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Abstract

Dasypyrum villosum has been used as a valuable gene resource for disease resistances,

yield increase and quality improvement in wheat. A novel wheat-D. villosum alien introgres-

sion line CD-3 was generated through hybridization between the common wheat Chinese

Spring (CS) and a CS- D. villosum 3V addition line having considerably high stripe rust resis-

tance, which enable the characterization of a potential new stripe rust resistance gene (s)

derived from D. villosum. The results of non-denaturing fluorescent in situ hybridization (ND-

FISH) showed that CD-3 contained 42 chromosomes, including a 3V chromosome pair, and

the absence of both of the 3D chromosomes. PCR-based Landmark Unique Gene (PLUG)

molecular marker analysis supported results from the FISH analysis, revealing CD-3 was a

wheat-D. villosum 3V (3D) disomic substitution line. Resistant test of stripe rust on 52 plants

of F2 generation (CD-3/CS), CD-3, CS and D.villosum have been conducted at seedling

stage. 7 plants of F2 generation possessing two 3V chromosomes exhibited high resistance

to stripe rust as CD-3 and D.villosum, 10 plants carrying one 3V chromosome and 35 plants

without 3V chromosome were susceptive to stripe rust as CS. The result implied the high

stripe rust resistance of CD-3 should be controlled by recessive gene(s) originating from

D.villosum. To rapidly detect chromosome 3V in the genetic background of wheat, we devel-

oped a novel Sequence Characterized Amplified Region (SCAR) marker specific for 3V

chromosome based on the sequence of a grain size-related gene DvGS5 in D. villosum, an

orthologue of TaGS5 from wheat. The SCAR marker was designated DvGS5-1443, which

could successfully amplify a unique 3V-specific fragment in CD-3 and D. villosum, suggest-

ing that this SCAR marker could facilitate targeting the chromosome 3V in the genetic back-

ground of wheat for wheat improvement.
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Introduction

Stripe (or yellow) rust, caused by Puccinia striiformis Westend. f. sp. tritici Erikss. (Pst), is consid-

ered one of the most dangerous diseases of wheat (Triticum aestivum L.) worldwide, and also in

China [1]. It was estimated to commonly reduce crop yield by 10–70%, and even up to 100% [2].

The development of disease-resistant wheat cultivars has been suggested to be the most effective,

economical, and environmentally friendly strategy to control stripe rust [3,4]. To date, numerous

Yr (yellow rust) genes have been identified, and they have been officially designated as Yr1- Yr78
[5]. However, concerning the coevolution of plants and pathogens, many of the extensively used

Yr genes, such as Yr9 and Yr26, did not confer adequate resistance to newly emerging Pst strains

[6]. Therefore, there is an urgent need for exploring and identifying novel and effective resistance

genes against newly emerged Pst strains. The progenitors and relatives of crops are immensely

valuable for modern agriculture, by providing a wide diversity of desirable genetic resources for

plant breeding[7]. In particular, a substantial body of evidence supports that wild relatives of

wheat constitute a valuable gene pool for disease resistance in wheat[8–10]. For example, chromo-

some arm 1RS of rye harboring powdery resistant genes (Pm8 and Pm17) and rust resistance

genes (Sr31, Lr26 and Yr9) [11–12], and 6VS arm of Dasypyrumvillosum carrying powdery mil-

dew resistant gene (Pm21) [13] are prevalent in wheat commercial cultivars.

Haynaldia villosa (L.) Schur (syn. Dasypyrum villosum L. Candargy, 2n = 2x = 14, VV) is of

interest as a genetic germplasm source, possessing many agronomically important traits for

wheat improvement, such as tolerance to biotic and abiotic stresses, and high nutritional

and bread-making quality [14–15]. Since the development of the first set (#1) of Triticum-

Dasypyrum alien lines [16], the chromosomes of different D. villosum accessions have been

introduced into wheat (set #2 to set #4) [17]. The desirable genes present on V genome chro-

mosomes have been identified and characterized in the genetic background of wheat. For

example, the well-known powdery mildew resistant gene Pm21, located on 6VS, has been

cloned [18–19] and further used in wheat breeding [20]. However, limited progress has been

made in the exploration of stripe rust resistant gene (s) in D. villosum [21].

An effective strategy for utilizing plant genetic resources by employing conventional breed-

ing, molecular genetics, and transformation is gaining ground nowadays [22]. In this study,

using functional molecular markers and cytogenetic methods, we characterized a new wheat-

D. villosum 3V (3D) substitution line CD-3 showing high resistance to stripe rust.

Materials and methods

Plant materials

D. villosum accession PI 257477 (genome VV, 2n = 2x = 14) was obtained from the National

Genetic Resources Program, United States Department of Agriculture. Chinese Spring (CS)—

D. villosum addition lines (# 3) Additions 1V, 2V, and 4V-7V were provided by the School of

Life Science and Technology, University of Electronic Science and Technology of China (the

D. villosum accession used to develop this set (#3) of additional line was TA10220). Line CD-3

and the sixty plants of CD-3 used for stripe rust test were the F6 progeny derived from hybrid-

ization of CS and CS-D. villosum 3V addition line (# 3). F2 population used for genetic analysis

of resistance to stripe rust was derived from crosses between CS and CD-3. Other accessions,

including common wheat cultivars CS, Chuanmai49, Chuanmai50, Chuanmai60, and rye cul-

tivar JZHM were maintained by our laboratory.

Non-denaturing fluorescent in situ hybridization (ND-FISH) procedures

Root tips from 60 individual seedlings of CD-3 were collected, treated with nitrous oxide for

2h and fixed with 90% acetic acid for 8–10 min. Then, the root tips were washed quickly with
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dd H2O, and stored in 70% ethanol at -20˚C. After being washed with dd H2O, the root tips

were digested with 1% pectolyase and 2% cellulase solution (Yakult Pharmaceutical Industry

Co., Ltd, Tokyo, Japan) as the procedures described by Kato et al. [23]. The oligonucleotides

Oligo-pSc119.2, Oligo-pTa-535, Oligo-(GAA)7, and Oligo-pHv62-1 used as probes, among

which, Oligo-pSc119.2 combined with Oligo-pTa-535 could identify all 42 chromosomes of

CS common wheat, as described by Tang et al. (2014), Oligo-(GAA)7 could distinguish all

chromosomes of B sub-genome as described by [24], and Oligo-pHv62-1 could highlight the

3V chromosome of D. villosum as reported by Li et al. [25]. The probes mentioned above were

synthesized by Invitrogen (Shanghai, China) as described by Tang et al. [26] and Li et al. [25].

ND-FISH analysis was performed as described by Fu et al.[27]. At least three metaphase plates

per seedling were analyzed and FISH images were captured using Leica DM2500 microscope

(Leica, Shanghai, China).

PCR-based Landmark Unique Gene (PLUG) marker analysis

Genomic DNA was isolated from young leaves using the CTAB method[28]. PLUG primers

were designed as described by Ishikawa et al. [29]. PCR was conducted using a T100TM Ther-

mal cycler (Bio-RAD Laboratories, Emeryville, CA, USA) in a 25 μL reaction mixture, contain-

ing 2.5 μL of 10× buffer (50 mM KCl, 1.5 mM MgCl2, and 10 mM Tris-HCl, pH 8.3), 200 nmol

of each dNTP, 100 ng of genomic DNA, 0.2 U of Taq polymerase (TianGen, Beijing, China)

and 400 nmol of each primer. The amplification protocol as follows: initial denaturation at

94˚C for 3 min; followed by 35 cycles of denaturation at 94˚C for 1 min, annealing at 55˚C

(dependent on different primer sets) for 1 min, extension at 72˚C for 2 min, and final exten-

sion at 72˚C for 10 min. The PCR products were separated on 2% (w/v) agarose gels, and visu-

alized by EtBr staining.

Stripe rust resistance tests

The sixty plants of CD-3 identified by ND-FISH were grown in the field and used for stripe

rust resistance tests. During the cropping seasons in 2014, 2015, 2016 and 2017, field tests were

conducted in Pixian city, Sichuan, China. The mixed Pst strains, mainly consisting of CYR32,

CYR33, and CYR34, were used to infect adult plants of CD-3, CS, and D. villosum. The infec-

tion type (IT) were recorded 18–20 days after inoculation.

Genetic analysis of resistance to stripe rust was conducted on 52 plants of F2 (CD-3/CS).

After identified by ND-FISH, seeds were grown in small pots(5×5×5cm), and one pot was for

one seed. Seedlings at two-leaf stage were inoculated with mixed urediniospores and were kept

in dew chamber at 9–12˚C for 24 h without light. And then, the seedlings were transferred to

rust-free greenhouse with daily cycle of 12 h of light and 12 h of dark at 11˚C-17˚C. The mixed

Pst strains mentioned above were used to infect seedling plant. The infection types were

recorded 15 days after inoculation.

Infection types were recorded on 1–9 scale as described by Line and Qayoum [30], where

IT 0–3 were resistant, IT 4–6 were intermediate, and IT 6–9 were susceptible. The Pst strains

used were provided by the Plant Protection Institute, Sichuan Academy of Agricultural Sci-

ences, China, and the Plant Protection Institute, Gansu Academy of Agricultural Sciences,

China.

Development of 3V-specific molecular markers

To monitoring the 3V chromosomes from D.villosum, we chose TaGS5 genes mapped on 3AS

and 3DS of wheat for the developing the 3V-specific marker. Five primer pairs for TaGS5
genes (TaGS5-P5, TaGS5-P6, TaGS5-P7, TaGS5-P8, and TaGS5-P9), were used in this study,
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as described by Wang et al. [31]. PCR was conducted using a T100TM Thermal cycler (Bio-

RAD Laboratories). The reaction system and procedure were in accordance with the descrip-

tion of Wang et al. [31]. The amplified products were separated on 2% (w/v) agarose gels. D.

villosum-specific bands were excised and purified using gel extraction kit (TianGen Biotech)

following the manufacturer’s instructions. After introducing the purified product into the vec-

tor pMD19-T (TaKaRa Biotechnology, Dalian, China) following the manufacturer’s instruc-

tions, the modified vector was transformed into competent cells of Escherichia coli strain DH-
5α. The obtained clones were screened by PCR using M13 universal primers, and three positive

clones were randomly chosen for double end sequencing at Shanghai Sangon Biotech Co., Ltd,

Shanghai, China. Sequences obtained were assembled by DNAman (Lynnon Biosoft, San

Ramon, CA, USA).Based on sequence alignment between DaGS5 and TaGS5, putative SCAR

primers were designed based on the low-homology region using Primer Premier 5.0 (PRE-

MIER Biosoft, Palo Alto, CA, USA), followed by synthesis at Shanghai Sangon Biotech Co.,

Ltd. PCR was conducted by a T100TM Thermal cycler (Bio-RAD Laboratories), using a 25 μL

reaction system, containing 2.5 μL of 10× buffer (50 mM KCl, 1.5 mM MgCl2, 10 mM Tris-

HCl, pH 8.3), 40–100 ng of genomic DNA, 200 nmol of each primer, and 1 U of Taq DNA

polymerase (TianGen Biotech). The PCR protocol was as follows: initial denaturation at 94˚C

for 5 min, 35 cycles of denaturation at 94˚C for 1 min, annealing at 56˚C for 0.5 min, extension

at 72˚C for 0.5 min, and final extension at 72˚C for 10 min. The amplicons were separated on

a 1% (w/v) agarose gel, and visualized by EtBr staining.

Results

Chromosomal characterization

Sequential ND-FISH was conducted on the mitotic spread chromosomes of CD-3 using

probes of Oligo-pSc119.2, Oligo-pTa535, Oligo-pHv62-1 and Oligo-(GAA)7 (Fig 1A–1C). As

shown in Fig 1D, we observed that all wheat and D. villosum chromosomes could be accurately

distinguished using the probes mentioned above. The Oligo-pSc119.2 and Oligo-pTa535

probe combination could easily distinguish all 42 wheat chromosomes (Fig 1A). As shown in

Fig 1B, Oligo-pHv62-1 highlighted a pair of 3V chromosomes of D. villosum with strong

hybridization signals on the terminal regions of both chromosomal arms, and a faint signal in

the centromeric region. Oligo-(GAA)7 was mainly located in centromeric or sub-terminal

regions of the B genome of wheat (Fig 1C). The chromosome number of CD-3 was 42, con-

taining 40 wheat chromosomes and a pair of 3V chromosomes. By comparing the standard

wheat karyotype obtained by the combined use of Oligo-pSc119.2 and Oligo-pTa535 as probes

[26], we deduced that wheat chromosome 3D was absent in the line CD-3.

PLUG marker analysis

D. villosum was firstly analyzed by employing 30 PLUG markers specific for wheat homoeolo-

gous group 3 chromosomes. Five pairs (three were located on the short arm, and two were

located on the long arm) generated stable, clear bands in CS, D. villosum, CD-3, and some

CS-D. villosum addition lines (Table 1). Among the five PLUG primers pairs, three primer

pairs (TNAC1248, TNAC1294 and TNAC1267) generated D. villosum-specific bands in both

D. villosum and CD-3, excluding one fragment from CS, while the remaining two primers

(TNAC1301 and TNAC1277) amplified all fragments from D. villosum and CS (Fig 2). By

comparing the CS band pattern with the standard bands obtained in nullisomic-tetrasomic

lines of CS using the same primer pairs (TNAC1294 and TNAC 1267) described by Ishikawa

et al. (2009), we observed that the fragment absented in CD-3 belonged to chromosome 3D.
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These results showed that CD-3 contained the D. villosum 3V chromosome, and had lost a pair

of 3D chromosomes.

Evaluation of stripe rust resistance

After field resistance evaluations were conducted in four successive seasons, we found that all

60 individuals of CD-3 and the D. villosum plants were highly resistant to the epidemic Pst
strains, including CYR32, CYR33 and CYR34, whereas the recipient parent CS was susceptible

(Fig 3A–3C). The resistance tests on 52 plants of F2 were conducted at seedling stage. We

observed that 7 plants possessing two 3V chromosomes were highly resistant to stripe rust, 10

plants carrying one 3V chromosome and 35 plants without 3V chromosome were susceptible

to stripe rust (Fig 3D–3J). These results showed that stripe rust resistance of CD-3 probably

originated from recessive gene(s) on the 3V chromosome of D. villosum.

Fig 1. FISH pattern of CD-3 and the leaf response to stripe rust. (a) Chromosomes of CD-3 stained with DAPI (blue), Oligo-pTa535 (red) and Oligo-pSc119.2

(green), (b) chromosomes stained by DAPI (blue) and Oligo-pHv62-1(green), (c) chromosomes stained with propidium iodide, PI (red) and oligo-(GAA)7, (d) the FISH

karyotype of CD-3, (e) The leaf response to stripe rust of D. villosum, CD-3 and CS.

https://doi.org/10.1371/journal.pone.0202033.g001
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Isolation of GS5 gene from D. villosum and development of 3V-specific

marker

The yield-related gene TaGS5, present in 3AS and 3DS of common wheat, was used in this

study for developing a 3V-specific SCAR marker. PCR analysis was conducted for CS, D. villo-
sum and CD-3 using five primer pairs for TaGS5 genes (TaGS5-P5, TaGS5-P6, TaGS5-P7,

TaGS5-P8, and TaGS5-P9) as described by Wang et al. [31] (Table 2). Among them, TaGS5-

P6 and TaGS5-P7 could amplify about 1500-bp and 1600-bp fragments (designated DvGS5-

P61500 and DvGS5-P71600) from D. villosum, and CD-3 (Fig 4), respectively, which were slightly

different from those obtained from CS. Therefore, the DvGS5-P61500 and DvGS5-P71600 were

cloned and sequenced bidirectionally. The obtained DvGS5-P61500 and DvGS5-P71600 were

1380-bp and 1594-bp long, respectively, which could be further assembled into a1829-bp frag-

ment, designated DvGS5-1.

The alignment of DvGS5-1 and the corresponding region of TaGS5 (designated TaGS5-1)

revealed that a 155-bp insert at position 1048–1200, as well as a few short deletions and SNPs,

were present in DvGS5-1 (Fig 5). Based on this 155-bp fragment insertion, one primer pair,

DG-3VF (5’-AGTTCCGAATCAAAACATAGTC-3’) and DG-3VR (5’-AAATCACAATC
CTTCTTTATGC-3’)was further designed, and used for analyzing D. villosum, CD-3, CS-D.

villosum 1V-2V and 4V-7V addition lines, rye JZHM, and several common wheat cultivars,

including CS, Chuanmai49, Chuanmai50, and Chuanmai60. A targeted 443-bp band, desig-

nated DvGS5-1443, could only be obtained from D. villosum and CD-3; however, no PCR prod-

uct was observed in the other materials (Fig 6).

Discussion

Due to its resistance to several serious wheat diseases, including powdery mildew, rust, eye-

spot, take-all, and so on [17], D. villosum has been extensively used as a valuable genetic

resource for wheat improvement. In the past few decades, D. villosum chromatin from several

Table 1. The PLUG primers belonging to Triticeae homoeologous Group 3 used in the study.

Marker Name Primer Sequence (5’-3’) Wheat Bin Map

Location

Wheat Chromosomal Location� Restriction

Enzymes

Length of 3V Bands, bp

TNAC1294 F: CGGAAACTTTAGCCTTCTGCT 3AS4-0.45–1.00 3AS-36.23 TaqI 750

R: GTCGTGTCAGATGCTTTGGAT 3BS9-0.57–0.78 3BS-43.74

3DS4-0.59–1.00 3DS-26.26

TNAC1301 F: TGGTTTCAGATGCAGGAACTT 3AS4-0.45–1.00 3AS-84.19 HaeIII 380/180

R: CACTAAGGCATGCTGAAGGAG 3BS9-0.57–0.78 3BS-117.93

3DS4-0.59–1.00 3DS-71.97

TNAC1248 F: ATGATGCAGCAGCAAATTACA 3AS4-0.45–1.00 3AS-211.50 - 1000

R: CTGAGGAGCCTCTCCAACTCT C-3BS1-0.33 3BS-251.65

3DS3-0.24–0.31 3DS-172.90

TNAC1267 F: GAGAGGCAGCTTCACTAGCAG 3AL3-0.42–0.61 3AL-522.17 - 500

R: CGTCAGGATCAGCTCTCATGT 3BL2-0.22–0.41 3BL-527.29

3DL1-0.23–0.81 3DL-401.87

TNAC1277 F: AAAGCACCACCACATATGAAA 3AL4-0.61–0.78 3AL-649.02 TaqI 630

R: GAGGCAGAGAGTGCAAATGTT 3BL7-0.63–0.81 3BL-676.61

3DL1-0.23–0.81 3DL-514.27

Note

�, The information was obtained from website https://urgi.versailles.inra.fr/blast/

https://doi.org/10.1371/journal.pone.0202033.t001
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D. villosum accessions has been introduced into the genetic background of wheat, and several

resistant genes have been identified and mapped on individual V-genome chromosomes [17].

For example, chromosome 1V possesses a resistance gene(s) against common bunt (Tilletia tri-
tici) [32] and eyespot [33] as well as genes for enhancing wheat quality [15]. Chromosome 2V

carries eyespot resistance gene(s) [33] and gene(s) for increasing wheat yield [34]. The 3V

chromosome has resistance genes against take-all (Gaeumannomyces graminis) and eyespot

[33,35], the 4V chromosome carries the eyespot resistance gene Pch3 [36–37], wheat spindle

streak mosaic virus (WSSMV) resistance gene Wss1 [38]. Chromosome 5V possesses the pow-

dery mildew resistance gene Pm55[10] and the 6V chromosome has the powdery mildew resis-

tance gene Pm21 [13], rust resistance genes Lr6V#4 [32]and SrHv6 [39], as well as the CCN

resistance gene CreV [9].

To date, a total of 78 stripe rust resistance genes in wheat have been officially designated

(Yr1-Yr78). Among them, Yr30 and Yr57 have been mapped on chromosome 3B [40–41], Yr45
and Yr71 has been placed on 3D [42–43], and Yr76 has been mapped on 3A[44]. The resistance

genes mentioned above, located on the Triticeae homoeologous group 3 chromosomes, all origi-

nated from hexaploid landraces. No previous studies on stripe rust resistance gene(s) present

on chromosome 3V originating from the relative of wheat, D. villosum, have been reported.

Fig 2. PCR products of PLUG markers in wheat-D. villosum alien introgression lines. (a)-(e) PCR amplification generated by markers TNAC1248, TNAC1294,

TNAC1301, TNAC1277 and TNAC1267, respectively; M, Trans2k plus DNA markers (Trangene, Beijing, China); 1, common wheat CS “Chinese Spring”; 2, D.

villosum, 3–4, CS-D. villosum 1V -2V additional lines; 5, CD-3; 6–9, CS-D. villosum 4V -7V additional lines. The asterisks indicated the D. villosum-specific bands and

the arrows showed the 3D-specific band which was absent in CD-3.

https://doi.org/10.1371/journal.pone.0202033.g002
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Meanwhile, previous studies proposed that resistance in different D. villosum accessions

may vary. For example, He et al. [45] identified four Pst- susceptible D. villosum accessions

from a panel of 110 accessions. Similarly, Yildirim et al. [37] used 115 D. villosum accessions

for analyzing Pst resistance, and observed that 33 accessions were resistant to one or more

stripe rust fungal strains, and eight accessions were resistant to all strains. These studies

implied that different resistance genes exist in different D. villosum accessions. Thus, it is

Fig 3. The phenotypic response to stripe rust of D. villosum, CD-3, CS and 3 plants of F2 (CD-3/CS). (a-c) The response to stripe rust of D.villosum, CD-3 and CS at

adult stage. (d) The response to stripe rust of CS, D.villosum, CD-3 and F2 (CD-3/CS) plants at seedling stage. 2–2 was the F2 plant without 3V chromosome, 3–5 was the

F2 plant holding one 3V chromosome, and 19–2 was the F2 plant having two 3Vchromosomes. (e-j) The FISH pattern of 2-2(e, f), 3-5(g-h) and 19-2(i-j). Chromosomes

were stained by DAPI(blue), Oligo-pHv62-1(white), Oligo-pTa535 (red) and Oligo-pSc119.2 (green). The arrows showed 3V chromosomes.

https://doi.org/10.1371/journal.pone.0202033.g003
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necessary to continuously screen for novel resistance gene (s) from different D. villosum acces-

sions and wheat-D. villosum derived lines. In this study, by using ND-FISH and molecular

markers, we identified a novel wheat-D. villosum 3V (3D) substitution line (CD-3) from the

progeny of crosses between CS and the CS-D. villosum 3V addition line. Moreover, ND-FISH

analysis showed a strong Oligo-pSc119.2 signal on the terminal region of 3VL of CD-3, yet not

at sub-terminal site of 3VL, suggesting that the D. villosum chromatin introduced into CD-3

might have originated from a D. villosum accession different from that used in a previous

study by Li et al. [25]. More importantly, the test of Pst resistance at adult stage and the genetic

analysis of resistance to stripe rust on seedlings of F2 population (CD-3/CS) showed that

Table 2. Primers used for the identification of GS5 gene.

Primer Primer sequence (5’-3’) � Annealing

temperature(˚C)

The size (bp) of PCR

fragment in CS

The size (bp) of PCR

fragment(s) in CD-3

The size (bp) of PCR

fragment in D. villosum
TaGS5-P5 Forward: GCGAACCAAGACAAGCAG

Reverse:
CCTTGTACTGCGGAAACCTC

56 930 930 930

TaGS5-P6 Forward:
CTTCTGAGCTAGGACCTCTC

Reverse:
ACAAGGTCAGCTAGTTGTGG

56 1226 1226/1380 1380

TaGS5-P7 Forward:
ACATCCTCTGACCTCACCAA

Reverse:
GATACAACTGCATGGCTCCA

57 1427 1427/1594 1594

TaGS5-P8 Forward:
TCATTATGTGCCACAACTAGCT

Reverse:
AGTACCGAAAAGTTGTACGACT

57 1225 1225 1225

TaGS5-P9 Forward:
TGTCAATGGGATGTTGCCTG

Reverse:
TCATCGGTGTGTAGGAAGCTG

58 1162 1162 1162

Note

� Primer sequences were referred to Wang et al. [31]

https://doi.org/10.1371/journal.pone.0202033.t002

Fig 4. PCR products of primer pairs TaGS5-P6 and TaGS5-P7 in CS, CD-3 and D. villosum. M, trans2k plus DNA Marker; 1–3, the bands amplified by TaGS5-P6

in CS, CD-3 and D. villosum, respectively; 4–5, the bands amplified by TaGS5-P7 in CS, CD-3 and D. villosum. The white arrows showed the D. villosum-specific

bands.

https://doi.org/10.1371/journal.pone.0202033.g004
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chromosome 3V of CD-3 probably carried high degree of stripe rust resistance which should

be controlled by recessive gene(s), and the resistance gene(s) could function in the genetic

background of wheat. Therefore, CD-3 should be considered as a valuable resource for further

exploration and utilization in wheat breeding.

Fig 5. Sequence alignment of DvGS5-1 and TaGS5-1. Arrows showed binding sites of SCAR primer pair DG-3VF and

DG-3VR.

https://doi.org/10.1371/journal.pone.0202033.g005

A new wheat-Dasypyrum substitution line and molecular marker

PLOS ONE | https://doi.org/10.1371/journal.pone.0202033 August 29, 2018 10 / 14

https://doi.org/10.1371/journal.pone.0202033.g005
https://doi.org/10.1371/journal.pone.0202033


PCR-based species-specific markers have proven effective tools to monitor alien chromatin

harboring valuable genes in the genetic background of wheat [46]. To date, continuing efforts

have been made to develop V genome-specific SCAR markers, as well as a few V chromo-

some-specific SCAR markers [47–50]. However, no studies on the development of 3V-specific

SCAR markers have been reported. In this study, we identified a 155-bp insertion into DvGS5,

an orthologue of TaGS5, locating on 3AS and 3DS of common wheat. This helped us in devel-

oping a marker to target 3V chromosome in the further transferring of 3V chromosome carry-

ing stripe rust resistance to various wheat genetic background. Based on the polymorphism

between DvGS5 and TaGS5 we developed a SCAR marker, designated DvGS5-1443, which

could generate a 443-bp band specific to 3V chromosome. We demonstrated that it could indi-

cate the presence or absence of the 3V chromosome in the background of wheat reliably, easily

and efficiently. Therefore, it could be used as an efficient tool for monitoring the D. villosum
3V chromosome carrying stripe rust resistant gene (s) for use in wheat breeding programs.

Chromosomal number and structural changes have been monitored and described in

numerous wheat-alien genetic stocks, especially the wheat-rye derived lines [51–55]. For

wheat-Dasypyrum derived lines, Zhang et al. [56] described structural changes on the short

arm of chromosome 6D in the CS-D. villosum nullisomic-tetrasomic (6A/6D) addition (6V)

line using Oligo-pTa535 as a probe. Li et al. [25] observed structural changes on chromosomes

1B, 2B, and 7A of a wheat CS-D. breviaristatum partial amphiploid and chromosomes 1D and

3D of wheat- D. breviaristatum 7Vb addition line. In this study, we detected structural aberra-

tions on chromosome 7B, 4D, and 6D of the wheat-D. villosum 3V (3D) substitution line CD-3

using Oligo-pSc119.2 and Oligo-pTa535 as probes, comparing with the ND-FISH karyotype of

common wheat, CS [26]. These results indicated that chromosomal structural aberrations pos-

sibly arose by introduction of Dasypyrum chromatin into genetic background of wheat. The

mechanism of chromosomal alteration induced by alien chromosomes requires further

exploration.
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