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A glycomics and proteomics study 
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previous studies on parkinson’s disease mechanisms have shown dysregulated extracellular transport 
of α-synuclein and growth factors in the extracellular space. In the human brain these consist of 
perineuronal nets, interstitial matrices, and basement membranes, each composed of a set of 
collagens, non-collagenous glycoproteins, proteoglycans, and hyaluronan. The manner by which 
amyloidogenic proteins spread extracellularly, become seeded, oligomerize, and are taken up by 
cells, depends on intricate interactions with extracellular matrix molecules. We sought to assess the 
alterations to structure of glycosaminoglycans and proteins that occur in pD brain relative to controls 
of similar age. We found that PD differs markedly from normal brain in upregulation of extracellular 
matrix structural components including collagens, proteoglycans and glycosaminoglycan binding 
molecules. We also observed that levels of hemoglobin chains, possibly related to defects in iron 
metabolism, were enriched in PD brains. These findings shed important new light on disease processes 
that occur in association with pD.

The volume of the extracellular space (~ 20%) that separates brain cell surfaces and through which molecules 
diffuse displays regional patterns that change during development, aging and  neurodegeneration1,2. The passage 
of protein molecules through the extracellular space depends on the geometries and chemical compositions of 
extracellular and cell surface molecular complexes, the specific binding domains thereof, and the fixed negative 
charges of glycosaminoglycan  chains3,4. Brain extracellular matrix (ECM) is composed of perineuronal nets 
(PNNs), interstitial matrices, and basement membranes (blood brain barrier), each consisting of a network of 
glycoproteins, proteoglycans, hyaluronan and  collagens5. Despite the obvious importance of the extracellular 
space to neural plasticity and  neurodegeneration6,7, there is little information available on the alterations that 
occur to these molecules during Parkinson’s disease (PD).

Inflammation and disruption of the blood brain barrier can lead to infiltration of fibroblasts and trigger a 
fibrotic response in an attempt to restore normal  function8. Such fibrosis demolishes the structure of the ECM, 
and impedes healing by secreting inhibitory molecules and serves as a barrier to axons. Infiltration of fibroblasts 
leads to deposition of thrombin and fibrinogen and destruction of the integrity of the ECM. These inflamma-
tory reactions lead to local neural degeneration and activation of glial cells. In PD, the activation of glial cells 
and recruitment of T-cells leads to increased pro-inflammatory cytokine release and increased levels of reactive 
oxygen and nitrogen species. While disruption is not believed to occur, activated microglia appear to induce 
blood brain barrier dysfunction in  PD9. Despite this, limited information is available concerning the changes 
in the distribution of ECM molecules in PD, with the exception of glycosaminoglycans (GAGs) found in senile 
plaques and Lewy  bodies10,11.

α-Synuclein comprises 1% of cytosolic protein in the nervous system, participates in synaptic transmission, 
and is modulated in conditions that alter neural  plasticity12. Its pathology is prevalent in different PD brain 
regions. The Braak six-stage scheme, based on α-synuclein immunohistochemistry in autopsy cases, follows 
an ascending course that starts with the olfactory bulb and culminates in widespread pathology in cortical 
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 regions13,14. In PD brain, the majority of abnormal α-synuclein deposits occur in neuritic processes. This aber-
rant deposition drives PD pathogenesis.

The molecular actors in secretion and internalization of α-synuclein remain undefined. Endocytosis of 
α-synuclein from the extracellular space by astrocytes results in its degradation, a process that becomes over-
loaded in PD, resulting in accumulation of α-synuclein in the  cytosol14. The presence of GAGs in Lewy bodies 
in PD patients suggests a role in the accumulation of α-synuclein. In particular, GAGs may bind proteases and 
impede degradation of α-synuclein15. Heparan sulfate proteoglycans (HSPGs) appear to participate in uptake 
and seeding of α-synuclein through  micropinocytosis16,17. There may also be a connection to impairment of 
lysosomal degradation of  GAGs18.

Glycosaminoglycans have been found in all types of extracellular amyloid  deposits19,20. Heparan sulfate (HS) 
proteoglycans sequester pro-inflammatory molecules, regulate recruitment of leucocytes to the inflammation/
injury site and participate in internalization of amyloid  aggregates16,21–23. Amyloid aggregates in Alzheimer’s 
disease (AD) and PD brain are thought to spread through prion-like seeding mechanisms involving binding 
interactions with GAGs and other ECM  components17. As part of this mechanism, cell surface HSPGs and 
chondroitin sulfate proteoglycans (CSPGs) are involved in uptake of α-synuclein aggregates. Recent results 
have shown that internalization of such aggregates in neuroblastoma cells is HS-dependent but that of smaller 
non-amyloid oligomers is  not12.

We observed in a rat brain aging study that overall abundance of HS in striatum diminished with age and the 
relative abundance of sulfated domains  increased24. In substantia nigra, by contrast, the overall HS abundance was 
unchanged and the relative abundances of sulfated domains decreased. Thus, the HS chain structure was brain-
region specific, as were age-related changes to HS structure. These observations led us to examine the correlations 
of GAG and protein abundances in human brains with PD versus those with no neurological disease. Since the 
nigrostriatal pathway becomes impacted heavily by time of death, we chose to analyze prefrontal cortex tissue 
specimens. We now present the results of glycomics and proteomics analysis of two separate human brain tissue 
cohorts. Our results identify changes to the HS and CS domain structures correlated with aging and PD. The 
most highly enriched protein gene set in PD was ECM proteins, consisting of collagens, hyalectan proteoglycans, 
HAPLNs and fibrinogens. Notably, a set of four hemoglobins, including α, β, γ1 and γ2 were also enriched in PD 
brains. We discuss the results and implications for understanding of PD mechanisms. We compare our human 
brain aging results against our previously published rat brain aging  study24.

Methods
De-identified frozen brain tissue specimens from Brodmann area 9 were acquired from the National Brain Tissue 
Resource for Parkinson’s Disease and Related Disorders at Banner Sun Health Research Institute, Sun City,  AZ25 
and the Harvard Brain and Tissue Resource Center, McLean Hospital, Belmont, MA. The ranges in age, post 
mortem intervals (PMIs), and RNA integrity numbers (RINs) are shown in Table 1. The PMI range for cohort 
1 was lower than for cohort 2. The RIN numbers were similar for the two cohorts, indicating that all biospeci-
mens were of high quality. The available clinical data on the biospecimens are shown in Supplemental Table 1. 
The experimental protocols were performed in accordance with US National Institutes of Health guidelines on 
human subjects research. The protocol for use of banked de-identified human brain tissue was reviewed by the 
Boston University Medical Campus Institutional Review Board and determined not to meet the definition of 
human subjects research.

Brain tissue cryosectioning. Fresh frozen human brain tissue blocks were mounted on chucks using opti-
mal cutting temperature (OCT) polymer. Coronal tissue sections (10 µm thick) were cut from the tissue not in 
contact with OCT using a cryostat at – 20 °C. Sections were adhered to Superfrost Plus microscope slides and 
submerged in acetone for one min. at − 20 °C. We used our published method to apply enzymes to the surfaces 
of tissue slices mounted on  slides26. Briefly, one 5 mm diameter grey matter area on the slide surface was selected 
per brain as shown in the photographs in Figure Supplementary Fig. S1A. Some of the photographic images are 
of low resolution. We marked the digestion spots on the back of the slide using solvent-resistant ink. We used the 
ink spot to guide application of enzyme droplets.

Sample preparation for glycomics and proteomics. Two cohorts of male human brain prefrontal 
cortex biospecimens were analyzed (Table 1). Clinical information on the biospecimens is shown in Supplemen-
tary Table S1. We selected grey matter areas of Brodmann area 9 with the knowledge that PD-related processes 
would be evident given the radiating nature of the spread of the disease in brain. Grey matter contains numerous 

Table 1.  Human brain cohorts.

Samples N Age range (mean) PMI range (mean) RIN range (mean)

Cohort 2

Young 12 36–60 (49.8) 15–18 (22) 7.3–8.5 (7.8)

Aged 13 64–97 (74.3) 2–32 (18) 6.4–9.1 (8.0)

PD 16 65–74 (77.4) 7–31 (18) 6.1–8.0 (7.0)

Cohort 1
Aged 12 69–91 (81.2) 2–5 (2.4) 6.0–8.7 (8.0)

PD 12 64–88 (77.8) 2–4 (2.5) 6.1–8.5 (7.2)
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cell bodies and few myelinated axons. White matter is composed primarily of myelinated axon tracts. We used 
our technique whereby glycans and proteins are released by serial digestion with small droplets of enzyme solu-
tion, corresponding to a spot of about 5 mm, from the surface of a tissue  slide24,27,28. This allowed us to select grey 
matter areas accurately. The average distance between a neuron and a microvessel in grey matter is ~ 20 µm29, 
meaning that our technique sampled numerous vessels, extracellular space, and cellular interfaces. We quantified 
the abundances of proteins from proteomics data set and used GO annotations to assign them to compartment.

Fresh frozen human brain frontal cortex Brodmann area 9 slides were prepared for three serial sections per 
brain specimen. The slides were processed using our published  method26 as summarized in Supplementary 
Fig. S1A. Briefly, all samples were blinded and processed in random order. Tissue slides were immersed in a 
series of ethanol washes (100%, 90%, 70%, 50%, 30%, water) and then digested using a series of glycosidase 
enzymes followed by trypsin as  described24,26. The slides were digested first using five cycles of hyaluronidase and 
the digestion products were extracted using a dilute ammonium hydroxide solution. The process was repeated 
using chondroitinase ABC digestion, and then heparin lyase I, II and III digestion. The tissue slides were then 
reduced, alkylated, digested using trypsin, and the tryptic peptides extracted. Extracted glycan solutions were 
desalted using size exclusion chromatography. The grey matter regions selected for each specimen are shown in 
Supplementary Fig. S1B.

Glycomics. Saccharides released using chondroitinase and heparinases, respectively, were analyzed using 
in-house packed nano-flow HILIC columns interfaced with an Orbitrap XL mass spectrometer operating in 
negative polarity mode as  described24,26,30. Isomeric disaccharides were differentiated using on-line tandem MS. 
The disaccharide LC–MS peak areas were normalized relative to an internal standard and the relative peak areas 
were calculated. Box whisker plots were generated using the Realstats add-in for the Microsoft Excel spreadsheet 
 software31.

proteomics. Label free proteomics data were acquired as described  previously24,26. Briefly, a Q-Exactive HF 
mass spectrometer interfaced with a 150 µm C18 column was used with a 120 min gradient. Data were searched 
against the Uniprot/Swissprot database using Peaks Studio version 8.5 (Bioinformatics Solutions, Inc., Waterloo, 
ON, Canada). The following variable modifications were used: deamidation N, oxidation M, phosphorylation 
STY, HexNAc ST, HexHexNAc ST, hydroxylation K, hydroxylation-Hex K, ubiquitination K, hydroxylation P, 
nitrotyrosine Y. A maximum of 2 missed cleavages, a 10 ppm precursor ion and 0.1 Da product ion mass toler-
ance were specified. Principal component analysis (PCA) was carried out using the PEAKs proteins.csv export 
files using our in-house PEAKSviz  software32. For Cohort 1, two groups were specified: aged (> 60 years, no 
neurological disease) and PD (> 60  years). For Cohort 2, three groups were specified: young (< 60  years, no 
neurological disease), aged (> 60 years, no neurological disease) and PD (> 60 years. The lists of differentially 
abundant proteins were analyzed using gene set enrichment analysis (GSEA)33 using the WebGestalt gene set 
analysis  toolkit34. For aged versus PD comparisons, the list of differentially abundant proteins present in both 
cohorts was used for GSEA.

Results and discussion
Brain biospecimen integrity. The concern for human brain biospecimen studies is that PMI, disease 
states and effects of medication may bias the conclusions reached. Studies of gene expression in post-mortem 
human brain have established the critical importance of minimal RNA degradation in biospecimen quality. 
Despite its widespread use by brain tissue resource centers to assess biospecimen  quality35, it must be acknowl-
edged that RIN values reflect incomplete measures of brain biospecimen  quality36–38. While proteins are con-
sidered to be reasonably stable in brain post-mortem39,40, it remains possible that molecular changes to proteins 
could conceivably bias proteomics results. While the average PMIs for cohort 1 were higher than those for 
cohort 2, biospecimen RIN numbers for the two cohorts were similar (Table 1). We present our results with the 
acknowledgement that the only way to eliminate all possible sources of bias related to tissue procurement and 
processing is to repeat the work using separate biospecimen cohorts in future studies.

Glycomics. Heparan sulfate chains on cell surface and extracellular proteoglycans bind numerous families of 
growth factors, morphogens and  receptors41. Polymerized as nascent chains by a series of biosynthetic enzymes 
in the Golgi apparatus, mature HS chains consist of domains of highly sulfated disaccharide units (S domains), 
lowly sulfated disaccharide units (A domains) mixed (S/A)  domains42 (Supplementary Fig. S2). Heparin lyase 
enzymes cleave the HS chains into disaccharides, see the structures and abbreviations for which in Supplemen-
tary Fig. S3. We measured the abundances of HS disaccharides released from cohort 2 tissue slide surfaces using 
heparin lyase enzymes. Cohort two contained three biological groups, young (< 60 years) with no neurological 
disease, aged (> 60 years) with no neurological disease, and aged with PD. Figure 1 shows box whisker plots of 
the abundances of HS disaccharides released by heparin lyase enzymes from brain cortex slides from cohort 
2, for young (< 60 years), aged (> 60 years), and PD (> 60 years) individuals. As is typical for brain  cortex24,43, 
the HS chains showed abundant unsulfated D0A0 and N-sulfated D0S0 disaccharides. The order of abun-
dances for N-acetylated disaccharides was D0A0 > D0A6 > D2A6 > D2A0, and that for N-sulfated disaccharides 
D0S0 > D0S6/D2S0 > D2S6. The combined abundances of N-acetylated (NA) and N-sulfated (NS) disaccharides 
are also shown. The uncorrected individual two tailed t-test p values are given in the figure. These results are 
consistent with alterations in HS chain architecture during adult aging in brain cortex. Different HS alterations 
appear to occur in PD versus unaffected cortex. Specifically, the abundances of D0A6 diminished with aging. By 
contrast, the abundances of NA domains increased and NS domains decreased, with PD relative to controls. We 
analyzed CS chains from cohort 1 brain cortex specimens (Fig. 2). The structures of CS disaccharides released 
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by chondroitinase ABC digestion are shown in Supplementary Fig. S4. Cohort 1 consisted of two groups, aged 
with no neurological disease and aged with PD. As shown in Fig. 2, the CS disaccharide abundances were similar 
between the two groups. 

proteomics. We used LC–MS label-free proteomics to quantify tryptic peptides released from the sur-
faces of brain tissue microscope slides. This technique typically quantifies a few hundred proteins and is useful 
for comparing enrichment of protein gene sets among a sample cohort. By comparison, the MALDI imaging 
 technique44 produces higher spatial resolution but does not produce direct protein identification and is less use-
ful for protein gene set analysis.

Proteomics changes with age. To place our proteomics results for human brain in context, we show GSEA of 
data from our rat aging proteomics  study24 for which strong positive enrichment with age in striatum of the 
organic acid binding gene set (GO: 0043177, Supplementary Table S2A, Supplementary Fig. S5) that included 

Figure 1.  HS glycomics of human brain prefrontal cortex for young (Y), aged (A) and Parkinson’s disease 
(PD) brain from cohort 2. Box plots with outliers showing disaccharide abundances, omitting D2A0 which was 
below the limits of detection. Uncorrected p values from two tailed T tests are shown. D0A0 ΔHexAGlcNAc, 
D0A6 ΔHexAGlcNAc6S, D0S0 ΔHexAGlcNS, D0S6 ΔHexAGlcNS6S, D2A6 ΔHexA2SGlcNAc6S, D2S6 
ΔHexA2SGlcNS6S, NA sum of N-acetylated disaccharides, NS sum of N-sulfated disaccharides. Detailed 
structures are shown in Supplementary Fig. S3. Whiskers show maximum and minimum values. The top and 
bottom of each box show the 75th and 25th percentile of the sample, respectively. The line through each box 
shows the median and the x marker the mean of the samples.

Figure 2.  CS glycomics of human brain prefrontal cortex aged with no neurological disease (A) and aged 
with Parkinson’s disease (PD) from cohort 1. CS Disaccharide abundances, D0a0 ΔHexAGalNAc, D0a4 
ΔHexAGalNAc4S, D0a6 ΔHexAGalNAc6S, D0a10 ΔHexAGalNAc4S,6S. Detailed structures are shown in 
Supplementary Fig. S4. Whiskers show maximum and minimum values. The top and bottom of each box show 
the 75th and 25th percentile of the sample, respectively. The line through each box shows the median and the x 
marker the mean of the samples.
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HAPLN1, versican and brevican. In light of these observations, it is interesting that that PNN form during the 
early post-natal period in striatum in  mice45. By contrast, in substantia nigra, the most confident result was 
strong negative enrichment of the ribosomal structural constituents gene set (GO: 0003735, Supplementary 
Table S2B, Supplementary Fig. S6). These results demonstrated that brain region-specific patterns of enriched 
protein gene sets during aging.

Immunohistochemical mapping in rat brain has shown much higher levels of PNN in striatum than in sub-
stantia  nigra46. In our previously published study, HAPLN1, versican (CSPG2), brevican (PCGB) and tenascin-R 
(TENR) were each more abundant in aged rat striatum, Supplementary Fig. S7. By contrast, in rat substantia 
nigra, versican, brevican and tenascin-R abundances each did not change; however, HAPLN1 increased in abun-
dance with age. That PNN-associated molecules are present in both striatum and substantia nigra is consistent 
with the conclusion that the differences in PNN immunohistochemical staining  levels46 reflected the abundance 
of particular molecular epitopes, rather than the level of the entire ECM macromolecule.

In our human studies, we used grey matter areas from prefrontal cortex Brodman areas 9. Cohort 2 included 
unaffected individuals ranging in age from 36 to 97 years. No juveniles were included in this cohort and we make 
no attempt to compare adult aging with juvenile brain. Grouping the unaffected individuals based on the age 
of incidence of sporadic PD (young < 60 years, aged > 60 years), GSEA of the proteomics data indicated that the 
most confident result was enrichment of proteins in the magnesium binding gene set (Fig. 3A, GO: 0000287, 
Supplementary Table S3, Supplementary Fig. S8). In this gene set, enolase 1 and enolase 2 were strongly enriched 
with age. Known as neuron-specific enolase, enolase 2 is expressed at very high levels in neurons and neural tissue 
and is cited as a biomarker for neurological  injury47–49. Enolase 1 is known as non-neuronal enolase because it is 

Figure 3.  (A) GSEA of differentially expressed proteins from cohort 2 young (< 60 years) versus aged 
(> 60 years). (B) GSEA of differentially expressed proteins from cohorts 1 and 2 aged (> 60 years) versus PD 
(> 60 years).
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found in several tissues, including brain. Enolases have been cited to move to the cell surface under inflamma-
tory conditions and play roles in extracellular matrix related to  neurodegeneration50, consistent with our results.

RAN is a small GTP binding protein member of the RAS family that participates in translocation of RNA and 
proteins through the nuclear pore complex. Disruption of subcellular protein localization in neurodegenerative 
diseases, possibly in response to oxidative stress, resulting from alterations in nuclear transport, are associated 
with RAN  function51.

α-Synuclein, the function of which relates to control of vesicular  neurotransmission52, was also enriched in 
aged human prefrontal cortex (Supplementary Table S3). This result is in contrast to the decrease in α-synuclein 
mRNA observed in aging mouse substantia  nigra53; however, levels of oligomerized α-synuclein measured by 
ELISA increased with age in monkey  brain54.

Proteomics changes with Parkinson’s disease. Proteomics data were acquired for control and PD specimens 
and separately for cohorts 1 and 2. The differential protein abundance t-values calculated using Peaks Viz were 
reasonably well-correlated, see Supplementary Fig. S9A. For proteins observed in both cohorts, the most con-
fidently enriched gene set for the comparison of aged without neurological disease versus PD was extracel-
lular matrix structural component, see Fig. 3B, (GO: 0005201, Supplementary Table S4A). This gene set was 
dominated by collagen types I, II, III and IV chains and PNN-associated proteoglycans and glycoproteins. From 
the published literature, gene expression for collagen type IV, a key component of basement membranes, was 
increased in transgenic mice overexpressing α-synuclein, consistent with a significant role for this collagen in 
α-synuclein  toxicity55. Otherwise, the literature for the roles of collagens in the mechanism of PD is remarkably 
sparse. Our results are consistent with significant changes to fibrillar (types I, II and III) and basement mem-
brane collagens (type IV) associated with PD. This set also included tenascin-C, a hexameric glycoprotein that 
links ECM molecules including phosphacan, neurocan, aggrecan, cytokines and  morphogens56. The gene set 
also included fibrinogen chains. It is known that cultured astrocytes and neurons express fibrinogen chains, indi-
cating that they can be produced endogenously in the  brain57. We observed fibrinogen α, β, and γ in the enriched 
extracellular matrix structural component gene set, indicating that the chains were higher in abundance in PD 
for both cohorts.

Proteins from the organic acid binding gene set enriched in our unaffected aged versus PD human proteom-
ics data, included hemoglobins α, β, γ1 and γ2 (Supplementary Table S4B). Hemoglobin chains expressed in 
dopaminergic neurons function in mitochondrial homeostasis and their potential roles in neurodegeneration 
related to iron metabolism have been  identified58,59. Published evidence supports a correlation between the 
levels of brain hemoglobin and neurodegenerative diseases including  PD60–62. It is important to emphasize that 
our cohorts consisted only of males and that brain mitochondrial hemoglobin levels differ significantly between 
males and  females63. The presence of fetal hemoglobin γ chains in human brain tissue was reported in separate 
a proteomics  studies64,65. Our observation that hemoglobin γ1 and γ2 chains were present in aged brain and 
enriched in PD is novel to the best of our knowledge.

The annexins are a family of proteins capable of binding anionic phospholipids in a calcium-dependent 
 manner66. Glycosaminoglycan binding has been reported for annexins 4, 5 and  667, each of which is included 
in the glycosaminoglycan binding gene set (GO: 0005539, Supplementary Table S5) that was enriched in our 
proteomics data (Supplementary Fig. S9D). The complete set of proteins identified in our data included annexins 
1, 2, 4, 5, 6, 7, 11 (Supplementary Fig. S10). Of these annexins 4, 5, 6 and 11 had t values indicating increased 
abundances in PD. The similar enrichment of annexins 4, 5, 6 and annexin 11 leads us to speculate that annexin 
11 also binds GAGs.

Two gene sets associated with transmembrane transport (GO: 0015077, 58 proteins, Supplementary Table S6 
and G0: 0022804, Supplementary Table S7) were enriched in aged prefrontal cortex unaffected by neurological 
disease (Fig. 3B). These results are consistent with decreased levels of a large number of proteins that participate 
in transmembrane transport in PD brain. The most highly enriched member is synaptosome protein 25, the loss 
of which in cultured neurons is associated with Golgi abnormalities and cell  death68. This gene set also included 
several members of the solute carrier family of membrane transport proteins, cytochrome oxidases, and ATP 
synthetases, consistent with the conclusion that the energetics of transmembrane transport in synapses are altered 
in prefrontal cortex of PD brains.

conclusions
The challenges with omics analysis of human brain tissue are several-fold. Because these were human samples, 
there was high inherent genetic, proteomic and glycomic variability. Therefore, in order to identify the molecular 
alterations specific to the disease, we used the largest economically-feasible number of specimens to achieve 
statistical  significance69. We chose to process the frozen brain biospecimens as tissue slides. One advantage to 
this approach, whereby enzymes are applied to the tissue slide surface and the released molecules analyzed using 
LC–MS, is that the effort required for sample cleanup prior to LC–MS analysis is modest. Another advantage 
is that we were able to analyze consistent tissue morphologies among all samples by applying the enzymes to 
equivalent grey matter areas visible on the slides. By comparison, MALDI methods for tissue imaging provide 
higher spatial resolution but do not identify proteins  directly44. MALDI methods for profiling enzymatically 
released glycans from microscope slides achieve high spatial  resolution70 but are not appropriate for quantifica-
tion of HS and CS saccharides because these compounds dissociate during the MALDI process. Therefore, our 
LC–MS profiling approach provides a unique combination of appropriate throughput and analytical sensitivity 
to quantify HS, CS and proteins among a comparatively large set of brain specimens.

Our workflow is unique in combining both glycomics and proteomics profiling from brain tissue. HS and 
CS polysaccharides are expressed with pattern of highly sulfated domains interspersed with domains of low 
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 sulfation42. The compositions and structures of such domains vary according to cell type, location, development, 
and disease state, indicative of the growth factor binding characteristics of extracellular  microenvironment71. 
Therefore, alterations in GAG disaccharide profiles with disease indicate changes in the manner in which sign-
aling proteins are presented to cellular receptors. We show the first disaccharide analysis results from human 
brain tissue for PD versus control specimens. These results indicate changes in the biosynthetic processes and/
or expression of proteoglycan core proteins associated with PD. Our results also show that changes in HS disac-
charide composition that occur with human aging are distinct from those that occur in PD. Because we used only 
one cohort for the HS analyses, it will be necessary to acquire data on additional and larger specimen cohorts in 
order to rule out all potential sources of bias.

Our proteomics results are significant because they were collected on a defined cortex region (Brodmann 
area 9) and morphology (grey matter). The most appropriate way to gauge the biological significance of these 
proteomics results is by grouping proteins into gene sets using GSEA. This technique identifies the gene sets 
that are most enriched in the proteomics data to maximize the likelihood of statistical significance. The time 
efficiency of our on-slide digestion and analysis  method26 allowed us to acquire proteomics data on two separate 
sample cohorts of 24 and 41 specimens, respectively, a relatively large number considering the challenges of 
working with wet tissue.

Our goal was to identify the brain tissue alterations that occur in glycosaminoglycans and proteins associ-
ated with normal aging in contrast with those that occur in PD. For human aging proteomics, the magnesium 
ion-binding molecular functions gene set was the most confidently enriched. The most highly enriched set 
members included RAN, enolase 1 and enolase 2. α-Synuclein was also a member of this gene set. By contrast, 
the previously published rat brain aging proteomics  study24 showed enrichment of ribosome structural com-
ponents for substantia nigra and organic acid binding genes for striatum. It should be noted that the rat study 
compares juvenile versus aged individuals and the results are best judged in that context. The human study cohort 
2 compares ages ranging from 36–97 years but does not include juveniles. Therefore, the human brain aging 
study highlights changes to the prefrontal cortex grey matter proteome that occur with aging in the absence of 
neurological disease.

For the comparison of PD versus normal aging, extracellular matrix proteins were the most confidently 
enriched, including collagens, HAPLNs, hyalectans, tenascins and fibrinogens. ECM changes are among the 
upregulated gene sets enriched in an mRNASeq analysis and are enriched in Huntington’s  disease72. Our find-
ings are consistent with these studies. We conclude from our proteomics results from two specimen cohorts 
that changes in extracellular matrix occur in PD brain. We also observed four hemoglobin chains were enriched 
in PD prefrontal cortex, all of which have been identified in published human brain proteomics datasets. The 
unexpected observation that fetal hemoglobin chains are enriched in PD is likely to be of mechanistic interest 
for future studies.

Data availability
All data described here have been deposited in a public repository and will be made available upon publication. 
Proteomics data are available through the Pride Repository (dataset identifier PXD018736) Glycomics data are 
available through the GlycoPOST repository (dataset identifier GPST000033).
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