cells might be victims from apoptosis or necrosis. Thus,

synchronized action of all or most of the beta cells to active state

and not letting the minority of them be hyperactive, must be a

goal by itself. Furthermore, the beta cells might not be

completely identical and could react differently (76).

An interesting possibility should be mentioned regarding

how the amount of sulfatide could be influenced (T). Children

may have sulfatide antibodies. It may be that these antibodies

also react against sulf-lac-cer, which the Sulph I antibody from

mice actually does (77). It could then be (T) that sulf-lac-cer

opens potassium channels which might be the reason why foetal

beta cells to a large extent do not secrete insulin. It might be the

same mechanism that could be in play when animals hibernate

(T). Antibodies against sulf-lac-cer could remove this molecule

resulting in normally functioning beta cells. This could explain

why foetal beta cells might not be replaced in newborns but only

change properties. These antibodies will not hurt the secreted
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sulfatide since this is degraded to gal-cer which is then re-up

taken (49). That insulin is secreted in children of diabetic

mothers during foetal life, could be explained by antibodies

from the mother.

Why is it that small kids to high extend develop antibodies

against a self-molecule? This could be due to intake of various

food items especially milk which contain mycobacteria (78).

Mycobacteria are used in Freud’s adjuvant and are known to

have a lipid wall which contain very long fatty acids with 60-80

carbon atoms. But, interestingly, they also have a content of

sulfatide. It can be imagined that these immune enhancing

bacillus through their content of sulfatide can mediate

production of anti-sulfatide antibodies. Mycobacteria are seen in

milk, cheese and other items related to animals. In Sardinia having

a very high T1D incidence, a special Sada goat exists, and milk and

cheese from goats have a decent number of mycobacteria (79). It is

obvious that the mycobacteria in play cannot be directly

pathogenetic in humans, in contrast to Mycobacterium

tuberculosis or Mycobacterium lepra for which diseases anti-

sulfatide antibodies are common (80). After phagocytosis of

mycobacteria, phagosome-lysosome fusion in macrophages is

prevented which enhances the immunogenicity of sulfatide (81).
Intake of gluten

When the intestinal barrier is increasingly open as it is in (pre)

T1D, gliadin product from gluten could enter the bloodstream

(82) and create a (more) inflammatory environment in the

intestinal compartment and in the islets. Why is this important?

Celiac disease is closely related to T1D and is a condition of

intolerance to gluten, especially gliadin. There is co-morbidity of

celiac disease and T1D; thus, about 10% of patients with T1D also

have celiac disease. Interestingly, in far the most of these cases

T1D is the first of these two diseases to appear (83), which could

argue that if celiac disease develops first, then the patient shifts to

gluten-free (GF) diet and seldomly T1D will develop. The first

indication of the importance of GF diet in T1D was found in 1999

when we fed NOD mice a GF diet and discovered a much lower

incidence of diabetes than for the control mice (15% versus 64%)

(84). This has been confirmed in many other studies both in NOD

mice and BB rats (44, 85). Even the cultivars of wheat seem to play

a role as it has been found that modern western wheat is the most

diabetogenic (86). Highly interestingly, recently it has been

published that there is an association between gluten and risk of

islet autoimmunity or T1D in humans (87). Thus, even in the

earliest state of T1D development, intake of gluten seems to be of

relevance. In the study, 5500 children with an increased genetic

risk for T1D were chosen from a Finish birth cohort, and during a

6 years period the gluten containing food items were recorded.

The results showed that high intake of gluten increased the risk of

both islet autoimmunity and T1D in the magnitude of factor two

compared to low or no intake of gluten (87).
Frontiers in Endocrinology 05
What is the mechanism behind the connection between

gluten intake and T1D? GF diet changes the intestinal

microbiota and the proportion of Akkermansia muciniphila

bacteria is increased (88). This bacterium adheres to

enterocytes and strengthens the integrity of the intestinal

barrier thus it is less penetrable (89). On the other hand,

g lu t en con t a in ing d i e t i nduce s the p r e s ence o f

transTissueGlutaminase (tTG) in the intestinal wall, which

facilitates deamidation of various proteins e.g. converting

glutamine to glutamate. Due to the increased permeability of

the intestine, even relatively large fragments of gliadin molecules

can be absorbed and, indeed, we have found a 33-mer gluten

peptide present in the islets (82). At this location, this molecule

can again facilitate tTG upraise which is important for the

creation of DRiPs (90). DRiPs are effectively loaded to HLA-

DQ2 and by presentation in the regional lymph nodes, a T cell

immune reaction may come into play. Furthermore, gliadin

fragments facilitate higher activity of dendritic cells (91), NK

cells (92) and CD4+ T-cells (44) which increase the degree of

inflammation. Interestingly, the 33-mer gliadin molecule has

been described to perform oligomerization which might further

attract immune cells (93).

Also, GF diet during pregnancy has been studied in NOD

mice. We have found that intake of no gluten from conception to

delivery dramatically lowered the diabetes incidence in NOD

mice from 63% to 8% (94) together with lowering insulitis (44).

This has been confirmed in a human epidemiological study with

more than 60.000 participants (95). Here it has been found that

the offspring of the participants with the 10% lowest gluten

intake, have a two-fold reduced risk of developing diabetes

compared to the offspring of the 10% of the participants with

the highest gluten intake. What could be the reason for this? A

study from Finland has found that about 80% of normal persons

display CD4+ T cell proliferation responses against gliadin (96).

Interestingly, this was seen to a lower degree and only in 50% of

patients who were antibody-positive (preT1D) or were newly

diagnosed T1D patients. After some years, this gliadin reaction

was normalized again to the level of the background population.

The explanation (T) for the pregnancy studies could be that

when gliadin is not experienced in the foetal life, then the

likelihood for a T cell reaction against wheat might be larger

and if so, gliadin fragments should not be able to reach the

pancreas through the bloodstream. The lower reaction against

wheat in newly diagnosed T1D patients could be due to the

opposite effect combined with the fact that these patients have a

relative open intestinal barrier making access of gliadin peptide

easier (T).

Also, in later stages of T1D development and even after

diagnoses, gluten intake plays a role. Thus, newly diagnosed T1D

children showed effect of a GF diet, as these displayed a better

remission after one year; two of the GF-patients were even out of

insulin during longer periods (97). Most recently, a 12-month

intervention trial from Prague regarding intake of gluten in
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recent-onset T1D patients has been performed (98) in which,

forty six children (mean age of 10 years) were divided into a GF

or a control group. After 12 months the gluten-free patients

displayed better HbA1c and received less insulin (98). However,

as T1D is a troublesome disease to be diagnosed with, and it will

be even harder to manage a simultaneous GF diet as well.

Therefore, we have suggested intranasal exposure to gliadin

which lowers the diabetes incident in NOD mice (99). This

has not as yet been tried in humans but interestingly, bakers who

are exposed to gliadin during their daily work and for whom

gliadin can be isolated from the nasal mucosa, only 57% of the

expected cases developed T1D compared to the background

population (100). Whether GF diet will work for a person with

pre-T1D by delaying or preventing the clinical disease must be

investigated as soon as possible.

In the context of the beneficial effect of GF diet, we

investigated the effect of intake of an excessive amount of

gluten in NOD mice and expected an increase in diabetes

incidence. In contrast, we found that the excess of gluten

dramatically lowered the incidence of diabetes (101). How

could that be? It has been found that gluten-reduced diet is

accompanied with reduction in the butyrate producing E. halli

and A. hadrus (102). Opposite, a study in mice has found that

gliadin increases the levels of Eubacterium and Dorea species

which contributes to the butyrate production (103). It is

established that butyrate produced by the intestine can lower

the incidences of diabetes in NOD mice (104). Butyrate boosts

the number and function of regulatory cells (104, 105), and it

enhances the gut integrity and decrease the diabetic cytokines

such as IL-21 (104, 105). This may be seen in connection with

other short-fatty acids which also have anti-diabetic effects. A

diet both being GF and having a good production of butyrate

should be developed.
The actual destruction of beta cells

Until now in this review the induction of the disease has been

described, but how is the destruction of beta cells actually

happening? Before this, close to the diagnosis of T1D, a kind of

anergy for the beta cells takes place. Initially, T cell reaction is

slightly ongoing but at this stage the beta cells mainly look normal

and a high percentage are alive and in principle able to function

(75). However, clinically earlier in some patient but at the latest at

the end of the remission period, the disease process accelerates,

and new cellular players may come into account or at least be

active to a higher degree than seen before. The cells that are

involved are macrophages (106), dendritic cells (107), B

lymphocytes (108), all having an important role in antigen

presentation. This may take place in the regional lymph nodes,

and T cells interaction is becoming more and more critical. Before

this, cells from the innate immune system like NK cells seem to be

involved (109).
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When a significant part of the beta cells are anergic and some

destroyed, then the remaining must work really hard, and maybe

harder than ever because of simultaneous insulin resistance

which is seen during T1D development (110). As mentioned

this is correlated to low levels of sulfatide (58). The mechanism

might be that sulfatide blocks TLR4, stimulation of which

mediates insulin resistance (111).

What is actually destroying the beta cells? Mainly due to

research in the animal models, BB rats and NOD mice, it was

proposed in 1985 by Bendtzen et al. that cytokines, especially IL-

1b or the mixture of IL-1b, TNF-a and IFNg may be mediators

of beta cell deterioration (112). Indeed, this can be shown for

isolated islets in vitro, namely that beta cells exposed to such a

cytokines mixture are destroyed in a necrotic process. Signs of

this can be seen in both BB rats (113) and especially NOD mice

(114). However, human islets are less sensitive to cytokine

destruction and, furthermore, in human samples of newly

diagnosed T1D patients from the DIVID and nPOD study,

cytokines cannot be found, except minor concentrations of

IFNg (75). What is then responsible for the destruction of the

beta cells? Supposedly, perforin is active in cell destruction (115).

This is a well-known molecule secreted during inflammatory

processes which follow the described stages of beta-cell anergy.

The cytotoxic T cells that sooner or later are created in the

inflammatory process can be delayed or stopped by Tregs. In

1980, we were the first to describe in a functional study, that

there is less suppressor or regulator cell activity in newly

diagnosed T1D patients (116). This has later been confirmed

by many others. Also, the amount of regulatory FoxP3 cells have

been examined but several studies indicate it is more the

function than the number of regulatory cells that is the

problem for the T1D patients (117).

All autoimmune diseases are driven by T lymphocytes. Why

is it then that among the first cells to arrive in the insulitis lesion

are cells from the innate immune system? These cells cannot

create autoimmunity, but they are usually present due to virus or

other infections. Highly interesting in this context is that the T

cells alone cannot start beta-cell autoimmunity (T). This

statement is supported by several findings: i) When a person

has only one beta-cell antibody, seldomly he will have clinically

diabetes although T cells have been involved in creating the

antibody; ii) It is not possible in animal models to immunize

clinical diabetes e.g. by using (allogeneic) islet cell tissue and

Freunds adjuvants (118); iii) Treatment with insulin to

psychiatric otherwise normal patients in order to give insulin

shock, did not result in clinical diabetes despite that the insulin

in the 1950ties were dirty and improper and must have resulted

in development of insulin antibodies (119). Thus, the T cells

cannot do the work alone and something else must be involved.

Most likely it may be the innate immune system e.g. NK cells

being attract by microbial agents or by an experience of tumour-

like cells in in the islets or surroundings. However, then the T

cells arrive later, and the process reaches a point of no return.
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The T cells developed phylogenetically simultaneously with the

mammals as they became warm blooded. Their main function is

to fight cancer cells which are more common than in

coldblooded reptiles. Consequently, the T cells “may believe”

that the beta cells in the beginning of insulitis are tumour cells,

which should be destroyed. Normally, the beta cells are covered

by sulfatide which is an anti-inflammatory molecule and at least

as investigated in animal models, it is more present during foetal

life. Actually, the adaptive immune system has not learnt to

accept the beta cells without sulfatide. Sulfatide is relative less

present in active beta cells (120) as seen in foetuses of diabetic

mothers. The foetuses may then better signal “self” to the

immune system. Later in life these children have only less than

half the risk of getting T1D compared to kids of diabetic fathers.

We have found that neonatal stimulation of beta cells by

arginine or other beta cell stimuli reduces the later diabetes

incidence in BB rats (121). In this study, we suggested a tolerance

mechanism and most recently, it has been shown that CD4+ T

cells from cord blood of offspring of diabetic mothers have a

reduced response to pro-insulin and insulin compared to

controls as well as to children of diabetic fathers who have

more than a double risk for developing T1D (122).

What is to do for causal treatment at diagnoses? Sulfatide

needs to be replenished at the surface of the beta cells. Then the

beta cells need to be activated for insulin production which at

first may attract the T cells. Therefore, it might be a good idea to

inhibit the T cells shortly (days or weeks) either by antibodies fx

anti-CD4 mAb, or by steroid treatment. Simultaneously, but for a

much longer time (maybe years), compounds should be given

that increases the amount of sulfatide, which could be serine or

fenofibrate. Regarding fenofibrate, which is a PPARa agonist

(72), treatment with this have until now in one case of a newly

diagnosed T1D patient given freedom of insulin injections

ongoing for 30 month (123). Furthermore, the beta cells

should not be stressed, and gluten-free diet should be initiated

as being anti-inflammatory and especially having its effect on the

innate immune system.

Regarding genetics, far the most important polymorphisms

are due to tissue types which was firstly described by Singal and

Blajchman in 1973 (124), and in 1976 by the same group also for

class II tissue types (125). Apart from being disposing, a new

practical function HLA has been settled. Newly diagnosed T1D

patients with the tissue type of HLA-DQ2 can be treated

successfully with GAD in inguinal lymph nodes in order to
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delay their disease (126). At least about 50 other polymorphisms

have been demonstrated either relating to beta cells or the

immune system. Among the first ones are eight polymorphic

genes related to the sphingolipid metabolism. However as

outlined above, environmental factors not least viruses seem to

be crucial for the development of T1D.
Final remarks

Based on studies, new speculations, and ideas my conclusive

remarks should be that I have tried to give a personal, complete

story of how T1D initially starts and how it ends up as an

autoimmune T cell driven disease. It is my hope that at least

some of my ideas and suggestions will receive an adequate

validation, so that T1D can be prevented or treated, likely not

completely but to the incidences levels that exist in the 1950s

which is the same as the incidence levels in Russian Karelia today

(127), in contrast to the five times higher T1D pressure in the

neighboring Finnish Karelia being much more modernized

and westernized.
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