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Introduction
The typical approach to cancer drug development has tradi-
tionally involved high-throughput screening of in vitro cancer 
cell lines.1,2 Studies such as the NCI-60, the Cancer Cell 
Line Encyclopedia, and the Genomics of Drug Sensitivity 
in Cancer2–4 have produced rich data including drug respon-
siveness and genomic characteristics of numerous cancer cell 
lines, which allows researchers to begin to correlate genotype 
to both phenotype and change in phenotype induced by phar-
maceutical intervention. As may be expected, as the datasets 
grow larger, the analysis becomes increasingly more complex, 
requiring more sophisticated approaches. Simple tables of 
summary statistics rarely provide an adequate picture of the 
patterns and details within the dataset to enable researchers 
to make well-informed decisions about the adequacy of the 

models they are constructing, and it is impractical to apply 
conventional statistics and graphing approaches to a num-
ber of possible two-node (“x vs y”) comparisons within such 
a dataset. A visual analytics approach that supplements the 
more conventional statistical approaches by simultaneously 
calculating the relevant statistics and subsequently displaying 
the significant correlations for all possible two-node compari-
sons can facilitate such an analysis.

Previous attempts at correlating drug responsiveness and 
cancer cell line characteristics have been encouraging, suggest-
ing that a machine learning approach could be used to predict 
the drug response based on the genotype of the cell line and 
the chemical characteristics of the drug. Machine learning 
is well established as an assistive tool in drug development 
(for reviews see Barret and Langdon,5 Wale6), but has only 

StickWRLD as an Interactive Visual Pre-Filter for Canceromics-Centric 
Expression Quantitative Trait Locus Data

Robert Wolfgang Rumpf, Samuel L. Wolock and William C. Ray
The Battelle Center for Mathematical Medicine, The Research Institute at Nationwide Children’s Hospital, Columbus, OH, USA.

Abstract: As datasets increase in complexity, the time required for analysis (both computational and human domain-expert) increases. One of the 
significant impediments introduced by such burgeoning data is the difficulty in knowing what features to include or exclude from statistical models. Simple 
tables of summary statistics rarely provide an adequate picture of the patterns and details of the dataset to enable researchers to make well-informed deci-
sions about the adequacy of the models they are constructing. We have developed a tool, StickWRLD, which allows the user to visually browse through their 
data, displaying all possible correlations. By allowing the user to dynamically modify the retention parameters (both P and the residual, r), StickWRLD 
allows the user to identify significant correlations and disregard potential correlations that do not meet those same criteria – effectively filtering through all 
possible correlations quickly and identifying possible relationships of interest for further analysis. In this study, we applied StickWRLD to a semi-synthetic 
dataset constructed from two published human datasets. In addition to detecting high-probability correlations in this dataset, we were able to quickly iden-
tify gene–SNP correlations that would have gone undetected using more traditional approaches due to issues of low penetrance.

Keywords: visual analytics, eQTL, gene–SNP correlation

SUPpLEMENT: Computational Advances in Cancer Informatics (B)

Citation: Rumpf et al. StickWRLD as an Interactive Visual Pre-Filter for Canceromics-Centric Expression Quantitative Trait Locus Data. Cancer Informatics 2014:13(S3) 63–69  
doi: 10.4137/CIN.S14024.

Received: May 19, 2014. ReSubmitted: July 30, 2014. Accepted for publication: July 30, 2014.

Academic editor: JT Efird, Editor in Chief

TYPE: Original Research

Funding: Authors disclose no funding sources.

Competing Interests: Authors disclose no potential conflicts of interest.

Copyright: © the authors, publisher and licensee Libertas Academica Limited. This is an open-access article distributed under the terms of the Creative Commons CC-BY-NC 3.0 
License.

Correspondence: wolfgang.rumpf@nationwidechildrens.org

This paper was subject to independent, expert peer review by a minimum of two blind peer reviewers. All editorial decisions were made by the independent academic editor. All authors 
have provided signed confirmation of their compliance with ethical and legal obligations including (but not limited to) use of any copyrighted material, compliance with ICMJE authorship 
and competing interests disclosure guidelines and, where applicable, compliance with legal and ethical guidelines on human and animal research participants. Provenance: the authors 
were invited to submit this paper.

http://www.la-press.com/journal-cancer-informatics-j10
http://www.la-press.com
http://www.la-press.com
http://www.la-press.com/journal-cancer-informatics-j10
http://www.la-press.com/journal-cancer-informatics-j10
http://dx.doi.org/10.4137/CIN.S14024
mailto:wolfgang.rumpf@nationwidechildrens.org


Rumpf et al

64 Cancer Informatics 2014:13(S3)

recently been applied to the problem of correlating genotypes, 
phenotypes, and drug sensitivities. Beerenwinkel et al.7 cre-
ated a Support Vector Machine (SVM), geno2pheno (avail-
able as an online resource), which can predict HIV-1 drug 
sensitivity in patients based on the polymerase sequence of 
the individual’s HIV strain. Ruderfer et al.8 created an SVM 
that was able to predict the sensitivity of yeast to drugs based  
on genotype/phenotype with 70% accuracy. Menden et  al.9 
using data from the Genomics of Drug Sensitivity in Cancer 
project,4 were able to accurately predict the outcomes of drug/
cell line interactions for a subset of the data that had been 
intentionally excluded from the training data using as little 
as 20% of the GDSC data to train their neural network. By 
including SMILES descriptors to characterize compounds, 
they laid the groundwork for predicting cell line/genotype 
responses to any compound based on chemical characteris-
tics,10 a move toward both custom therapies, based on indi-
vidual genotype, and a required streamlining of the screening 
process – by predicting which chemical characteristics may 
impact a specific genotype, the number of potential drugs/cell 
line combinations which must be screened can be significantly 
reduced.

Regardless of the method used to reconstruct these 
relationships, correctly identifying genotype/phenotype cor-
relations depends on properly defining the threshold of signifi-
cance – for example, what is the minimum P value that should 
be used to define significance. In some cases, this threshold 
is set arbitrarily – to compensate for limitations in processing 
power, for example, reducing the complexity of the analysis, 
such as in an eQTL analysis, or in other cases, to make the 
signal stand out from the noise, or to reduce false positives in 
multiple-hypothesis testing.

Critical to this process, and regardless of the intent, it is 
important to recognize that no specific threshold can guarantee 
that all features rejected at that threshold are spurious or unim-
portant, or that all things that pass the threshold are true posi-
tive features of importance. Because both machine-learning 
and more conventional approaches are made more feasible 
when only the most informative information is used for the 
actual analysis, all approaches are accentuated by tools that 
enable an expert user to make educated choices regarding the 
maximally informative features of the data. The trick, then, is 
to define which information is, in fact, the most informative 
– we approach this problem using a visual-analytics tool that 
enables browsing and exploration of the complete marginal 
and joint-distribution space implied by the available data.

We have developed a system, StickWRLD,11,12 which 
combines both domain expertise and a variable means of 
visually displaying relational data. This allows the user to 
dynamically modify thresholds (P value, departure from 
independence) and visually assess changes in the visual – eg, 
the appearance of relevant signal, based on specific domain 
knowledge (eg, knowledge of particular genotype/phenotype 
characteristics, or other features, collections of features, or 

patterns of interaction that should appear), or the disappear-
ance of obstructing noise – essentially manually adjusting the 
signal to noise ratio to an optimum. StickWRLD enables the 
user to intelligently and dynamically determine the optimal 
thresholds based on one of the most advanced pattern rec-
ognition systems available – the human brain. By using this 
rapid pre-filtering to identify significant relationships, Stick-
WRLD can help identify data that may safely be eliminated 
from computationally intense processes such as the training of 
neural nets or conditional random fields, and simplifies more 
conventional analysis by allowing the researcher to focus only 
on the most interesting and/or significant relationships.

Expression Quantitative Trait Locus (eQTL) data is 
an ideal archetype for developing and validating this type 
of approach. eQTLs are typically SNPs which modulate the 
expression of genes. Since eQTL data is, at essence, simply 
another way of characterizing genotype/phenotype/pheno-
type correlations, we used StickWRLD to process a previ-
ously described eQTL dataset as a proof of concept. We 
propose that StickWRLD can enable an end-user to rapidly 
restrict a dataset to that most informative subset which can 
subsequently be used to optimally train downstream statistical 
models such as conditional random fields or neural networks.

Methods
Dataset. For demonstration purposes, in this manuscript, 

we have used a well-characterized semi-synthetic eQTL data-
set that has been described previously.11,13 This small but com-
plex dataset was chosen because it contains several predictable 
features of importance, while maintaining realistic biological 
complexity. At the same time, its limited size makes dem-
onstration of the analytical features of our StickWRLD tool 
practical, where larger datasets that remain tractable in the 
interactive StickWRLD interface would become unpresent-
ably complex in static printed form.

The dataset combines two published human eQTL data-
sets, and provided a background of real biological eQTL rela-
tionships while also containing a spiked-in known signal as 
a reference control. The first dataset used in the construction 
of the semi-synthetic dataset included 193 neurologically and 
psychiatrically normal postmortem human brain samples with 
a microarray assay that provides data on gene expression from 
all known genes, and genomic data comprised genotypes at 
500,000 SNP loci.14 The second dataset consisted of 150 nor-
mal and psychiatrically diagnosed postmortem human brain 
samples with directly analogous gene expression and SNP 
data.15 From this combined dataset, we choose a subset con-
taining 500 individuals, with normalized expression values for 
15 cadherin superfamily genes as well as the allelic state for 
239 SNPs. This subset of the larger dataset was chosen to be 
of a size easily presentable for publication purposes; in prac-
tice, StickWRLD itself is capable of processing many more 
nodes and is limited practically only by the available screen 
real estate available to the user. For each variable, each state 
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(eg, no change, upregulated, or downregulated in the case of 
the loci; or diploid allelic state in the case of SNPs) was repre-
sented with an alphabetic letter designation to facilitate entry 
into StickWRLD. The complete datasets (original as well 
as binned), as well as the StickWRLD manual and python 
scripts, are available for download from http://www.stick-
wrld.org/rwr-ci-2014/

StickWRLD visualization. The binned dataset was 
loaded into the python-executable version of StickWRLD 
build 1321 (available from the authors upon request). Stick-
WRLD calculates the P and r values for all possible com-
binations of values, where P is the canonical P value for 
significance (set at 0.05 by default), and r is the residual of 
the observed number of covariates minus the expected num-
ber of covariates,12 and then displays the correlations based 
on the threshold settings. The initial thresholds for the dis-
play of correlations were P = 0.05 and r = 0.1. This results in 
StickWRLD displaying only those two-node correlations that 
exceeded both these values. As the initial display showed too 
few correlations of interest, the residual threshold was reduced 
in increments of 0.01 until the display showed additional cor-
relations of interest, specifically those indicating up- or down-
regulation of any of the genes in the dataset.

Results
StickWRLD correlation visualizations. Correlations in 

StickWRLD are displayed as line connecting the edges of the 
circle; each variable (in this case, a gene or SNP) is located in 
a stacked column along the circumference of the circle. Each 
possible value of that variable is represented by a sphere, where 
the size of the sphere represents the corresponding prevalence 
of that value – thus, a larger sphere indicates that a particu-
lar value occurs more frequently. The color of the spheres is 
simply tied to the state and has no mathematical relevance. 
When a line is drawn between two points on the circle, this 
indicates the presence of a correlation with a corresponding 
P and r of at least the current filter settings. The style of the 

line indicates whether the correlation is positive (solid line) or 
negative (dashed line), and the thickness of the line indicates 
the strength of the correlation, where a thicker line reflects a 
stronger correlation.

Figure  1 displays the initial view of the dataset when 
loaded into StickWRLD using the defaults of P = 0.05 and 
r  =  0.1. Although several correlations are seen using these 
defaults, these are all in fact correlations between SNPs. This 
indicates that the co-occurrence of the correlated SNPs occurs 
at a significant frequency. For example, rs4783754 is corre-
lated to both rs9922615 and rs9924505, suggesting that there 
are specific alleles of rs4783754 which tend to be co-inherited 
with specific alleles of rs9922615 and rs9924505. Similarly, 
CHR16:67319752 and CHR16:67381383 are also correlated 
to one another. This is completely expected for proximal SNPs 
where the frequency of recombination between them is low, 
but can reveal interesting distantly interacting loci when the 
SNPs are sufficiently distant that the probability of recombi-
nation approaches 50%. None of the patterns observed here, 
however, showed any correlation to changes in expression of 
the genes in the dataset.

Tuning the residual down by increments reveals addi-
tional correlations – again all SNP to SNP – until the residual 
is reduced to 0.05 (Fig. 2). Here, we see our first significant 
correlation (with P = 0.05) between expression levels of a gene 
and an SNP – specifically, CDH1 and rs35255374. Dial-
ing the residual down to 0.025 reveals three additional gene 
to SNP relationships: CHD1 to 16:67369626; PCDH1 to 
16:67374748; and CDH22 to rs35255374 (Fig. 3).

At a residual of 0.015, many additional gene–SNP cor-
relations are revealed (Fig. 4). To simplify the visualization, all 
SNP–SNP edges were removed programmatically so that only 
correlations of interest (gene–SNP) remain. Of significant 
interest is the discovery of several cases where the minor SNP 
allele is correlated to a change in expression (Fig. 4, panel B), 
and a case where two SNPs affect different genes depending 
on which allele is present (Fig. 4, panel C).

Figure 1. Initial view of dataset in StickWRLD using the default settings for p and residual (r). The fifteen columns in the foreground represent the genes 
in the dataset (the other columns represent SNPs); the green sphere most prevalent in each indicates that the state of “no change” in expression  
(up or down regulation) is the most common. At these settings the only correlations which can be seen are SNP to SNP relationships.
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Figure 2. Tuning the residual to a lower value reveals numerous additional correlations, including one between a gene (CHD1) and a SNP (16:67369626). 
The correlation of interest (gene to SNP) is easily seen by it’s sudden appearance when the residual is modified. In a more traditional analysis, this 
“signal” would easily be overwhelmed by the amount of “noise” – while the SNP to SNP relationship are of interest, they are not the primary concern in 
this analysis, and the ability to rapidly isolate the signal from the noise visually makes allowed us to quickly determine which relationships to focus on.

Figure 3. Additional relationships are revealed by further reducing the residual; note that the P value remained significant at 0.05 throughout the analysis. 
Several strong correlations between genes and SNPs can be seen as the bold dark connectors leading from the genes in the foreground to their 
corresponding SNPs in the background.

Pearson’s correlation coefficient. Four of the gene- 
to-SNP relationships seen above were subjected to a Pearson’s 
correlation test16 to determine the strength of the correlation 
as measured through conventional means. As Table 1 shows, 
the correlation of CDH1 to rs35255374 showed a weak  
(0.2–0.29) correlation using the Pearson’s test; the other three 
fall into the “negligible” category.

Relationships detected via StickWRLD are high-
lighted; others are displayed as illustrative of non-corre-
lated results. The CDH1 to rs35255374 relationship shows 
a weak significance by conventional means of correlation, 
whereas the other three relationships fall into the negligible 
range.

The Pearson’s correlation SNP-to-SNP relationships 
were also analyzed; rs4783754 had a negligible (,0.2) negative 
correlation to both rs9922615 and rs9924505. The correlation 
between chr16.67319752 and chr16.67381383 was very strong, 
at 0.599.

Discussion
StickWRLD as an expert-guided hypothesis engine. 

StickWRLD allows researchers to visually and interactively 
browse their data, dynamically displaying correlations based 
on both P value and residual (observed–expected) and allowing 
the user to explore how the relationships change with different 
settings and perspectives. As such, StickWRLD functions as 
a visual analytical tool, facilitating rapid hypothesis discovery. 
We were able to very rapidly explore all the potential relation-
ships in this large dataset and were able to identify several 
correlations, which could by investigated more fully using 
conventional statistical approaches.

Another goal in analyzing this dataset was to examine 
the utility of StickWRLD in pre-filtering an eQTL dataset 
for downstream analysis – using StickWRLD to identify 
relationships of interest that could be used to train a neural 
net, for example, or to perform more mundane and conven-
tional statistics such as the Pearson’s correlations performed 
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above. The number of possible two-node relationships in this 
dataset is extremely large; by identifying the critical rela-
tionships, we can greatly simplify the downstream analysis 
both in terms of computational power and human analy-
sis. In the process of tuning residual to the level required 
to discover gene to SNP relationships – the correlations of 
interest as identified by a domain expert (eg, an individual 
with sufficient knowledge within a field to be able to search 
for and identify expected and/or meaningful relationships) – 

we inadvertently discovered other relationships with at least 
the same level of significance. Having a known relationship 
to look for allowed us to tune the residual until that rela-
tionship was discovered; any other relationships that met 
the same criteria of significance were automatically “brought 
along for the ride” as well. Using the resulting group of rela-
tionships to train a neural net, for example, would not simply 
have trained the network to predict gene–SNP relationships 
– it would also have been able to predict any other dependent 
relationships. In this case, the use of domain knowledge to 
define the stop, or threshold, retains significance that oth-
erwise might be overlooked – but allows the user to discard 
information that is not at least as significant as the relation-
ship used as the threshold.

By allowing the user to arbitrarily modify the visualization 
based on significance, StickWRLD takes advantage of the 
human ability for pattern recognition. Beginning at a low resid-
ual setting, StickWRLD can display all possible relationships 

Figure 4. Reducing the residual further and eliminating edges which were not of interest revealed additional gene-SNP relationships of interest (A). 
Notably, there are several cases where the minor SNP allele is correlated to a change in expression (B), and one (C) where specific alleles of two SNPs 
differentially effect the expression of multiple genes. These effects were not seen at higher values for the residual due to low penetrance.

Table 1. Pearson’s correlation coefficients for the gene–SNP pairs 
detected by StickWRLD analysis.

rs35255374 16.67369626 16.67374748

CDH1 0.276 0.122 −0.001

PCDH1 -0.003 0.012 0.019

CDH22 -0.016 -0.012 0.017
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between variables (significant or not). By gradually increasing 
the residual setting, StickWRLD filters out less-significant 
relationships, until a pattern emerges – essentially allowing 
the user to identify the signal from the noise visually. Like-
wise, an exploration could begin with a low residual thresh-
old, a (numerically) high significance (P  value) threshold, and 
iteratively increase the stringency of the statistical thresh-
old while examining the consequences to the retained and 
rejected sets. When combined with domain expertise, which 
allows the user to validate that known significant relationships 
are preserved (which may happen at lower than optimal P or 
residual values), the user is guided to discover potential rela-
tionships of at least equal significance to already established  
relationships.

Coinheritance of SNPs. The initial StickWRLD dis-
play of the dataset revealed a small number of SNP–SNP 
correlations that were significant at the default values for P 
and r. The strongest correlation (0.599) was found between 
chr16.67319752 and chr16.67381383. This is unsurprising, 
given that these two SNPs are approximately 61 kb apart from 
one another. Similarly, rs4783754, rs9922615, and rs9924505 
are all within 41 kb of one another on chromosome 16.

The coinheritance seen between these SNPs reflects the 
degree of linkage disequilibrium present due to their physi-
cal proximity on the chromosome. This in fact validates the 
use of StickWRLD to detect significant relationships – Stick-
WRLD very clearly displayed the relationship between the 
SNPs, whereas a more conventional statistical approach (eg, 
Pearson’s correlation coefficient) may have discounted many 
of them. This gains additional relevance when we consider 
the nature of the data. Biological data have interdependencies 
forced upon it by evolutionary and functional requirements, 
and as such cannot be treated as a traditional dataset where 
all data points are assumed to be independent. Further, not all  
data points in a genetic dataset are accessible to a statistical 
analysis. Many will be removed by natural selection – selected 
against because the nature of specific combinations will be 
deleterious and hence removed from view. Thus the canoni-
cal “normal” distribution may be skewed when we examine 
genetic data, which inevitably is subject to linkage to some 
degree, making detection of correlation require more sensitive 
techniques.

Gene–SNP correlations. While the P value threshold 
remained set at 0.05 to ensure that only significant relation-
ships were displayed, the detection of any gene–SNP corre-
lations in the dataset required a significantly reduced value 
for r, the residual of (observed–expected). This is a result of the 
low penetrance of the genotypic to phenotype effects – there 
are typically other factors affecting gene expression that may 
reduce the impact of the eQTL on the phenotype – and only 
with 100% penetrance would the effect of the eQTL be 1:1. 
Assuming 100% penetrance, a relationship with a P of 0.05 
and a correlation value of 1.0 would be detectable at a resid-
ual of 0.25. This is due to the fact that, given a binary state  

(eg, two possible allelic states for the SNP), at best 50% of one 
allele could be correlated to one condition, with the remaining 
50% correlated to the other condition. As these distribution 
frequencies drop out of balance, the residual correspondingly 
drops as a function of them. Factoring penetrance in, if we 
assume a 10% penetrance, the maximum possible residual 
drops to 0.025 – much smaller, in fact, than the threshold 
used to detect the initial set of gene–SNP relationships in 
the above dataset. Once the residual was tuned down even 
further – to 0.015 – many additional correlations (ostensibly 
representing relationships with an even lower penetrance)  
were seen.

StickWRLD’s ability to simultaneously visualize all pos-
sible two-node (eg, “x vs y”) relationships within a dataset 
makes it a powerful supplemental tool to use alongside tradi-
tional summary statistics. The correlations above were rapidly 
discovered in StickWRLD, but could have eluded detection 
using conventional statistical approaches, which can often fail 
to detect subtle and complex trends within datasets. This is 
a well-known statistical problem highlighted by Anscombe’s 
Quartet,17 where four very different datasets display identi-
cal summary statistics. Anscombe’s Quartet points out the 
need for visualization approaches (eg, graphing) to reveal pat-
terns and relationships within complex datasets. In many such 
datasets, summary statistics such as the Pearson’s Correlation 
Coefficient are either inadequate to detect complex but mean-
ingful effects or, because of their precision, require impracti-
cally many calculations to define features that may be detected 
approximately by visualization with relative ease. Stick-
WRLD can be treated as an extension to traditional graphi-
cal approaches, allowing the user to simultaneously look at 
all combinations of “x vs y” comparisons for a dataset. While 
these comparisons could be done using conventional approaches 
like Pearson’s, it would be impractically time-consuming 
to construct and evaluate all possible combinations of vari-
ables and their inter-value ranges. StickWRLD’s graphical 
approach allows the user to perform all these evaluations  
simultaneously.

This failure of simple statistical thresholds to identify 
meaningful associations is typical for genetic features with 
small effects sizes – any fixed threshold risks ablating relation-
ships that may be important. By using StickWRLD to visu-
alize the strength of all of the relationships simultaneously, 
the user is able to make informed decisions regarding which 
thresholds to accept, and whether any patterns of statistically 
weak effects merit further investigation.

Given both the correlation coefficient and the residual 
required to display the correlation in StickWRLD, an esti-
mate as to the penetrance of that relationship in the dataset’s 
population can be inferred. Again, a traditional statistical 
analysis may have discounted these relationships; StickWRLD 
enabled us to rapidly discover relationships of interest and at 
the same time retain all other statistically important (in terms 
of both P and the residual r) relationships.
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Conclusions
StickWRLD allowed us to rapidly browse through our dataset 
looking for correlations of interest. By modifying the reten-
tion criteria (eg, P and residual r), we were able to use domain 
expertise to quickly identify relationships of interest for fur-
ther analysis. In doing so, other relationships of at least the 
same level of significance were retained as well. Allowing 
users to quickly browse data looking for correlations of inter-
est allows the user to identify relationships for deeper analysis 
as well as to discover novel unexpected correlations, many of 
which would have been undetectable using conventional sta-
tistical approaches, due to additional factors (eg, penetrance). 
Lastly, by reducing the complexity of the dataset in this fash-
ion, StickWRLD can act as a pre-filter for neural network 
or conditional random field training, reducing the need for 
semi-guided training.

The StickWRLD python executable code as well as 
the StickWRLD manual and the dataset presented here are 
available for download from http://www.stickwrld.org/rwr-
cri-2014/. Instructions for preparing StickWRLD-formatted 
datasets, which are essentially any variety of tabular categori-
cal, or bin-able continuous-valued data, can be found in the 
StickWRLD manual.
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