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Abstract: Alcoholic liver disease (ALD) is characterized by the injury, inflammation, and scarring
in the liver owing to excessive alcohol consumption. Currently, ALD is a leading cause for liver
transplantation. Therefore, extensive studies (in vitro, in experimental ALD models and in humans)
are needed to elucidate pathological features and pathogenic mechanisms underlying ALD. Notably,
oxidative changes in the liver have been recognized as a signature trait of ALD. Progression of ALD
is linked to the generation of highly reactive free radicals by reactions involving ethanol and its
metabolites. Furthermore, hepatic oxidative stress promotes tissue injury and, in turn, stimulates
inflammatory responses in the liver, forming a pathological loop that promotes the progression of
ALD. Accordingly, accumulating further knowledge on the relationship between oxidative stress and
inflammation may help establish a viable therapeutic approach for treating ALD.

Keywords: alcoholic liver disease; oxidative stress; inflammatory liver injury; fatty liver; alcoholic
steatohepatitis; cirrhosis

1. Introduction

Excessive and chronic alcohol intake can cause numerous problems affecting vari-
ous physiological systems, including the immune, nervous, cardiovascular, and digestive
systems [1–5]. The hepatic manifestation of heavy alcohol consumption is referred to as
alcoholic liver disease (ALD), which encompasses a wide spectrum of disorders including
fatty liver, alcoholic steatohepatitis (ASH), alcoholic hepatitis (AH), cirrhosis, and hepato-
cellular carcinoma [6–10]. Fatty liver is relatively benign and represents the initial stage in
the ALD spectrum, marked by triglyceride accumulation in the liver. In some individuals,
alcoholic fatty liver progresses to ASH, which is characterized by the presence of hepatocyte
injury, hepatocyte ballooning, and inflammation [11]. Chronic injury, inflammation, and
activation of the liver regeneration machinery, which are features of ASH, may result in
the replacement of the hepatic parenchyma with fibrotic tissues, eventually causing liver
failure and cirrhosis [12]. Apart from the chronic, subclinical nature of ASH progression,
acute and overt syndromes observed in patients with ALD are referred to as AH, known to
present a poor prognosis [13].

ALD has become one of the leading causes of end-stage liver disease, and necessitates
liver transplantation, while the contribution of viral infections has gradually waned [14,15].
In the United States, recent studies have reported that approximately 40% of cirrhosis-
related deaths can be attributed to ALD, and the three-month mortality of severe AH is
approximately 50%, indicating that ALD may be fatal without active therapeutic interven-
tion [16,17]. However, therapeutic options for ALD remain limited.
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Molecular mechanisms underlying the principal features of ALD progression, includ-
ing liver injury, inflammation, and fibrosis, have been extensively investigated as potential
therapeutic targets for ALD [18]. Numerous reports have demonstrated that the patho-
genesis of ALD is often accompanied by oxidative stress and inflammatory injury [19,20].
This review summarizes recent advances in our understanding of the pathogenic roles
and interplay between oxidative stress and inflammation during ALD development. In
addition, we discuss therapeutic approaches that target oxidative stress and inflammation
in ALD.

2. Oxidative Stress-Related Pathogenic Mechanisms of ALD

ALD pathogenesis involves various processes, including fat accumulation, organelle
stress and hepatocyte death, immune cell infiltration and activation, and fibrogenesis stim-
ulated by hepatic stellate cells [19,21–24]. As stated above, these processes are reportedly
stimulated by and/or enhance oxidative stress. Early studies have revealed that ethanol
metabolism via alcohol dehydrogenase (ADH) and microsomal cytochrome P450 (CYP)
enzymes produces acetaldehyde and reactive oxygen species (ROS) and depletes glu-
tathione levels [25–30]. These findings and other reports have highlighted the importance
of oxidative stress in the pathogenesis of ALD.

The oxidation of ethanol to acetaldehyde and acetate utilizes NAD+ as a cofactor and
produces NADH, thereby reducing the ratio of NAD+ to NADH (NAD+/NADH) [31].
NAD+/NADH is a crucial factor determining metabolic homeostasis in hepatocytes, in-
cluding fatty acid synthesis, fatty acid oxidation, gluconeogenesis, and glycolysis [32].
In particular, the decrease in NAD+/NADH ratio promotes fat accumulation in the liver
by reducing fatty acid oxidation and enhancing fatty acid synthesis [21]. Alcohol intake
promotes hepatic fat accumulation via various mechanisms, including elevated expres-
sion levels of lipogenic genes (e.g., sterol regulatory element-binding protein [SREBP]-1c
and its target genes) [33–35] and inhibition of genes involved in fatty acid oxidation (e.g.,
peroxisome proliferator-activated receptor [PPAR]-α target genes) [30,35–37]. Notably,
CYP2E1-dependent ROS production was shown to inhibit PPAR-α-mediated fatty acid
oxidation genes, such as acyl CoA oxidase [30]. Alcohol-induced fat accumulation may,
in turn, cause cellular stress and hepatocyte death, which can also be directly stimulated
by ethanol and ethanol-derived metabolites [38]. Alcohol-induced hepatocyte injury and
inflammation are closely associated with oxidative stress; thus, this section discusses the
detailed involvement of oxidative stress in alcohol-induced hepatocyte injury, as well as the
role of immune cells in mediating alcohol-induced inflammatory liver injury (Figure 1). In
addition, we summarize the messengers linking oxidative stress and inflammation in ALD
pathogenesis. Furthermore, we elaborate on experimental ALD models characterized by
profound oxidative stress and inflammation and the consequences of modulating oxidative
stress and/or inflammation in ALD models.

2.1. Alcohol-Induced Hepatocyte Injury

Ethanol is metabolized to acetaldehyde in hepatocytes, mainly via an enzymatic
reaction catalyzed by ADHs [39]. There are six closely related ADHs: ADH1A, ADH1B,
ADH1C, ADH4, ADH5, and ADH6 [40]. Among these, ADH1A, ADH1B, and ADH1C are
responsible for the majority of ethanol oxidation in the liver [41]. Acetaldehyde generated
by the enzymatic reaction reacts with DNA and proteins, thereby forming adducts that
induce hepatocyte injury. The catalytic cycle of ADH is coupled with the conversion of
NAD+ to NADH [42]. Aldehyde dehydrogenases (ALDHs) catalyze the conversion of
acetaldehyde to acetate using NAD+ as a cofactor, which is also converted to NADH [32].
Re-oxidation of NADH to NAD+ in the mitochondria has been associated with electron
leakage from the mitochondrial respiratory chain and subsequent ROS production [43–45].
In addition, ethanol inhibited the expression of antioxidant enzymes (e.g., superoxide
dismutase 1) and depleted levels of non-enzyme antioxidants (e.g., glutathione), thereby
reducing the cellular ability to modulate oxidative stress [25,26,46,47].
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Figure 1. Oxidative stress-related pathogenesis of ALD. ROS can be produced by the metabolism
of ethanol to acetaldehyde and acetate as well as the related processes that involve the conver-
sion between NAD+/NADP+ and NADH/NADPH. ROS produced via these processes stimulate
hepatocyte injury directly or via enhanced fat accumulation. Injured hepatocytes release DAMPs,
cytokines, and chemokines, which activate and recruit innate immune cells such as macrophages and
neutrophils. Activated macrophages and neutrophils can also produce ROS via NADPH oxidase.
Protein and DNA adducts formed by acetaldehyde and ROS may facilitate liver injury, inflammation,
and carcinogenesis. ADH, alcohol dehydrogenase; ALD, alcoholic liver disease; ALDH, aldehyde de-
hydrogenase; DAMP, damage-associated molecular pattern; GSH, glutathione; ROS, reactive oxygen
species; TNF-α, tumor necrosis factor-alpha. ↑, increased; ↓, decreased.

Alternatively, CYP2E1 can be induced by chronic alcohol consumption and can oxi-
dize ethanol to acetaldehyde. CYP2E1 produces ROS, such as O2

–, H2O2, and ·OH [48,49].
Several animal studies have proposed that CYP2E1 is central to ethanol-induced oxidative
stress and hepatic injury. CYP2E1 is mainly located within ER, but also expressed in the mi-
tochondria. The Cederbaum group investigated the role of mitochondrial targeted CYP2E1
in ethanol-induced oxidative stress and mitochondrial damage [50]. Mitochondrial CYP2E1
regulated buthionine sulfoximine-mediated GSH depletion, leading to cell death. Mitochon-
drial CYP2E1 also contributes to increased levels of ROS and mitochondrial 3-nitrotyrosine
and 4-hydroxynonenal protein adducts as well as decreased mitochondrial aconitase ac-
tivity and mitochondrial membrane potential [50]. Chronic alcohol consumption induced
mitochondrial CYP2E1, which plays an important role in ALD. Pharmacological inhibition
of CYP2E1 by chlormethiazole reduced liver injury induced by two months of ethanol
feeding in rats [51]. Furthermore, chlormethiazole suppressed the development of hepato-
cellular carcinoma in rats induced by treatment with ethanol and diethylnitrosamine [52].
Lu et al. demonstrated that genetic ablation of the Cyp2e1 gene in mice reduced oxidative
stress and prevented ethanol-induced liver injury [30]. In addition, chlormethiazole treat-
ment reduced oxidative stress induced by two-week ethanol feeding in mice [30]. Diesinger
et al. reported that novel chimeric inhibitors of CYP2E1 restored the redox balance and
rescued liver injury in alcohol-exposed rats [53].

NADPH oxidase (NOX) is an important source of ROS generation which produces
superoxide from oxygen using NAD(P)H [54]. NOX1 and NOX4 are abundantly expressed
in the liver and hepatocytes [55]. Chronic alcohol consumption increased NOX4 expression
in mitochondrial fraction. GKT137831, a NOX4 inhibitor, partially reversed alcohol-induced
liver injury, the levels of mitochondrial ROS, mitochondrial DNA, respiratory chain complex
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IV, and hepatic ATP. Knockdown of NOX4 increased mitochondrial membrane potential
and decreased mitochondrial superoxide levels, the number of apoptotic cells, and lipid
accumulation [54].Diverse types of cell death, including apoptosis, necroptosis, pyroptosis,
and ferroptosis mediate alcohol-induced hepatocyte death [56]. Mitochondria have been
highlighted as important locations for ROS-associated cell death [57]. ROS production
and oxidative stress caused by ethanol or acetaldehyde reportedly alter the mitochondrial
membrane permeability and transition potential [58,59]. This promotes the release of
cytochrome c and other pro-apoptotic factors, thereby stimulating the intrinsic pathway
of apoptosis [60]. Apoptotic factors released into the cytosol interact with Apaf-1 and
caspase-9 to form the apoptosome [61–63]. Mitochondrial permeability transition was
found to activate caspase-3 in hepatocytes dependent on p38 mitogen-activated protein
kinase (MAPK) [64].

Iron overload has been observed in approximately 50% of patients with ALD [65].
Alcohol consumption can decrease the expression of hepcidin through suppression of the
transcriptional activity of CCAAT/enhancer binding protein alpha [66]. Hepcidin promotes
the degradation of ferroportin, thereby reducing duodenal iron absorption [67]. Downregu-
lation of hepcidin enhances the expression of ferroportin and divalent metal transporter
1 in the duodenum [68]. This is in line with the observation that alcohol intake elevates
serum iron levels, serum ferritin levels, and transferrin-iron saturation [69]. In addition
to the serum iron levels, hepatic iron is reportedly increased in ALD patients, which may
contribute to ROS-associated alcohol toxicity, as iron induces oxidative stress through Fen-
ton reactions [70,71]. Iron overload can also cause cellular damage and death through the
process called ferroptosis, a type of iron-dependent programmed cell death [72,73]. There
are several crucial regulators of ferroptosis, including lipid peroxidation and iron accumu-
lation [74]. Iron accumulation in cells causes lipid peroxidation and subsequent damage
and rupture of the cell membrane, thereby promoting the release of damage-associated
molecular patterns (DAMPs) [75]. Iron is believed to play a role in ROS production through
several mechanisms, such as iron-containing enzymes (e.g., lipoxygenase) and the Fenton
reaction that requires iron [76,77]. In the liver, ferroptosis generates ROS and depletes
glutathione levels [78,79]. Ferroptosis has gained momentum as a type of cell death that
exacerbates ALD, as evidenced by iron overload observed in the liver of patients with
alcohol-related cirrhosis [80]. Moreover, alcohol administration was shown to induce
excessive iron accumulation and ferroptosis in animal models [81,82].

ROS are highly reactive and can react with various biological materials ranging from
lipids to nucleic acids and proteins. Lipid species reacting with ROS undergo lipid peroxida-
tion and produce 4-hydroxynonenal and malondialdehyde, which can induce several forms
of cell death, including apoptosis and ferroptosis [83,84]. Lipid peroxidation products can
also bind to DNA and enhance carcinogenesis by producing etheno-DNA adducts [85,86].
Proteins that react with ROS modify their structures and functions, possibly resulting in
neoantigens that can induce an immune response [87].

Building on the concept that oxidative stress is involved in hepatocyte injury in ALD,
several recent reports have investigated the therapeutic potential of suppressing oxidative
stress-associated signaling pathways. For example, Ma et al. demonstrated that inhibition
of ASK1 and p38MAPK, which relay oxidative stress to cell death signaling, afforded
protection against hepatocyte death induced by ethanol feeding in mice [88]. In addition,
recent studies have demonstrated that the Nrf2/ARE pathway might be a useful target for
reducing ethanol-induced oxidative stress and liver injury [20,89–94].

2.2. Immune Cells Mediating the Crosstalk between Oxidative Stress and Inflammation in ALD

Alcohol-exposed hepatocytes that undergo oxidative stress-induced cellular injury
and death produce a variety of inflammatory mediators, such as cytokines, chemokines,
and DAMPs (e.g., high-mobility group box 1 protein and mitochondrial DNA), which can,
in turn, activate immune reactions and inflammation [95–98]. DAMPs are recognized by
Toll-like receptors (TLRs) and NOD-like receptors, such as NLRPs, which are expressed
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in hepatocytes and immune cells [99,100]. DAMP-mediated activation of these receptors
intensifies innate immunity-related inflammatory pathways in ALD, along with enhanced
expression of cytokines, chemokines, and adhesion molecules that promote the infiltra-
tion and/or activation of innate immune cells, such as neutrophils, macrophages, and
Kupffer cells [101–103]. In addition, alcohol consumption augments ROS levels and lipid
peroxidation, facilitating the production of protein adducts with malondialdehyde and
4-hydroxynonenal, which may function as neoantigens and activate adaptive immunity
mediated by T and B cells [104].

As stated above, hepatic inflammation during ALD progression is associated with the
infiltration and activation of inflammatory cells, such as macrophages and neutrophils,
whose actions are associated with ROS production [105,106]. Oxidative stress and inflam-
matory cell activation often mutually affect each other; ROS derived from damaged cells
activate inflammatory cells, and the activation of these immune cells further enhances
oxidative stress by producing ROS and reactive nitrogen species such as peroxynitrite and
nitric oxide [107,108]. This section highlights the detailed roles of oxidative immune cells
in the progression of ALD.

2.2.1. Neutrophils

Neutrophils are the most abundant subset of leukocytes in the circulation and partici-
pate in various processes of immune reactions and inflammation [109]. For example, in re-
sponse to oxidative hepatic injury during ALD progression, neutrophils migrate from the cir-
culation to the affected tissue, regulated by chemokines, cytokines, and adhesion molecules
that attract and activate neutrophils in an orchestrated manner (Figure 2) [110–112].

Hepatic neutrophil infiltration is enhanced after chronic alcohol consumption and
acute and heavy alcohol exposure [113–116]. In particular, binge ethanol intake can pro-
mote hepatic neutrophil infiltration and elevate circulating neutrophils in alcoholic in-
dividuals [117], which is postulated to contribute to the switching of chronic ASH with
macrophage inflammation to AH with neutrophil infiltration [118]. Animal models that
mimic the acute-on-chronic alcohol consumption pattern of alcoholics have also been
reported to exhibit marked neutrophil infiltration in the liver. The National Institute on Al-
cohol Abuse and Alcoholism (NIAAA) model is characterized by a combination of 10 days
of ad libitum feeding on the Lieber–DeCarli ethanol diet and a single binge ethanol feeding
(chronic-plus-binge ethanol feeding), recapitulating the features of early-stage AH [119].
In the livers of mice subjected to the NIAAA model, neutrophil-recruiting chemokines,
such as CXCL1 and interleukin (IL)-8, were upregulated, along with substantial neutrophil
infiltration, similar to the liver of patients with ALD [115].

While oxidative stress-associated hepatocyte damage and death promote neutrophil
activation and recruitment to the site of injury, activated neutrophils can also produce
ROS through oxidative burst, which is one of the mechanisms underlying neutrophil
functions [105,120]. Other mechanisms include phagocytosis, degranulation, the release
of proteases (e.g., neutrophil elastase), and neutrophil extracellular trap formation [121].
Oxidative burst is mediated by NOX2 and its association with components of the NOX2
complex, such as p47phox, p67phox, p40phox, and p22phox [122,123]. Neutrophilic ROS
production via oxidative bursts may further stimulate hepatocyte injury [117,124,125].

Li et al. investigated the critical role of the neutrophilic IL-6-p47phox-oxidative stress
pathway in the development of ALD [117]. Mice deficient in the gene encoding microRNA-
223 (miR-223) were more susceptible to hepatic neutrophil infiltration and neutrophil ROS
production when subjected to the chronic-plus-binge ethanol feeding model of ALD [117].
Mechanistically, the authors showed that miR-223 inhibited the IL-6-p47phox-ROS pathway
in neutrophils, thereby decreasing the severity of the alcohol-induced liver injury. In
addition, the authors documented numerous circulating neutrophils and higher levels of
serum alanine aminotransferase (ALT) and aspartate aminotransferase (AST) in alcoholics
with recent excessive drinking than in healthy individuals. Roh et al. demonstrated that
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the upregulation of CXCL1 and subsequent neutrophil infiltration in mice subjected to
chronic-plus-binge ethanol feeding depended on TLR2 and TLR9 signaling [126].

Figure 2. Role of neutrophils in the development of ALD. Injured hepatocytes with oxidative
stress promote neutrophil infiltration and activation via the release of DAMPs, cytokines, and
chemokines. In addition, endothelial cells upregulate adhesion molecules, such as SELE, to facilitate
hepatic neutrophil infiltration. Neutrophils play both protective and detrimental roles during ALD
progression. Generally, neutrophils are known to exacerbate ALD via oxidative burst, ROS production,
cytokine release, and the release of granule proteins (e.g., myeloperoxidase). However, neutrophils
also express antimicrobial factors, such as lipocalin 2, and play a crucial role in affording protection
against infection in patients with ALD. Neutrophils are also involved in tissue repair by releasing HGF
and inflammation resolution, delaying the progression of ALD. NETs not only augment hepatocyte
injury but also mediate the antimicrobial function of neutrophils. HGF, hepatocyte growth factor;
HMGB1, high-mobility group box 1 protein; NET, neutrophil extracellular trap; SELE, E-selectin.

IL-17 is reportedly elevated in patients with AH and can affect the function of
neutrophil-attracting chemokines [127]. Ma et al. reported that deletion of the gene
encoding IL-17RA reduced the expression level of CXCL1 and delayed the development
of alcohol-associated liver cancer, indicating that IL-17 signaling promotes hepatocellular
carcinoma in ALD [128].

Typically, neutrophils have been recognized as a deleterious cell type that exacerbates
alcohol-induced liver injury and inflammation; however, studies have also revealed the
potential benefits of neutrophils. Neutrophil dysfunction predicts the poor prognosis of AH
with cirrhosis, which has been attributed to uncontrolled infection [129]. Neutrophils may
participate in tissue repair and inflammation resolution to maintain tissue homeostasis.
For instance, neutrophil-mediated ROS production stimulates the conversion of proinflam-
matory macrophages (Ly6ChiCX3CR1

lo) to pro-resolving macrophages (Ly6CloCX3CR1hi)
during acute liver injury [130,131]. Further studies are warranted to elucidate the complex
functions of neutrophils. The advent of single-cell analysis may accelerate the identification
of a distinct subset of neutrophils that differentially participate in the pathogenesis of ALD.
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2.2.2. Macrophages

During the course of ALD progression, the sustained inflammatory environment
leads to hepatic monocyte infiltration. Monocytes infiltrating the liver differentiate into
macrophages [132]. Several subpopulations of macrophages exist in the liver, including
resident macrophages, Kupffer cells, and monocyte-derived macrophages [133]. The
population of macrophages was shown to be elevated in the liver of patients with ALD,
as well as in experimental ALD models [134,135]. In addition, a study conducted in
rats reported that depletion of hepatic macrophages by gadolinium chloride treatment
reduced alcohol-induced hepatic inflammation [136], indicating the importance of hepatic
macrophages in the development of ALD.

Alcohol consumed is absorbed through the gastrointestinal tract; thus, the gut is one
of the first organs whose integrity is altered by alcohol intake [137–140].

Ethanol and ethanol metabolites modulate the physiology of the intestine through
several mechanisms. First, ethanol and ethanol metabolites may directly damage the
intestine epithelial cells. In humans, ethanol consumption results in acute subepithelial
bleb formation and hemorrhagic erosions [141]. Chronic alcohol consumption alters the
histological properties of the duodenal mucosa (e.g., decreased surface area) [142]. In rats,
hemorrhagic erosions of the proximal small intestine with epithelial cell loss were observed
upon acute administration of ethanol [143]. In mice, submucosal blebbing and ulceration of
villi in the ileal small intestine were observed upon acute ethanol exposure [144]. A study
using Caco-2 monolayers demonstrated that ethanol treatment induced apoptosis, which
was augmented by exposure to E. coli [145,146]. Oxidative stress-associated mitochondrial
dysfunction has been suggested as a potential mechanism underlying the damage of
intestinal epithelial cells by ethanol metabolites such as fatty acyl ethyl esters [147].

Secondly, ethanol and ethanol metabolites impair the integrity of tight junctions
in epithelial barriers, and the interaction between zonula occludens-1 and occludin is a
hallmark of tight junction formation [148]. Ethanol and acetaldehyde cause redistribution
of occludin from the intestine epithelial tight junctions [149–152]. Oxidative stress has also
been suggested as a crucial mediator of alcohol-associated alteration of tight junctions. A
study using Caco-2 cells revealed that ethanol treatment disrupted barrier function and
damaged microtubules through inducible nitric oxide synthase (iNOS)-dependent ROS
production [153]. The iNOS-dependent ROS production was found to be the mechanism
by which ethanol gavage stimulates the intestinal permeability in rats [154].

Lastly, alcohol consumption can change the composition and the number of microbiota
in the intestine, which may lead to an increase in gut permeability [155]. For example,
patients with ALD have a lower population of Faecalibacterium prausnitzii, which produce
butyric acid [156,157]. Butyric acid contributes to the intestine epithelial barrier by main-
taining the expression of the tight junction proteins and mucins [158,159]. Bacteroidetes
are reportedly decreased in the individuals with excessive alcohol consumption, whereas
Proteobacteria are increased in individuals with chronic drinking [160]. Bacterial overgrowth
has been also observed in experimental ALD models and patients with ALD. For instance,
three-week feeding of ethanol increased the population of bacteria in the small intestine
of mice [161]. Bacterial growth is reportedly profound in humans with chronic alcohol
abuse [162,163].

Alcohol-induced dysregulation of the intestinal barrier mediated by the mechanisms
above is postulated to increase gut permeability to Gram-negative bacterial endotoxin,
promoting the transfer of endotoxin to the circulation and eventually to the liver via the
portal vein [164–167]. Pathogen-associated molecular patterns (PAMPs) such as lipopolysac-
charide (LPS) associated with the incoming bacteria interact with TLR4 in macrophages,
including Kupffer cells, stimulating the production and release of inflammatory cytokines
and chemokines that further augment inflammation and recruit monocytes [111,168]. Apart
from PAMPs, DAMPs may also activate Kupffer cells in the context of sterile inflammation
during ALD development, which, in turn, stimulates the release of inflammatory mediators
that promote the infiltration and activation of monocytes/macrophages [95,169,170]. One
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possible mechanism is dependent on the action of inflammasomes, known to activate
caspase-1 and secrete inflammatory mediators, including IL-1β and IL-18 [171,172].

There are two distinct types of infiltrating monocytes depending on Ly6C expression
levels. Ly6Chi monocytes are proinflammatory and tissue-damaging, whereas Ly6Clo

monocytes mediate patrolling, anti-inflammatory, and tissue-reparative functions [173]. The
number of Ly6Chi monocytes was found to be increased in experimental ALD [135]. Ly6Chi

cells participate in the efferocytosis of apoptotic hepatocytes, which is the process through
which dying cells are removed by phagocytic cells such as macrophages [174]. Accordingly,
Ly6Chi cells may switch to Ly6Clo cells after efferocytosis of hepatocytes [135,175].

The production of oxidants in activated macrophages primarily occurs through the
action of NOX [123,176]. Chronic ethanol feeding-induced ROS production in Kupffer
cells is dependent on the action of NOX and p47phox [177]. NOX-derived ROS are key
players mediating nuclear factor-kappa B (NF-κB) activation and subsequent production
of tumor necrosis factor (TNF)-α in Kupffer cells upon ethanol administration [177], thus
indicating that oxidative stress may enhance the inflammatory function of Kupffer cells
and contribute to ALD pathogenesis. Furthermore, ROS can sensitize Kupffer cells to
LPS. In animals subjected to chronic ethanol feeding, LPS-induced ROS production was
enhanced in Kupffer cells, which was attenuated by inhibiting NADPH oxidase [178]. LPS
sensitization in Kupffer cells by NADPH oxidase-derived ROS (e.g., LPS-stimulated TNF-α
production) was in part attributed to the activation of extracellular signal-regulated kinase
(ERK), a stress kinase activated by ROS [178].

Despite the abundance of the hepatic resident macrophages, as well as a marked in-
crease in the population of hepatic macrophages upon alcohol consumption, there remains
a gap in the knowledge regarding the role of macrophages in ALD pathogenesis. Identify-
ing signaling molecules that link oxidative and inflammatory functions of macrophages,
as well as those responsible for the interdependence between the polarization status of
macrophages and their oxidative ability, will open new avenues for future research.

2.2.3. Other Types of Immune Cells

Neoantigens generated by ROS-induced alteration of protein structures can result
in T cell activation [179]. Activated T cells promote the progression of ALD by releasing
proinflammatory cytokines such as TNF-α, IL-1, and IL-17 [180]. In addition, the cytotoxic
property exerted by CD8+ T cells contributes to the progression of ALD [181]. In addition
to CD8+ T cells, CD4+ T cells also contribute to ALD development by releasing multiple
types of cytokines. For example, Th1 cells help activate macrophages and exacerbate
liver injury and inflammation by releasing cytokines such as interferon (IFN)-γ, IL-2, and
TNF-α [182,183]. Th17 cells produce IL-17, which enhances liver injury and inflammation;
however, Th17 cells can produce IL-22, which possesses anti-apoptotic and antioxidant
properties through STAT3 activation [127,184–186].

Natural killer T (NKT) cells are a subset of T cells that express T cell receptors; however,
they also express unique marker proteins such as NK1.1, CD161, and CD56 in humans [187].
Although NKT cells are presumed to be involved in accelerating ALD progression by ac-
tivating hepatic macrophages in rodent models, limited data are available to determine
whether NKT cells contribute to ALD progression in humans [180]. Mathews et al. demon-
strated that chronic-plus-binge ethanol feeding in mice activated invariant NKT cells, also
known as type 1 NKT cells, which release mediators that recruit neutrophils to the liver
and promote the development of ALD [114]. In contrast, type 2 NKT cells may inhibit the
progression of ALD by suppressing the action of type 1 NKT cells [188].

Mucosa-associated invariant T (MAIT) cells are a subset of innate-like T cells that
possess a conserved invariant T cell antigen receptor (TCR) α-chain [189]. The composition
of the chain is different between species. For example, humans possess Vα7.2-Jα33, whereas
mice possess Vα19-Jα33 [190].

MAIT cells are abundantly observed in the liver of humans [191]. Approximately
30% of intrahepatic T cells are considered MAIT cells in humans; however, mice have
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markedly lower population of MAIT cells, which makes it difficult to precisely understand
the function of MAIT cells [192]. MAIT cells have been demonstrated to inhibit bacterial
infection [193]. Mechanistically, invariant TCRs in MAIT cells interact with riboflavin
(vitamin B2) derivatives that are presented by the major histocompatibility complex class
I-related protein 1 [194]. Mechanisms that are independent of TCRs are also known to
mediate the antibacterial function of MAIT cells. For instance, IL-12 and IL-18 may activate
MAIT cells, thereby producing numerous types of cytokines, including TNF-α, IFN-γ, and
IL-22, and regulating immune responses [194].

Riva et al. reported that patients with alcoholic cirrhosis and severe alcoholic hepatitis
have lower levels of MAIT cells in the circulation and weakened antibacterial potency [195].
They also reported that intestinal bacterial antigens and metabolites reduced the production
of antibacterial cytokines by MAIT cells in vitro [195]. Alcohol consumption-associated
dysfunction of the intestinal epithelial barrier leads to an increased gut permeability which
induces the migration of bacterial antigens and metabolites to the portal circulation. These
may reduce the number of MAIT cells in the circulation as well as in the liver, which may
in part explain the reduced antibacterial capability observed in individuals with chronic
alcohol consumption.

2.3. The Role of MicroRNAs in the Crosstalk between Oxidative Stress and Inflammation in ALD

MicroRNAs (miRNAs) are key players in ALD. The landscape of miRNA expres-
sion is reportedly altered under pathological conditions [196–198]. Dysregulated miRNAs
contribute to the regulation of pathophysiological pathways in ALD via several different
mechanisms (Table 1). miRNAs can directly bind to the 3′UTR of target genes, leading to
degradation or translational repression of target mRNAs. In contrast, miRNAs sometimes
enhance translational activation [199]. Furthermore, miRNAs not only mediate gene regula-
tion, but several miRNAs possessing a GC-rich motif (e.g., let-7b, miR-21, and miR-29a) can
serve as ligands for TLRs [200]. Herein, we discuss the role of miRNAs in inflammation,
cell death, and oxidative stress during ALD and their regulatory mechanisms.

Table 1. Aberrant microRNA expression in ALD and the associated pathological effects.

microRNA Status in ALD Targets Effects References

Let-7b Up TLR7 activation ↑hepatic inflammatory response [201]

miR-150-5p Up CISH ↑FADD-mediated programmed cell death [202]

miR-155 Up Cebpb ↑M1 macrophage polarization
↑fatty liver [203–206]

miR-181b Up PIAS1 oxidative stress and inflammation [197,207]

miR-182 Up SLC1A1
CFL1 ↑liver injury and inflammation [197]

miR-214 Up GSR
POR ↑oxidative stress [208]

miR-223 Up IL-6 ↓oxidative stress [117]

miR-540 Up PPARα, PMP70,
ACOX1, CPT1a ↑hepatic steatosis [209]

miR-148a Down TXNIP ↑TXNIP-dependent inflammasome activation
↑ADH4 and CYP2B6 [10,210,211]

miR-219a-5p Down P66shc ↑oxidative stress [212]

↑: increased, ↓: decreased.

The most overexpressed miRNA in the liver tissue of patients with AH when com-
pared with normal livers is miR-182 [197]. Increased miR-182 levels are associated with
disease severity. miR-182 is mainly found in the ductular reaction cells. In cholangiocytes,
miR-182 reportedly targets SLC1A1 and CFL1, whereas miR-182 increases the levels of
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proinflammatory genes such as CCL20, CXCL1, and IL-8. In addition, miR-182 enhanced IL-
6 mRNA levels in hepatocytes and macrophages. Blocking miR-182 using a decoy inhibited
liver injury, bile acid accumulation, and proinflammatory genes [197]. Circulating miR-
155 and miR-155 levels in hepatocytes and macrophages were elevated in ALD [203,204].
miR-155 induced M1 macrophage polarization by targeting Cebpb and promoted TNF-α
production in macrophages [205]. miR-155 knockout mice were found to be resistant to
alcohol-induced fatty liver and inflammation [206]. Let-7, a TLR7 ligand, contributes to the
hepatic inflammatory response in AH [201]. Ethanol was shown to stimulate the release of
let-7b in microvesicles originating from hepatocytes. Hepatic expression levels of let-7b
positively correlated with IL-8 and nuclear enriched abundant transcript 1 (NEAT1) expres-
sion levels in patients with AH. Activation of TLR7 may contribute to the induction of a
subset of inflammatory genes, such as IL-8 and TNF-α [201]. Therefore, miRNAs appear to
play a role in the regulation of the inflammatory response associated with ALD.

In addition, miRNAs mediate hepatocyte death in alcohol-associated hepatitis. Ele-
vated IL-1 levels were detected in patients with AH [213]. NLRP3 inflammasome activa-
tion and caspase-1-mediated pyroptosis in hepatocytes are reportedly enhanced during
ALD [10]. Pyroptosis is regulated by miR-148a, a miRNA abundant in the liver. The
miR-148a expression level was greatly decreased in patients with AH and in ALD animal
models. Decreased miR-148a expression level by ethanol was found to be responsible
for thioredoxin-interacting protein (TXNIP) overexpression. TXNIP-dependent inflamma-
some activation contributes to hepatocyte pyroptosis. Moreover, miR-148a non-canonically
increased the mRNA stability of ADH4 and CYP2B6 by directly binding to the coding
sequence and 3′UTR sequence, respectively [210,211]. Caspase-3-mediated apoptosis was
shown to be regulated by miRNA(s) in alcohol-associated hepatitis. Fan et al. identified
a miRNA-E3 ubiquitin ligase regulatory network for hepatocyte death pathways [202].
miR-150-5p negatively regulated the E3 ligase cytokine-inducible SH2 containing protein
(CISH). As Fas-associated protein with death domain, (FADD) is a CISH substrate, ubiquiti-
nation of FADD was reduced in the NIAAA model of ethanol-induced liver injury, thus
resulting in an increased extent of caspase-3 activation and programmed cell death [202].
These results suggest that miRNAs play an important role in diverse types of hepatocyte
death, including pyroptosis and apoptosis.

Additional evidence suggests that oxidative stress-induced miRNA may contribute to
the pathology of ALD. Ethanol feeding reduced levels of augmenter of liver regeneration
(ALR). ALR deficiency-mediated oxidative stress increased miR-540, which disturbed
peroxisomal and mitochondrial lipid homeostasis [209].

miRNAs also play an important role in alcohol-associated oxidative stress. Ethanol
can induce miR-214 expression in liver cells [208]. miR-214 was found to directly bind
to the 3′UTR of glutathione reductase (GSR) and cytochrome P450 oxidoreductase (POR)
genes. Reduced GSR and POR levels induced by miR-214 promoted ethanol-induced
oxidative stress. In a rat model of alcoholic fatty liver diseases, miR-181b-5p levels were
elevated [207]. Inhibition of miR-181b-5p attenuated oxidative stress. Silencing miR-
181b-5p increased protein inhibitors of activated STAT1 to suppress oxidative stress and
inflammatory response [207]. miR-241 and miR-181b-5p increased by ethanol may induce
oxidative stress.

In contrast, the miR-223 level increases in serum and neutrophils in chronic-plus-
binge ethanol feeding, and miR-223 attenuates the IL-6-p47phox-oxidative stress pathway in
neutrophils [117]. Therefore, miR-223 inhibits neutrophil infiltration and protects against
alcohol-induced liver injury. Interestingly, the neutrophilic miR-223 expression level was
lower in aged mice than in young mice [214]. Aging stimulates the susceptibility to acute
and chronic alcohol-induced liver injury by inhibiting the neutrophilic SIRT1-C/EBPα-miR-
223 axis. miR-219a-5p attenuated p66shc-mediated ROS in ALD [212]. Protocatechuic acid,
a component of green tea, can induce miR-219a-5p expression, thereby ameliorating ALD
by reducing ROS formation. These findings suggest that miRNA modulators could play



Int. J. Mol. Sci. 2022, 23, 774 11 of 24

a protective role in ALD by controlling the oxidation pathway. Collectively, miRNAs are
major contributors to oxidative stress and inflammatory liver injury in ALD.

3. Therapeutic Strategies Targeting Oxidative Stress and Inflammation
3.1. Current Therapies for Severe AH

Corticosteroids, such as prednisolone, are recommended as first-line therapy for
patients with severe AH. Corticosteroids can reduce short-term mortality within 28 days
in patients with severe AH [215]. However, a long-term follow-up study revealed the
absence of any survival benefits in patients treated with corticosteroids when compared
with controls [216].

Pentoxifylline is the second-line therapy employed in corticosteroid non-responders
and patients with corticosteroid contraindications. It is a phosphodiesterase inhibitor
that suppresses TNF-α and leukotriene synthesis. As TNF levels are reportedly elevated
in the sera of patients with acute and chronic AH and an increase in TNF levels dur-
ing the hospital course is related to patient mortality, treatment with pentoxifylline was
shown to improve short-term survival in patients with severe acute AH [213,217,218]. In
particular, pentoxifylline decreased the likelihood of patients developing hepatorenal syn-
drome [217]. In addition, pentoxifylline can reduce inflammation and exhibits antioxidant
properties [219]. Furthermore, it can inhibit xanthine oxidase. Therefore, pentoxifylline
can reduce superoxide and hydroxyl radicals. However, another clinical trial (STOPAH,
steroids, or pentoxifylline for alcoholic hepatitis) concluded that pentoxifylline did not
affect patient survival [220].

3.2. Antioxidant Therapy

N-acetylcysteine (NAC), a glutathione precursor, is a well-known antioxidant. NAC
has been used as an antidote for acetaminophen-induced liver toxicity [221]. Given that
NAC possesses anti-inflammatory and antioxidant properties, it has been suggested as a
treatment for ALD [222]. In a study by Badger et al., ethanol was administered to Sprague-
Dawley rats by an intragastric cannula and infused with liquid diets using total enteral
nutrition [223]. NAC treatment enhanced the cytosolic antioxidant capacity and inhibited
ethanol-induced lipid peroxidation. In addition, NAC treatment ameliorated ethanol-
induced liver injury and inflammation and maintained the glutathione content [223]. NAC
treatment was evaluated in an acute ethanol-induced liver damage mouse model [224].
Pretreatment with NAC prior to a single dose of ethanol prevented acute ethanol-induced
lipid peroxidation and glutathione depletion, as well as reduced TNF-α mRNA expression
level. Interestingly, NAC administration after ethanol treatment exacerbated acute ethanol-
induced liver injury and lipid peroxidation. Therefore, NAC plays a dual role in acute
ethanol-induced liver injury, depending on the time of administration. A randomized
clinical trial assessing NAC treatment alone or in combination with corticosteroids was
performed to evaluate whether antioxidant therapy can improve survival in patients with
acute AH [225]. NAC treatment alone or in combination with corticosteroids failed to
improve 6-month survival in patients with severe AH. Similarly, another randomized
multicenter controlled trial for enteral nutrition with or without NAC for treating severe
acute AH failed to show survival benefits [226]. The AAH-NAC study group revealed
that prednisolone plus NAC increased one-month survival when compared with the
prednisolone-only group; however, the three-month or six-month mortality did not differ
significantly between the prednisolone plus NAC and prednisolone-only groups [227]. The
six-month mortality attributed to hepatorenal syndrome and infections was less frequent
in the prednisolone plus NAC group than in the prednisolone-only group. A retrospective
analysis also demonstrated that a combination of prednisolone and NAC afforded no
survival advantages over prednisolone alone in severe AH [228].

S-adenosyl-L-methionine (SAMe) is a methyl donor that regulates GSH synthesis. A
randomized, placebo-controlled, double-blind, multicenter clinical trial suggested that long-
term treatment with SAMe reduced overall mortality and delayed liver transplantation
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in patients with alcoholic liver cirrhosis, especially in Child class A or B [229]. However,
another clinical trial indicated that a 24-week SAMe therapy did not improve clinical or
biochemical parameters in ALD [230].

Metadoxine, another antioxidant, is an ionic complex of the pyridoxine-pyrrolidone
molecule [231,232]. The beneficial effects of metadoxine in ALD have been reported. Meta-
doxine reportedly prevents redox imbalance in hepatocytes and inhibits TNF-α secretion
in hepatic stellate cells caused by ethanol or acetaldehyde [233]. In addition, metadox-
ine improved liver function and stimulated fatty liver recovery [234]. Metadoxine plus
glucocorticoids significantly improved short-term survival rates in patients with severe
AH and inhibited encephalopathy and hepatorenal syndrome [235]. Metadoxine plus
pentoxifylline also improved the 3- and 6-month survival rates in patients with severe
AH when compared with pentoxifylline alone [236]. Therefore, metadoxine treatment in
combination with current therapies should be considered.

3.3. IL-1 Inhibitors

IL-1β is a proinflammatory cytokine that acts by engaging the type I IL-1 receptor.
IL-1β levels are elevated in ALD [237]. Activation of pattern recognition receptors induces
IL-1β gene expression. Pro-IL-1β is cleaved into mature IL-1β via the inflammasome
complex [171]. Gasdermin D membrane pores are required for IL-1β release [238]. Caspase-
1 inflammasome activation and IL-1 signaling promote the pathogenesis of alcohol-induced
inflammation, steatosis, liver damage, and fibrosis [172]. Therefore, pharmacological
inhibition of IL-1Ra has been suggested as an attractive therapeutic intervention. Anakinra,
an IL-1 receptor antagonist, is an FDA-approved drug for rheumatoid arthritis, Still’s
disease, familial cold auto-inflammatory, and Muckle-Wells syndrome [239]. Treatment
with anakinra ameliorated ALD development in vivo [172]. A combination of drugs,
including anakinra, was evaluated in patients with alcohol-associated hepatitis. In the
Phase IIB clinical trial (the DASH study), a combination of anakinra, pentoxifylline, and
zinc sulfate was evaluated to improve clinical outcomes in patients with severe AH when
compared with methylprednisolone, an accepted standard therapy [239]. The DASH study
has been completed, and a Phase 2 trial of anakinra (plus zinc) or prednisone in patients
with severe AH remains ongoing (NCT01809132). These studies will determine the clinical
efficacy and safety of anakinra when compared with standard corticosteroid treatment in
patients with severe AH.

Canakinumab is a monoclonal antibody inhibitor of IL-1, developed by Novartis [240].
This drug is approved for cryopyrin-associated periodic syndromes, rare and serious auto-
inflammatory diseases, and active Still’s disease. A Phase 2 clinical trial of IL-1 signal
inhibition in AH (ISAIAH) will assess the histological improvement in AH after 28 days of
canakinumab treatment and the potential benefits of the IL-1β antibody (NCT03775109).
Collectively, the inhibition of IL-1 signaling by IL-1Ra or anti-IL-1 antibodies is an attractive
drug target for ALD.

3.4. IL-22

IL-22 is a pluripotent T cell-derived cytokine with antioxidant, anti-apoptotic, anti-
steatotic, antimicrobial, pro-regenerative, and anti-fibrotic properties [241]. IL-22 mainly
induces STAT3 activation by binding to the heterodimeric IL-22R1 and IL-10R2 recep-
tors, contributing to the upregulation of anti-apoptotic and mitogenic genes [242]. IL-22
treatment attenuated ethanol-induced liver injury via STAT3 activation [243]. F-652 is
a recombinant fusion protein containing two human IL-22 molecules linked to human
immunoglobulin G2-Fc. Intravenous administration of F-652 to healthy subjects is report-
edly safe and well-tolerated [244]. The safety and efficacy of F-652 were evaluated in a
Phase 2 dose-escalating study [245], with up to 45 µg/kg of F-652 found to be safe. In
addition, administration of F-652 improved the Lille score and model for end-stage liver
disease (MELD) score, downregulated inflammatory cytokine markers, and upregulated



Int. J. Mol. Sci. 2022, 23, 774 13 of 24

regeneration markers [245]. These results suggest that IL-22 may have therapeutic potential
in treating ALD [246].

3.5. Anti-TNFα Antibody, Infliximab

The proinflammatory cytokine TNFα plays an important role in the pathophysiology
of ALD. It mediates portal and systemic haemodynamic derangements in alcoholic hepati-
tis [247]. Infliximab, a monoclonal anti-TNFα antibody, is used in the treatment of various
inflammatory diseases, such as rheumatoid arthritis, Crohn’s disease, and ankylosing
spondylitis. The safety, tolerance and clinical effects of infliximab has been evaluated in
severe AH. First, a randomized controlled pilot study showed that infliximab was well toler-
ated and Maddrey’s score significantly improved in patients with severe AH who received
a combination of steroids with infliximab at day 28 [248]. Another clinical trial evaluated a
single infusion of infliximab on severe AH patients. This study suggests that infliximab
treatment improved serum bilirubin levels, the Maddrey score, the neutrophil count and
C-reactive protein levels [249]. Unexpectedly, a double-blind randomized controlled trial
showed that three infusion of 10 mg/kg of infliximab in combination with prednisolone
caused high probability of death within two months due to the high prevalence of severe
infections [250]. The Sarin group also concluded that patients with severe AH who received
a single dose of infliximab showed the improvement in parameters of disease severity and
patient survival, but also a risk of developing serious infections such as pneumonia and
pulmonary tuberculosis [251].

3.6. Obeticholic Acid

The bile acid receptor farnesoid X receptor (FXR) is a nuclear receptor, which is highly
expressed in the liver and intestine. FXR has important roles in regulation of lipid absorp-
tion, glucose metabolism as well as the maintenance of bile acid homeostasis [252–254].
Bile acid-FXR-FGF15 signaling regulates hepatic Cyp7a1 and lipid metabolism [255]. In
addition, FXR attenuates liver inflammation [256]. In an experimental mouse model of
ALD, a FXR activator, WAY-362450, decreased alcohol-induced CYP2E1 and ameliorated
oxidative stress in liver [257]. FXR knockout mice were more susceptible to alcohol-induced
liver injury due to impaired FoxO3a-mediated autophagy [258]. A selective FXR agonist,
obeticholic acid (Ocaliva, Intercept Pharmaceuticals) is approved for the treatment of pri-
mary biliary cholangitis [259]. A double-blind, placebo-controlled phase 2 clinical trial of
obeticholic acid in patients with moderately severe AH was completed (NCT02039219).
According to the results of a phase 3 clinical trials of obeticholic acid for non-cirrhotic,
non-alcoholic steatohepatitis (NASH) (the FLINT study), patients treated with obeticholic
acid experienced severe pruritus. Moreover, obeticholic acid treatment caused the elevation
of total serum cholesterol and LDL cholesterol and a decreased in HDL cholesterol [260].
Recently, FDA restricts use of obeticholic acid in primary biliary cholangitis patients with
cirrhosis due to risk of serious liver injury. Therefore, the use of obeticholic acid to treat
ALD should be carefully evaluated. The Schnabl group showed that the intestine-restricted
FXR agonist fexaramine protected mice from ethanol-induced liver injury and that FGF19
treatment similarly has a beneficial effect on alcoholic steatohepatitis [255]. These strategies
can be considered to reduce unfavorable effects of systemic FXR agonists [256].

4. Conclusions and Perspectives

Although the involvement of oxidative stress in the pathogenesis of ALD has been
previously established, detailed mechanisms underlying the relationship between oxidative
stress and diverse pathogenic players of ALD continue to be elucidated, given the expansion
in our knowledge regarding cell death, immune reactions, and inflammation in the context
of ALD. Accumulation of the clinically relevant knowledge regarding the role of oxidative
stress and inflammation will help develop optimal experimental ALD models that will
facilitate rapid screening of and pharmacological studies on potential therapeutic agents.
Although no approved medications for ALD have been developed based on a strategy
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specifically targeting oxidative stress, recent clinical trials suggest that antioxidant drugs
or drugs inhibiting inflammatory liver injury may be used to treat patients with ALD in
the future.
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