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THEBIGGERPICTURE Advances inmeasuring gene expression at the cellular level at high throughput have
been fueled by the advent of droplet-based single-cell RNA sequencing (scRNA-seq) platforms. Droplet-
based scRNA-seq platforms profile a large number of cells per experiment and accelerate our understand-
ing of biology. Accurate classification of cell-free and cell-containing droplets will maximize biological
signal and facilitate downstream analysis. Here, we present a novel cell-calling algorithm called EmptyNN,
which trains a neural network based on positive-unlabeled learning for improved filtering of barcodes. Our
results indicate that EmptyNN outperforms existing cell-calling methods and, thus, represents a powerful
tool to enhance both scRNA-seq and single-nucleus RNA sequencing quality control analyses.

Development/Pre-production: Data science output has been
rolled out/validated across multiple domains/problems
SUMMARY
Droplet-based single-cell RNA sequencing (scRNA-seq) has significantly increased the number of cells
profiled per experiment and revolutionized the study of individual transcriptomes. However, to maximize
the biological signal, robust computational methods are needed to distinguish cell-free from cell-containing
droplets. Here, we introduce a novel cell-calling algorithm called EmptyNN, which trains a neural network
based on positive-unlabeled learning for improved filtering of barcodes. For benchmarking purposes, we
leveraged cell hashing and genetic variation to provide ground truth. EmptyNN accurately removed cell-
free droplets while recovering lost cell clusters, and achieved an area under the receiver operating charac-
teristics of 94.73% and 96.30%, respectively. Comparisons to current state-of-the-art cell-calling algorithms
demonstrated the superior performance of EmptyNN. EmptyNN was further applied to a single-nucleus RNA
sequencing (snRNA-seq) dataset and showed good performance. Therefore, EmptyNN represents a power-
ful tool to enhance both scRNA-seq and snRNA-seq quality control analyses.
INTRODUCTION

Droplet-based single-cell RNA sequencing (scRNA-seq) has

significantly increased thenumberofcells profiledper experiment.

Asa result, droplet-basedscRNA-seqenables theprofilingof tran-

scriptomes from thousands, sometimes up to several millions, of

cells and provides unprecedented resolution into complex biolog-

ical systems.1,2 In a typical experiment, the viable cells in the sam-
This is an open access article under the CC BY-N
ples are dissociated to generate a cell suspension. Every single

cell in the suspension iscombinedwithagel bead to formadroplet

containing unique barcodes. Ideally, each droplet contains one

bead and one cell, which we define as a singlet (Figure 1A). Drop-

lets with two or more cells are defined as doublets or multiplets.

These types of droplets are cell-containing droplets. Droplets

without cells are defined as empty droplets or cell-free droplets,

which are expected to lack any RNA molecule.
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A B Figure 1. EmptyNN leverages positive-unla-

beled learning to classify cell-free and cell-

containing droplets

(A) Cells and barcodes are combined in oil droplets.

Some droplets may lack a cell but contain ambient

RNA. The EmptyNN classifier distinguishes cell-free

from cell-containing droplets.

(B) Schematic describing the workflow of EmptyNN.

The black curve represents the distribution of total

counts (y axis) across sorted barcodes (x axis). The

blue bars represent a set of barcodes with very low

total counts, set P. The gray bars represent barc-

odes with higher total counts consisting of cell-

containing and cell-free droplets, set U. EmptyNN

trains a classifier, where barcodes from P are labeled as cell-free droplets (blue) and a fraction of barcodes from U are labeled as cell-containing droplets (pink).

The classifier is applied to the remaining barcodes in U and the predictions are recorded. During each k fold, each barcode in U is predicted k � 1 times. This

process is repeated for N iterations (default: 10). The average prediction probability of each barcode in U defines each barcode as a cell-free or cell-containing

droplet.
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However, during cell dissociation, there exists a certain

amount of subcellular debris or free-floating mRNA in the sus-

pension, called ‘‘ambient’’ RNA. The ambient RNA may enter a

droplet containing a barcoded bead and form a cell-free droplet

(Figure 1A).3 The ambient RNA in the cell-free droplets may be

reverse transcribed into cDNA during the library preparation,

which will produce unique molecular identifier (UMI) counts in

the resulting gene expression matrices. Therefore, cell-free

droplets are difficult to distinguish from cell-containing droplets.

Failure to remove cell-free droplets may introduce spurious bio-

logical signals into the downstream analysis.3,4

Computational approaches to call cells and filter barcodes in

droplet-based scRNA-seq data use the following approaches.

The Cell Ranger software from 10X Genomics (version 2 or lower)

defines a cutoff based on the distribution of total counts. While

very commonly used, this approach ignores any transcriptomic

information. Thus, filtering barcodes based solely on the distribu-

tion of total counts may remove genuine cell-containing droplets

with low RNA counts. Simultaneously, empty barcodes with high

ambient-RNA-derived total counts may be erroneously retained.

To improve cell calling, previous work developed statistical

models operating on the transcriptome profiles. Lun et al. devel-

oped EmptyDrops, which employs a Dirichlet-multinomial model

to infer the transcriptome profile of cell-free droplets.4 By esti-

mating the deviations from this profile, EmptyDrops assigns

barcodes with significant deviations as cell-containing droplets.

Recently, Cell Ranger v.3 (or higher) integrated EmptyDrops into

their cell-calling algorithm. DIEM is another method that uses the

multinomial mixture model along with a semi-supervised expec-

tation maximization algorithm to remove cell-free droplets.5 In

addition, machine learning approaches have been successfully

applied to scRNA-seq data.6,7 One example of the application

of neural networks to filter barcodes is called CellBender.8 It

uses an unsupervised deep generative model to learn the prior

distribution of gene expression profiles and estimate the back-

ground RNA profile.8

Here, we leverage positive-unlabeled (PU) learning to train a

deep neural network targeted toward cell calling. PU learning is

a paradigm of semi-supervised learning, specifically designed

for the case inwhich labels of one class are available and the other

class labels are uncertain.9–11 There are several strategies for PU

learning, which involve adaptations of conventional machine
2 Patterns 2, 100311, August 13, 2021
learning methods, including direct application of a standard clas-

sifier,12 ‘‘PU bagging,’’13 and a two-step technique.14 PU learning

is a great fit for the cell-calling task because barcodes can be

divided into the following two groups: (1) barcodes with very

low total counts (‘‘positives’’) and (2) all remaining barcodes

with medium to high total counts (‘‘negatives’’). The positives

can be accurately labeled as cell-free droplets. The negatives,

on the other hand, can be either cell-containing or cell-free drop-

lets. The lack of accurate labeling for the negatives is the main

motivation for the application of PU learning. In addition, it has

been shown that PU learning could achieve comparable classifi-

cation performance with standard supervised machine learning

approaches when applied to fully labeled data.15

In this article, we introduce EmptyNN, a novel cell-calling algo-

rithm that distinguishes empty, or cell-free, droplets from cell-

containing droplets by training a neural network in droplet-based

scRNA-seq data. EmptyNN implements the PU learning bagging

strategy and is based on the rationale that barcodeswith very low

total counts represent bona fide cell-free droplets. By applying

EmptyNN to two ground-truth datasets and two additional data-

sets, we demonstrate that EmptyNN accurately discriminates be-

tween cell-free and cell-containing droplets while recovering lost

cell clusters with high accuracy. In our benchmarking analysis,

EmptyNN outperformed the current cell-calling methods Cell

Ranger v.2, EmptyDrops, Cell Ranger v.3, and CellBender.

RESULTS

In this work, we leveraged cell hashing information and genetic

variation to provide ground truth for the evaluation of our

approach. We first introduced the algorithm and then compared

EmptyNN to current state-of-the-art cell-calling algorithms. We

conducted comprehensive benchmarking analysis. Next, we

applied EmptyNN to two additional datasets and evaluated its

performance. Last, we compared the run time and computa-

tional requirements of the different methods.

The following section briefly describes the computational prin-

ciples underlying EmptyNN. Given samples belonging to a spe-

cific class P and an unlabeled set U, which contains both P and

non-P classes, the goal of PU learning is to build a binary classi-

fier to classify U into two classes, P and non-P.13,16,17 The ratio-

nale of EmptyNN is that barcodes with very low total counts
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represent bona fide cell-free droplets, while all other barcodes

could represent either cell-free or cell-containing droplets.

Therefore, we defined barcodes with total counts below a

user-specified threshold T (default: 100) as set P (blue in Fig-

ure 1B). The remaining barcodes are defined as the unlabeled

set U (gray), which consists of either cell-containing or cell-free

droplets. Next, U is randomly split into k folds (default: 10). All

barcodes within one fold are labeled as non-P (pink), and a

model is trained to discriminate between P (blue) and non-P

(pink) barcodes. Subsequently, the trained model is used to pre-

dict the barcodes from the remaining k � 1 folds from U (gray)

and each prediction is saved. This procedure is conducted for

each fold and separately repeated N times such that each bar-

code in U will be predicted (k – 1) * N times. Thus, barcodes in

U (gray) will be assigned a non-P (pink) label during training

exactly N times, such that the total number of trained models

equals k * N. Averaging these predictions for each barcode

represents a quantitative measure that can be used to define

barcodes as a cell-free or cell-containing droplet. By iteratively

assigning labels to a small fraction of the data during the training

process, the classifier is able to infer if the barcodes in U are

more likely to represent cell-free or cell-containing droplets.

We compared EmptyNN to the state-of-the-art cell-calling

methods Cell Ranger v.2, EmptyDrops, Cell Ranger v.3, and

CellBender. More details are provided under experimental

procedures.

EmptyNN removes cell-free droplets and recovers lost
signal in the cell hashing dataset
To evaluate EmptyNN, we first applied it to a cell hashing data-

set.18 The cell hashing technology utilizes sample-specific barc-

odes to allow multiplexing. Cells from different donors were

labeled with unique hashtag oligonucleotides (HTOs), which

readily separate donor samples (Figure S1A). Therefore, this da-

taset provides a unique resource to evaluate the performance of

cell-calling algorithms. Specifically, the droplets that contain sin-

gle or multiple HTO types were defined as singlets or doublets,

respectively (Figure S1B). Droplets lacking a clear peak in distri-

bution of HTO counts were defined as cell-free droplets. The bar-

code labels (e.g., doublets, singlets, cell-free droplets) derived

from the HTO information were subsequently used to evaluate

the performance of EmptyNN and three competing cell-calling

methods (see details under quantification and statistical analysis

in the experimental procedures).

Among the 39,842 barcodes evaluated, 20,833 (52.3%) were

classified as cell-free droplets and 19,009 (47.7%) were classi-

fied as cell-containing droplets by EmptyNN. We observed that

EmptyNN recovered 885 barcodes with total counts falling

below the filtering threshold applied by the authors in the original

study (200 in this case) (Figures 2A and 2B). Moreover, compar-

ison of additional quality control metrics, including percentage of

mitochondrial reads, revealed only minimal differences between

the original and the recovered cells (Figure S2).

t-distributed stochastic neighbor embedding (t-SNE) analysis

separated these recovered low-total-count barcodes into five

unique clusters (Figure 2C), suggesting that they represent

genuine cell-containing droplets of different cell types. Subse-

quent differential expression analysis revealed the cell-type

identities of these five clusters (Figure 2D). Four cell types (B,
CD4, natural killer [NK], and CD14 monocytes) were present in

the original study. Of note, platelets were detected only in the

recovered barcodes and were missed in the original study (Fig-

ure 2C). Since platelets contain much less RNA compared with

other cell types, they are likely to be erroneously excluded

from the original analysis in which filtering is based only on total

counts. Indeed, the total counts of the recovered platelets were

below the original filtering threshold (range 51–196, me-

dian 93.5).

To confirm the identity of the recovered platelets, we inte-

grated an independent dataset profiling peripheral blood

mononuclear cells (PBMCs) (see details in ‘‘Reference PBMC

3k dataset’’ in the experimental procedures). This dataset con-

tained a cluster of platelets that was used as a reference profile

in our study. The comparison revealed a significant correlation

between the gene expression profiles of bona fide platelets

and our recovered platelets (Pearson correlation, Rho = 0.95,

p < 2.2 3 10�6, Figure 2E). Furthermore, the bona fide platelet

reference expression profile has the strongest correlation with

the recovered platelet cluster, demonstrating that the recovered

low-count barcodes represented genuine platelets.

To benchmark our method, we applied four additional cell-

calling algorithms: Cell Ranger v.2, EmptyDrops, Cell Ranger

v.3, and CellBender (Figure S3). Next, we divided barcodes

into the following three groups: (1) barcodes predicted to be

cell-containing droplets by all methods (‘‘All-retained’’), (2) barc-

odes that were specifically retained by EmptyNN but none of the

other methods (‘‘EmptyNN-retained’’), and (3) barcodes that

were specifically removed by EmptyNN but retained by all other

methods (‘‘EmptyNN-removed’’). To evaluate how these sets of

barcodes differed from one another, we contrasted All-retained

barcodes with the EmptyNN-removed and EmptyNN-retained

barcodes within the same cell type by performing differential

expression analysis. Our hypothesis was that cell-containing

droplets showed greater transcriptional similarity with All-re-

tained barcodes of the same cell type compared with cell-free

droplets. To remove any bias from unbalanced numbers of cells

in either group, as well as total UMI count, we downsampled

counts and cells. We observed a much larger number of genes

with statistically significant differences in the comparison of

EmptyNN-removed with EmptyNN-retained (Figure 2F). For

example, in CD4 T cells, 3,898 genes were differentially ex-

pressed (adjusted p < 0.01) comparing All-retained with

EmptyNN-removed, while only 155 genes were differentially ex-

pressed comparing All-retained with EmptyNN-retained (Fig-

ure 2G). These results demonstrated the benefits of EmptyNN

over other methods.

Furthermore, to quantitatively compare the cell-calling

methods, we integrated information derived from the HTO

counts. As described above, the HTO counts provide singlet,

doublet, and negative labels for each barcode. Barcodes labeled

as singlets and doublets were classified as cell-containing barc-

odes, and the accuracy of the five cell-calling methods was eval-

uated. EmptyNN achieved an AUROC (area under the receiver

operating characteristics) of 94.73% (Figure 2H). In contrast,

Cell Ranger v.2, Cell Ranger v.3, EmptyDrops, and CellBender

achieved AUROCs of only 86.88%, 90.16%, 79.87%, and

88.80%, respectively. To visualize these results, we created a

count matrix composed of all cells detected by any of these
Patterns 2, 100311, August 13, 2021 3



Figure 2. EmptyNN accurately removes cell-

free droplets and recovers cell-containing

droplets in the cell hashing dataset

(A) Barcode-rank plot shows the distribution of total

UMI counts of each barcode in descending order.

The two dashed lines represent 200 and 50 total

UMI counts, respectively.

(B) A zoomed-in view of the barcode-rank plot

highlighting barcodes with more than 50 and less

than 200 total UMI counts. Vertical red lines indicate

barcodes falling below the original threshold (200)

but predicted to be cell-containing droplets by

EmptyNN, which we referred to as ‘‘recovered

cells.’’

(C) t-SNE plot of the recovered cells (n = 885) shows

distinct expression profiles of various cell types.

(D) Heatmap illustrates known marker gene

expression profiles derived from each recovered

cluster.

(E) Bar plot illustrates the correlation coefficient (y

axis) of mean expression profiles between the

reference platelet data and all other cell types pre-

sent in the recovered barcodes.

(F) Bar plot shows the number of differentially ex-

pressed genes (adjusted p < 0.01) comparing ‘‘All-

retained’’ cells to ‘‘EmptyNN-retained’’ (red) and to

‘‘EmptyNN-removed’’ (blue) cells.

(G) Volcano plot shows adjusted p value (y axis) and

fold change (x axis) of differentially expressed genes

in CD4 T cells. Left: EmptyNN-removed versus all.

Right: EmptyNN-retained versus all.

(H) ROC curves show the overall accuracy of

different cell-calling algorithms.
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five methods. The standard analysis pipeline was applied to this

count matrix, followed by the unsupervised clustering and t-SNE

visualization. The cell-type identity of each cluster was inferred

based on the HTO information and differential expression anal-

ysis results (Figures S4A and S4B). Compared with Cell Ranger

v.2 and v.3, EmptyNN retained more CD14 monocytes, while

discarding the ambient RNA cluster (Figures S4C, S4D, and

S4F). Furthermore, EmptyNN retained more B cells and CD4

cells compared with EmptyDrops (Figures S4C and S4E). Cell-

Bender kept most barcodes, including doublet and ambient
4 Patterns 2, 100311, August 13, 2021
RNA clusters (Figure S4G). In summary,

EmptyNN demonstrated superior accu-

racy compared with the other three cell-

calling methods.

EmptyNN accurately classifies
singlets and ambiguous droplets in
the multiplexed PBMC dataset
We next assessed the performance

of EmptyNN in a second independent

scRNA-seq dataset from Kang et al.19

PBMCs from eight individuals were pooled

and then sequenced simultaneously. In the

original study, the authors developed a

computational tool called demuxlet, which

utilizes the natural genetic variations con-

tained in the sequencing reads to decon-
volute the donor of origin for each barcode. For each barcode,

demuxlet calculates the likelihood that the sequence reads

originated from one or multiple individuals. Barcodes with non-

discriminant probabilities are classified as ambiguous droplets,

which are the results of ambient RNAs from cell-free droplets.

Based on this rationale, we applied demuxlet to infer the label

of each barcode and evaluated the performance of the cell-call-

ing methods.

For a random classifier with low capacity to distinguish be-

tween classes, the barcodes retained or discarded will have
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C

E F

D

B Figure 3. EmptyNN accurately classifies sin-

glets and ambiguous droplets in the multi-

plexed PBMC dataset

(A) Boxplot showing the probability of being singlets

for barcodes retained and discarded by EmptyNN.

The box represents the interquartile range, the

horizontal line in the box is the median, and the

whiskers represent 1.5 times the interquartile range.

(B) ROC curve showing the performance of different

algorithms.

(C–E) t-SNE plots visualizing embedding of cells

called by any of five algorithms. Points represent

barcodes and are colored according to (C) demux-

let-derived information, (D) whether detected by

EmptyNN, and (E) putative cell type.

(F) Heatmap showing the gene expression profile for

each putative cell type.
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indistinguishable distributions. In contrast, for a classifier with

high capacity, the distribution of retained or discarded barcodes

should set them apart from one another. Figure 3A illustrates

the probability distribution of barcodes retained and discarded

by EmptyNN. As expected, the median singlet probability derived

from demuxlet was 1.00 (SD 0.018, range 0.32–1.00) for retained

barcodes and 0.17 (SD 0.21, range 0.12–1.00) for discardedbarc-

odes, suggesting its capacity for differentiating singlets and

ambiguous droplets. According to the labels derived from genetic

information, EmptyNN retained a total of 6,025 cell-containing

droplets and achieved anAUROCof 96.30% (Figure 3B). The total

number of retained droplets for Cell Ranger v.2, EmptyDrops, Cell

Ranger v.3, and CellBender was 6,061, 6,544, 6,075, and 1,686,

respectively. The corresponding AUROC was 82.94%, 86.43%,

83.03%, and 58.02%, respectively (Figures 3B and S5).

Next, we investigated the t-SNE embeddings constructed from

the count matrix composed of all cells detected by any of these

five methods. Each droplet was labeled based on the demuxlet-

derived information (Figure 3C). EmptyNN correctly discarded

the ‘‘ambiguous’’ cluster (Figure 3D), while conserving the tran-

scriptional profiles of the cell type identities present in the study

(Figures 3E and 3F). Figure S6 shows the t-SNE plots for the other

methods. In summary, EmptyNN outperformed competing

methods based on the accuracy inferred from genetic variation.
EmptyNN decreases ambient
contamination in single-nucleus
RNA-seq data
Compared with scRNA-seq technology,

single-nucleus RNA-seq (snRNA-seq)

uses nuclei rather than cells and is suitable

for solid tissues where isolation of individ-

ual cells is difficult.20 snRNA-seq data usu-

ally contain lower total counts per nucleus,

making it more challenging to define a

good threshold to call nucleus-containing

droplets. Therefore, we applied EmptyNN

to snRNA-seq data from the adult mouse

brain to demonstrate its broad utility. Emp-

tyNN identified 2,222 nucleus-containing

droplets, while Cell Ranger v.2, Empty-

Drops, Cell Ranger v.3, and CellBender
detected 2,371, 2,181, 2,566, and 4,386 nucleus-containing

droplets, respectively. To evaluate the performance of each

method, we calculated the ambient RNA expression signature

and fraction of spliced reads for each called nucleus. Since the

RNA is derived from the nucleus, most reads are expected to

be unspliced. Thus, a high proportion of spliced reads indicates

contamination of cytoplasmic origin and implies that the droplet

is nucleus free. For example, the ambient expression signature

was lower in the EmptyNN compared with the Cell Ranger v.3

filtering (Figure 4A). In addition, the distribution of the fraction

of spliced reads was slightly, yet significantly, lower (p =

3.293 10�5) in EmptyNN compared with Cell Ranger v.3 filtered

nuclei (Figure 4B). Indeed, the distribution of the fraction of

spliced reads was lower in EmptyNN filtering compared with

any other method (Figure 4C). In summary, these results demon-

strate that EmptyNN performs equally strongly when applied to

snRNA-seq data.

EmptyNN recovers biological signals in additional
datasets
To further demonstrate the utility of EmptyNN, we analyzed three

additional scRNA-seq datasets. The first two datasets were (1)

the PBMC 8k dataset and (2) the Neuron 900 dataset. The data-

sets were processed by Cell Ranger v.2 and EmptyNN
Patterns 2, 100311, August 13, 2021 5
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Figure 4. EmptyNN decreases contamina-

tion in single-nucleus RNA-seq data

(A and B) EmptyNN filtering shows lower (A) ambient

RNA expression and (B) fraction of spliced reads

compared with Cell Ranger v.3 filtering.

(C) Left: empirical cumulative distribution functions

plot shows the distribution of the fraction of spliced

reads in EmptyNN filtering compared with any other

method. Right: zoomed-in view of the plot highlights

the percentile ranging from 0.75 to 1 of different

methods.
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independently. We applied identical processing pipelines,

including filtering of low-quality cells by mitochondrial fraction,

normalization, highly variable gene detection, principal-compo-

nent analysis, clustering, and t-SNE visualization (Figure S7).

We observed that EmptyNN classified more cell-containing

droplets compared with Cell Ranger v.2. A critical fraction of

the cell-containing droplets fell below the Cell Ranger v.2

threshold, and we investigated these droplets in more detail.

These cell-containing droplets formed unique clusters corre-

sponding to different cell types. In the PBMC 8k dataset, Emp-

tyNN uniquely retained CD4 T cells, CD14monocytes, and plate-

lets (Figure 5A), characterized by canonical marker genes, such

as LTB, CD3D, LYZ, PPBP, and PF4 (Figure 5A). In the Neuron

900 dataset, EmptyNN recovered GABAergic, glutamatergic,
6 Patterns 2, 100311, August 13, 2021
and non-neuronal clusters (Figures 5C

and 5D). These results suggested that

EmptyNN recovered genuine cell-contain-

ing droplets that otherwise would have

been lost in a Cell Ranger v.2-based

analysis.

The third dataset profiled human lung

tissue and evaluated the effect of cold

preservation with different cold storage

times, varying from 0 to 72 h.21 The original

scRNA-seq data were processed using

Cell Ranger v.3. We applied EmptyNN to

six samples stored for either 0 or 72 h. To

evaluate our algorithm, we calculated the

mean ambient RNA expression signature

for each cell. Comparing the cell-calling re-

sults between EmptyNN and Cell Ranger

v.3, a decrease in ambient RNA expression

was observed in the EmptyNN cell filtering

across all six samples, indicating improved

cell calling (Figure S8).

Hyperparameter tuning
To evaluate the impact of hyperparameter

selection, we examined the performance

of EmptyNN in the multiplexed PBMC da-

taset (Figure S9). We assessed different

threshold values T (default: 100, from 50

to 400), numbers of cross-validation folds

k (default: 10, from 5 to 20), and numbers

of training iterations N (default: 10, from 5

to 20). The performance was quantified us-
ing the AUC values derived from comparing cell-calling predic-

tions to the labels from cell hashing information, similar to the

analysis described in Figures 2H and 3B. EmptyNN’s perfor-

mance remained very robust with respect to a large range of k

(Figures S9B and S9F) and N (Figures S9C and S9G) values.

Regarding the T parameter, our results showed highest perfor-

mance for values ranging between 100 and 300 (Figures S9A

and S9D). However, increased T values decreased the number

of predicted cell-containing droplets (Figure S9E). Thus, the T

parameter enables users to tune the stringency of the algorithm.

Run-time comparison
Finally, we compared the cell-calling methods with respect to

their run time across all analyzed datasets (Figure S10). The
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B Figure 5. EmptyNN recovers biological sig-

nals in two additional datasets

(A) t-SNE plot visualizing embedding of recovered

barcodes by EmptyNN in the PBMC 8k dataset.

Points represent barcodes and are colored by pu-

tative cell type.

(B) Heatmap showing the gene expression profile

for each cell type.

(C and D) Analogous analysis and visualizations for

the neuron 900 dataset.
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fastest method was EmptyDrops, which finished within minutes.

EmptyNN took approximately half an hour to complete. The run

time of CellBender ranged from 30min (multiplexed PBMC data-

set) to 17 h (cell hashing dataset). The results indicated that most

of the methods, including EmptyNN, can complete the analysis

within a reasonable time.

EmptyNN and EmptyDrops were implemented in the R envi-

ronment and run on a standard personal computer. Based on

the documentation, CellBender can be run in a CPU or GPU

server. It takes approximately 30 min to process the full un-

trimmed example dataset using a CUDA-enabled GPU. In our

experiments, CellBender was run on a server equipped with 24

Intel Xeon CPU E5-2630 v.2 at 2.60 GHz.

DISCUSSION

Droplet-based scRNA-seq platforms represent a significant

advancement for single-cell technologies and thus have fueled

remarkable progress in our understanding of cellular systems.

However, to maximize the biological signal, robust computational

methods are needed to distinguish cell-free from cell-containing

droplets. Here, we described EmptyNN, a novel cell-calling

algorithm that is based on PU learning for improved filtering of

barcodes in droplet-based scRNA-seq data. We applied Emp-

tyNN to a total of six datasets (five scRNA-seq datasets and

one snRNA-seq dataset) and evaluated its performance.

In the cell hashing dataset, we utilized cell hashing information

to assign labels (cell-free or cell-containing droplet) providing

ground truth. EmptyNN accurately classified cell-free and cell-

containing droplets. We noted that EmptyNN recovered a num-

ber of barcodes with total counts falling below the filtering

threshold applied by the authors in the original study. We per-

formed independent t-SNE and differential expression analysis

to infer the cell type identities of these recovered barcodes. To

confirm that these barcodes represent cells, we conducted cor-

relation analysis and Euclidean distance comparisons to demon-
strate the high levels of similarity between

the recovered barcodes and those

present in the original study. In our bench-

marking analysis, we assessed the

AUROC of each cell-calling algorithm.

EmptyNN achieved an AUROC of 94.73%

and outperformed current state-of-the-art

cell-calling algorithms. We noticed that

EmptyDrops erroneously removed most

CD4 and B cells. One possible explanation

is that the ‘‘ambient’’ RNA pool is a mixture
of all cell types, where the most frequent cell populations likely

dominate the ambient RNA profile. EmptyDrops estimates the

ambient RNA profile and assesses the deviations from this pro-

file. Thus, the RNA profile of the most frequent cell populations

may not differ sufficiently and erroneously be removed.

In the multiplexed PBMC dataset, the natural genetic variation

was utilized to infer the sample identity of each barcode. The

generated singlet probability of each barcode is considered as

the ground truth in this analysis. EmptyNN accurately differenti-

ated singlets and ambiguous droplets and achieved an AUROC

of 96.30%. We also applied EmptyNN to the PBMC 8k dataset

and Neuron 900 dataset and demonstrated its good

performance.

There are several limitations in our study. First, the key

assumption of our approach is that barcodes with very low total

counts represent bona fide cell-free droplets. However, this

assumption may not hold when cell-containing droplets with

very low total counts exist. In such cases, the user can adjust

the T threshold to mitigate potential bias. Second, parameter se-

lection, such as the number of cross-validation folds and the T

threshold, needs to be specified manually. However, we

consider our algorithm robust to various choices of k and T

and plan to explore hyperparameter selection approaches in

future work. Third, the retained cell-containing droplets may

have a high fraction of mitochondrial reads. These low-quality

cells may pass the initial filtering but can be removed in down-

stream analysis. In addition, our benchmarking analyses relied

on ground truth provided by cell hashing or genetic information.

As there may exist high overlap in cell-calling classifications

across methods, the biological interpretation of differences

may be limited by low signal. Finally, ambient RNAs will remain

in cell-containing droplets and contaminate the gene expression

estimates. EmptyNN does not estimate corrected gene expres-

sion profiles. To correct the impact of ambient RNAs on gene

expression estimates additional tools such as SoupX3 need to

be applied.
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In summary, we introduced a novel cell-calling algorithm

called EmptyNN, which is a neural network based on PU learning

to discriminate cell-free from cell-containing droplets in scRNA-

seq datasets. Benchmarking analysis leveraged cell hashing and

genetic variation providing ground truth, which allows for the sta-

tistical and visual comparisons of different cell-calling algo-

rithms. We demonstrated that EmptyNN outperformed current

state-of-the-art methods and accurately removed cell-free drop-

lets while recovering genuine cells across different datasets. We

expect EmptyNN to be widely applied during the pre-processing

of droplet-based scRNA-seq datasets, which will improve the

downstream analysis.

EXPERIMENTAL PROCEDURES

Resource availability

Lead contact

Further information and requests for resources should be directed to and will

be fulfilled by the lead contact, Lukas M. Simon (lukas.simon@bcm.edu).

Materials availability

There are no physical materials associated with this study.

Data and code availability

The BAM file of the multiplexed PBMC dataset was obtained from the

Sequence Read Archive website (https://www.ncbi.nlm.nih.gov/sra). All other

datasets were obtained from the GEO database (https://www.ncbi.nlm.nih.

gov/geo/). Detailed information can be found in Table S1. The source code

and tutorials are freely available at https://github.com/lkmklsmn/empty_nn.

Method descriptions

EmptyNN

EmptyNN is a neural network based on PU learning. It takes the raw count ma-

trix as input, where rows represent barcodes and columns represent genes.

Only barcodes with total counts greater than 10 are included in the analysis.

We define the set P, the bona fide empty droplets, as barcodes with total

UMI counts less than threshold T (default: 100). The remaining barcodes are

defined as the set U, the unlabeled droplets. The architecture of the neural

network is composed of three layers with 128, 64, and 2 neurons each. The

2,000 most frequently detected genes in P are selected as input features of

the network. The network is trained in 10 epochs using the binary cross-en-

tropy loss function with the optimizer RMSprop. During each epoch, the

training data are fed into the network in the batch size of 16. Global scaling

normalization is conducted to eliminate the effect of the total counts. In this

way, the neural network is forced to learn the important features in the P set

rather than the total count difference. In each training process, theU set is split

into k folds with each piece labeled as negative samples. Together with the P

set, these split sets were fed into the neural network. The network is then used

to predict the remaining k� 1 folds. The process is repeatedN times. The barc-

odes in theU set will receive (k – 1)*N predictions. Thosewith an average score

greater than 0.5 will be labeled cell-containing droplets, while those less than

0.5 will be labeled cell-free droplets. The output is a list, containing a Boolean

vector indicating it is a cell-containing or cell-free droplet, as well as the prob-

ability of each droplet in set U.

Cell Ranger v.2

Cell Ranger v.2 applies an arbitrary cutoff on the total UMI counts to call cells.2

The cutoff depends on the expected number of cells, N. For the top N barco-

des, the 99th percentile of the total UMI counts is then calculated, calledm. All

barcodes with total UMI counts more than m/10 will be considered as cells.

EmptyDrops

EmptyDrops utilizes the Dirichlet-multinomial model and estimates the profile

of the cell-free droplet group.4 Specifically, all barcodes were divided into

three groups based on total UMI counts, including (1) cell-free droplet group

or background group with total counts less than a low number (default: 100),

(2) test group in which total counts range from 100 to knee point, and (3)

cell-containing droplet group in which total counts are greater than a number

(default: 200). The profile of the cell-free droplet group is first estimated. Then,

each barcode in the test group will be tested for deviations from this profile.
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Barcodes with significant deviations will be called cell-containing droplets.

EmptyDrops is implemented in the DropletUtils package (version 1.6.1). Barc-

odes with false discovery rate less than 0.001 will be considered as cell-con-

taining droplets.

Cell Ranger v.3

Cell Ranger v.3 combines Cell Ranger v.2 and EmptyDrops. The first pass

keeps all barcodeswith total counts above the threshold applied in Cell Ranger

v.2. For barcodes falling between a low UMI count (default: 100) and the

threshold, those predicted to be true cells by EmptyDrops will be kept.

CellBender

CellBender is an unsupervised deep generative model to distinguish cell-con-

taining droplets from cell-free ones in scRNA-seq data.8 By utilizing a neural

network, CellBender simultaneously learns the prior distribution of gene

expression profiles and estimates the background RNA profile. The estimated

gene expression profiles are fit with a negative binomial model to calculate the

probability of each droplet containing a cell. The droplets with probability

exceeding 0.5 are considered cell-containing droplets.

In our study, CellBender remove-background was applied to the datasets.

The number of epochs was set to 150 and the learning rate was set to 1 3

10�4 as default. The expected number of cells depends on each dataset.

The barcode rank plot for each dataset was examined to determine the optimal

parameter total-droplets-included.

Quantification and statistical analysis

Cell hashing dataset

The cell hashing dataset from Stoeckius et al.18 utilized amultiplexing technol-

ogy, which uses a unique barcoding strategy, which enables different samples

to be multiplexed and sequenced together. Human PBMCs from eight donors

(referred to as donor A to H) were separately extracted and labeled with unique

HTOs. The cells from different samples were subsequently pooled and

sequenced through standard scRNA-seq protocols. Both the RNA transcripts

and the sample unique HTO levels were obtained.

The authors applied a hard threshold to the raw count matrix and kept only

barcodes with more than 200 total UMI counts. A statistical model-based

strategy was developed to classify each barcode. Briefly, each HTO level

was fit into a negative binomial distribution separately. The 99% quantile

was used as a cutoff between ‘‘enriched’’ and ‘‘background.’’ Barcodes with

HTO level above the cutoff were labeled as ‘‘positive’’ and barcodes below

the cutoff were labeled as ‘‘negative’’ for that HTO. Thus, barcodes that

were positive for only one kind of HTO were singlets. Barcodes that were pos-

itive for more than one kind of HTO were doublets. Barcodes that were nega-

tive for all HTOs were cell-free droplets. Specifically, the cutoff for HTO-A to

HTO-H was 52, 75, 96, 100, 101, 128, 329, and 171, respectively.

Reference PBMC 3k dataset

The reference PBMC 3k dataset was used only to validate the expression pro-

file of the recovered platelets and contained 2,700 cells in total. Standard

Seurat (version 3.2.2) pre-processing workflow was applied to this dataset,

including removal of low-quality cells, normalization, feature selection, and

dimension reduction. The first 10 principal components (PCs) were used to

construct the KNN graph and cluster the cells with a resolution of 0.5. Cell

markers that defined clusters were found by differential expression. There

were nine cell types in total, including naive CD4 T cells, memory CD4 cells,

CD14 monocytes, CD8 T cells, CD16 monocytes, NK cells, dendritic cells,

and platelets. The platelet cluster served as a reference profile in our study.

The mean gene expression profile of the reference platelet cluster and the

recovered clusters was calculated and similarity was evaluated using Pear-

son’s correlation coefficient.

Multiplexed PBMC dataset

We first downloaded the genome-aligned BAM file from the Sequence Read

Archive (SRR5398237). The ‘‘bamtofastq’’ tool (1.3.2, https://support.

10xgenomics.com/docs/bamtofastq) was used to convert the BAM file to

FASTQ files, which were subsequently used as input to the Cell Ranger v.2

pipeline. The pipeline was run with default parameters to generate the unfil-

tered count matrix (n = 145,549 barcodes).

PBMC 8k dataset

The PBMC 8k dataset included a total of 409,508 barcodes with non-zero total

counts in the raw count matrix. EmptyNN was applied to the dataset with

default parameters and EmptyNN predicted a total of 9,685 barcodes to be

mailto:lukas.simon@bcm.edu
https://www.ncbi.nlm.nih.gov/sra
https://www.ncbi.nlm.nih.gov/geo/
https://www.ncbi.nlm.nih.gov/geo/
https://github.com/lkmklsmn/empty_nn
https://support.10xgenomics.com/docs/bamtofastq
https://support.10xgenomics.com/docs/bamtofastq
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cell-containing droplets. The Cell Ranger v.2 filtration resulted in 8,381

barcodes.

Neuron 900 dataset

The cells in the Neuron 900 dataset came from the cortex, hippocampus, and

subventricular zone of an E18mouse. The raw count matrix contained 737,280

barcodes, with 231,912 (31.46%) barcodes having at least one gene ex-

pressed. EmptyNN was applied to the dataset with the default threshold

100. EmptyNN predicted 2,899 barcodes to be cell-containing droplets. The

Cell Ranger v.2 filtered data matrix contained a total of 931 barcodes.

Inference of droplets using hashing information

In our analysis, the raw count matrix was used, which contained 50,000 barc-

odes, including barcodes with fewer than 200 total UMI counts. We removed

barcodes without corresponding HTO information, which resulted in the exclu-

sion of 10,158 (20.3%) barcodes. For the remaining 39,842 barcodes, the

same HTO classification strategy as in the original paper was employed. In

summary, barcodes were classified as 3,615 (9.07%) doublets, 19,117

(47.98%) singlets, and 17,110 (42.94%) cell-free droplets.

EmptyNN was run with five iterations. The threshold parameter T was set to

50. We used Seurat (version 3.2.2) to process the EmptyNN-filtered count ma-

trix and conduct downstream analysis.22 Briefly, after pre-processing the

1,000 most highly variable genes were identified. Principal-component anal-

ysis was conducted to reduce dimensionality. The first 10 PCs were used to

calculate the neighborhood graph, followed by clustering and t-SNE visualiza-

tion. Differential gene expression was conducted between clusters. Each clus-

ter was labeled based on the expression of cell-typemarker genes. The Enrichr

database (https://maayanlab.cloud/Enrichr/) served as a complementary tool

for annotating cell clusters.23,24

Inference of droplets using genetic variation

To assign labels to each barcode, we used demuxlet,19 a tool to deconvolute

pooled sample identities based on natural genetic variation. Demuxlet requires

two inputs: (1) a BAM file containing aligned reads and (2) a VCF file containing

the genotype of each pooled sample. The output contains the most likely sam-

ple identity for each barcode in the form of probabilities. The merged VCF file

containing all samples was downloaded from the demuxlet GitHub repository

(https://github.com/yelabucsf/demuxlet_paper_code/). Demuxlet was run via

Docker using default parameters. The output contained 5,845 singlets, 2,401

doublets, and 31,700 ambiguous droplets.

Ambient RNA signature calculation

The ambient genes were defined as the top 100 most frequently expressed

genes in the P set (low UMI count barcodes). The ambient RNA signature

was calculated as the average expression of these ambient genes.

Differential gene expression test

We first extracted barcodes into three groups: (1) predicted to be cell-contain-

ing droplets by all methods (All-retained), (2) specifically retained by EmptyNN

but none of the other methods (EmptyNN-retained), and (3) specifically

removed by EmptyNN but retained by all other methods (EmptyNN-removed).

Next, we downsampled counts and cells to remove any bias from unbalanced

numbers of cells in either group as well as total UMI count. The differential

expression analysis was conducted using FindMarkers() in the Seurat pack-

age. The number of significant genes between different contrasts was then

compared.

Comparison of accuracies

Labels derived from cell hashing or genetic variation information were used to

calculate accuracies. EmptyNN and EmptyDrops output the probability for

each barcode, while Cell Ranger v.2, Cell Ranger v.3, and CellBender output

a Boolean vector indicating whether the droplet was predicted to be cell free

or cell containing. We utilized the ‘‘pROC’’ package (version 1.16.2) in R to

calculate the overall accuracy of each cell-calling algorithm. Threshold values

from 0 to 1 were applied to generate sensitivity and specificity. For calculating

sensitivity and specificity measures as listed in Table S2, EmptyNN and Emp-

tyDrops predictions were converted to binary outcomes. Barcodes with prob-

ability >0.5 were considered cell-containing droplets and all other barcodes

were considered cell-free droplets. The calculations of sensitivity and speci-

ficity were based on the following formulas:

Sensitivity = TP/TP + FN,

Specificity = TN/TN + FP,
where TP, TN, FP, and FN represent true positives, true negatives, false pos-

itives, and false negatives, respectively.

SUPPLEMENTAL INFORMATION

Supplemental information can be found online at https://doi.org/10.1016/j.

patter.2021.100311.
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