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ABSTRACT

We present SWAN, a statistical framework for ro-
bust detection of genomic structural variants in next-
generation sequencing data and an analysis of mid-
range size insertion and deletions (<10 Kb) for whole
genome analysis and DNA mixtures. To identify these
mid-range size events, SWAN collectively uses in-
formation from read-pair, read-depth and one end
mapped reads through statistical likelihoods based
on Poisson field models. SWAN also uses soft-
clip/split read remapping to supplement the like-
lihood analysis and determine variant boundaries.
The accuracy of SWAN is demonstrated by in silico
spike-ins and by identification of known variants in
the NA12878 genome. We used SWAN to identify a
series of novel set of mid-range insertion/deletion
detection that were confirmed by targeted deep re-
sequencing. An R package implementation of SWAN
is open source and freely available.

INTRODUCTION

Structural variants (SVs) include insertions and deletions
(indels) as well as other genomic rearrangements such as
inversions, duplications and transpositions. SVs have signif-
icant phenotypic implications that can increase the suscep-
tibility to a variety of diseases (1,2). Paired-end next gener-
ation sequencing (NGS) of whole genome shotgun (WGS)
libraries is currently the most commonly used method for
discovering SVs. However, even with the technological ad-
vances in NGS, the discovery and accurate characterization
of SVs has faced significant challenges compared to the dis-
covery and genotyping of single nucleotide variants (SNVs).
SVs display a broad range of categories (insertions, dele-
tions, duplications, etc.) and sizes, and SV discovery is in-

herently more susceptible to sequencing and mapping arti-
facts in WGS data.

As shown in an independent comprehensive benchmark
by Blue Collar Bioinformatics (http://bcb.io) (3), and as we
demonstrate in our own comparison studies, current SV de-
tection methods lack sensitivity for the detection of smaller
deletions, insertions and other complex variants. However,
this class size of SVs is among the most frequently occur-
ring in the genome, as determined by local assembly and
deep sequencing (4). Even more challenging is the detection
of SVs that are heterozygous or present at low allelic frac-
tions for a given sample. The latter case commonly occurs
in cancer samples due to genetic heterogeneity and somatic
mosaicism (5,6).

To address these challenges in SV detection, we devel-
oped a systematic approach that improves sensitivity and
precision over current methods, especially for detecting in-
sertions and small deletions. We refer to our method as
Statistical Structural Variant Analysis for NGS (SWAN).
Herein, we demonstrate that this approach has significantly
improved sensitivity for indel detection (50 bp–10 Kb), es-
pecially in heterozygous cases and cases where the variant
occurs at a reduced fraction in mixed genetic samples.

SWAN leverages a combination of mapping features in
WGS data that are caused by structural variation junc-
tions. These features include (i) local change in coverage, (ii)
change in mapped insert size, (iii) clipped or split reads and
(iv) hanging read pairs. By leveraging all of these features si-
multaneously, SWAN achieves superior sensitivity through
a comprehensive statistical framework that aggregates evi-
dence over all informative read-pairs and all mapping sig-
natures in the detection of each variant. SWAN’s proba-
bilistic model focuses on detecting sequence insertion and
deletions. Because sequence insertions and deletions are el-
ements of more complex SVs, SWAN can also detect classes
of SVs beyond simple insertion and deletions (see Supple-
mentary Figure S1). SWAN combines the information from
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all mapping features through the computation of likelihood
ratio scan statistics of Poisson random field models.

Most methods for detecting SVs from WGS data rely
heavily on one feature, and none employ a full probabilis-
tic model for local background adjustment. For example,
the 1000 Genomes Project (7) employed a series of SV de-
tection algorithms that rely on only one or two signal fea-
tures. CNVnator (8) uses coverage, BreakDancer (9) uses
insert size, both Pindel (10) and Delly (11) use a combina-
tion of insert size and split reads. GASVPro (12) uses both
coverage and insert size information. A newer algorithm,
Lumpy (13), also uses insert size and split reads. We show
that, by leveraging multiple signal features in combination
with a statistical model that adjusts for the background dis-
tribution, SWAN achieves higher sensitivity, precision and
a broader detection spectrum compared to other methods.
Most importantly, we identified a series of mid-range sized
indels that were previously not identified by WGS analysis
with other SV callers.

The underlying principles of SWAN were initially de-
scribed as a purely mathematical derivation of these scan
statistics with a description of rigorous false discovery rate
control and power analysis (14). The focus of this cur-
rent study is the implementation and application of a com-
plete bioinformatics process to identify medium range in-
dels from both in silico and real whole genome sequenc-
ing data. We describe a novel set of mid-range indels that
have not been identified previously and independently veri-
fied their structure with targeted re-sequencing.

MATERIALS AND METHODS

SWAN workflow

Figure 1A provides an overview of SWAN analytical pro-
cess with three distinct stages: (i) empirical estimation of
library-specific parameters (Figure 1B); (ii) whole genome
scans of multiple mapping features to identify candidate re-
gions (Figure 1C and D); and (iii) joining of evidence and
merging of signals. The genome-wide scan consists of two
modules: a likelihood ratio-based scan module and a soft-
clip/split read remapping module. These processes can be
easily adapted for compute parallelization. The likelihood-
scan (Figure 1C) computes likelihood-ratio scan statistics
based on inhomogeneous Poisson field models for the cover-
age (LW), the mapped insert size of read pairs (LC) and up-
stream and downstream hanging pairs (LU, LD). The soft-
clip/split read module (Figure 1D) aggregates and remaps
clusters of soft-clip/split reads.

At the evidence joining stage, SVs are detected by scan-
ning for ‘peaks’ in the likelihood ratio tracks, combining
overlapping peaks and integrating these locations by soft-
clip/split read cluster remapping. One can control the false
discovery rate (FDR) by setting the thresholds for call-
ing peaks. When the data are noisy, we have implemented
SWAN such that the thresholds are automatically set at
more stringent level. At the end of the processing, SWAN
merges the potential calls by weighting the joined evidence
and carrying forward the most supported ones. This stage is
very fast, and since intermediate results are saved, the user
can experiment with thresholds of varying stringency.

An essential step to accurate SV discovery involves es-
timating the insert size distribution of the sequencing li-
braries, which is often heavily skewed and sometimes multi-
modal. Most software assumes a normal distribution, but in
these cases, it is a poor fit to the data. In SWAN, the library
parameters are estimated using a robust approach that mini-
mizes the effects of skewness and multimodality. When mul-
tiple libraries of different read lengths and insert-size distri-
butions are sequenced for a given sample, SWAN estimates
the parameters for each library separately and combines the
reads across libraries by summing their library-specific like-
lihoods. Figure 1B shows several examples of how SWAN
fit multi-library models and estimate library-specific param-
eters given complicated input distributions. The details of
SWAN insert size fitting are described in Supplementary
Text S1.

SWAN is implemented as an open source R and C++
package. Supplementary Figure S2A shows a single sam-
ple analysis for germ-line variants and Supplementary Fig-
ure S2B shows a paired analysis of tumor and control sam-
ples for somatic variants. These analysis pipelines are all
demonstrated in examples that accompany the software
package. The confidence in the boundaries of a structural
variant detection depends on the mapping features that led
to its detection. Exact boundaries and genotypes are de-
termined based on soft-clip/split read analysis whenever
possible. SWAN source code and manuals are available at
http://bitbucket.org/charade/swan.

Generalized likelihood ratio scan framework for SWAN

The likelihood ratio scans in SWAN are comprised of four
separate processes LW, LC, LU and LD, each derived from
a generalized likelihood ratio. First, we specify the back-
ground (null) model (14) for the WGS data, which applies
to the case where the sample is identical to the reference
genome. In the background model, the positions of mapped
paired-end reads are sampled as follows; (i) the position of
the first read, u, is sampled via a Poisson process; (ii) the
position of the second read, v, is equal to u+I, where I, the
insert size, is sampled from a known distribution fI. Either
u or v can be missing due to sequencing or mapping error,
with probability p, in which case the read pair is said to have
a hanging end. We let κ(u) be the inhomogeneous rate of
reads mapping to genome position u.

Full theoretical derivations, found in (14), lead to the
representation of this model as a Poisson random field
on G × G, where G is the reference genome, with rate
function { λ(u, v) : u, v ∈ G } of the form

λ (u, v)

=

⎧⎪⎨
⎪⎩

(1 − p) κ (u) κ (v) fI (v − u) both u,v are not hanging;
p
2 κ (u) κ̄ (v) , v is hanging;

p
2 κ (v) κ̄ (u) , u is hanging;

,

(1)

Here, κ̄(u) =
G
∫
u
κ(x) fI (x − u)dx and κ̄(v) =

v

∫
0
κ(x) fI (v − x)dx is the mean coverage process under

http://bitbucket.org/charade/swan
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Figure 1. SWAN framework. (A) General workflow. (B) SWAN applies robust and library-aware statistics to enable multi-library analysis: top left, a perfect
library distribution with insert size mean I, density fI and distribution FI ; top right, a heavily skewed insert size distribution and SWAN fit of mean, right
density and left density; bottom left, a double mode library with high kurtosis and heavy left tail with SWAN fits; down right, a multiple library combination
where SWAN fits a separate density to each library. (C) Four types of mapped paired-end reads (MPRs) in the vicinity of a window containing a putative
deletion (for insertions, w = 0). These MPRs are used to construct the likelihood ratio scan statistics as in Table 1. (D) Reciprocal remapping procedure
for soft-clipped reads. (E) A more detailed workflow for SWAN.

the null hypothesis. Thus, the Poisson rate for a read pair
(u,v) depends on the local coverage κ(u) and κ(v), the
mapped insert size v − u and whether one of the reads is
hanging.

The Poisson distribution is a good approximation of
shotgun-sequencing data and has numerous applications
(15). Overdispersion relative to the Poisson is often ob-
served in NGS data, particularly in RNA-Seq settings (16).
Empirically, sequence features such as GC-content bias ex-
plain some of the overdispersion, and the negative binomial
distribution has been suggested as a better model for the
data (17,18). By directly modeling and accounting for the
inhomogeneity in the underlying mean process � of the Pois-
son field, we alleviate the overdispersion issue; that is, with
the mean adjusted to reflect local fluctuations, the Poisson
distribution is a simple and effective model for the local read
pair count.

The parameters of the process are estimated empirically
in stage I of scan: the mean process � is computed by
smoothing the base-wise coverage process. The insert size
distribution is estimated as described in Supplementary
Text S1. The hanging read probability p is estimated by the
percentage of hanging read pairs among all read pairs.

Next, we examine changes to this Poisson field in the pres-
ence of a SV. We consider the example of a genomic dele-
tion; insertions follow a similar model. All mapped read
pairs (MPR) within the neighborhood of a deletion of size
w fall into four categories (Figure 1C): (i) Insider MPRs, de-
noted by SW, have at least one read overlapping the deleted
segment, e.g. MPR1 in Figure 1C. Essentially, this class of
read pairs overlap directly with the hypothetical SV region.
(ii) Spanning MPRs, denoted by SC, have one read map-
ping downstream and the other read mapping upstream of
the SV, e.g. MPR2 in Figure 1C. These read pairs straddle
the hypothetical region. (iii) Up-anchoring MPRs, denoted
by SU, have one read mapping upstream from the SV an-
choring a hanging read that fails to map, e.g. MPR3. (iv)
Down-anchoring MPRs, denoted by SD, are the same as
up-anchoring MPRs, but with the anchoring read mapping
downstream from the SV, e.g. MPR4.

Now, we derive the likelihood ratio scan statistics. We first
hypothesize that there is a w-bp structural variant (w > 0)
starting at the reference position s (for insertions, w = 0).
Then, in the vicinity of the hypothetical SV window [s, s+w],
as shown in Figure 1C, we expect the rate λ(u, v) of the Pois-
son field for MPRs to change in ways that are specific to the
size, type and allele frequency of the variant. The allele fre-
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quency r can be understood as the fraction of chromosomes
carrying the variant in the DNA mixture. The hypothesis
tests for which we compute generalized likelihood ratios are

H0 : There is no SV at positions in the genome
mixture (r − 0).

H1 : There is an SV(s, w)of fraction r in the genome
mixture (r − 0).

(2)

Below, we show how we derive the likelihood ratio statis-
tics LW, LC, LU and LD for testing H1 versus H0 using each
of the four categories of MPRs.

Likelihood ratio scan for insider MPRs

The signal LW
s,w compares the coverage within [s, s + w] to

background local coverage. We define the insider MPRs set:
SW = {(ui , vi ) : s ≤ ui ≤ s + w or s ≤ vi ≤ s + w}, which
all have at least one read overlapping with the putative SV
window W. For a w-sized deletion (s, w), W = [s, s + w]
while for a w-sized insertion at s, W = (s, s), since the in-
serted sequence is not observable using reference coordi-
nates. Given a SV, the coverage within W is expected to de-
crease to 1 − r of its expected null coverage. In other words,
the term κ(u) changes to (1 − r ) κ(u) in Equation (1) for
any u|v ∈ W. The log-likelihood ratio statistic to capture
the signal from insider MPRs can easily be derived from
the Poisson distribution:

LW
(s,w) = r

∑
(ui ,vi )∈SW κ(ui )I(ui ∈ W)

+ r
∑

(ui ,vi )∈SW κ(vi )I(vi ∈ W) + nW log(1 − r ),(3)

where nW = |SW| and for any event E, I(E) is the indicator
function for E being true. Intuitively, this Poisson-derived
log-likelihood is a weighted window coverage, with each
base in the window weighted by the inhomogeneous cov-
erage function �. The last term penalizes for the size of the
window.

Likelihood ratio scan for spanning MPRs

The signal LC
s,w compares the mapped insert size of

read pairs spanning [s, s + w] to the global insert size
distribution. This set of MPRs is denoted by SC =
{(ui , vi ) : ui 〈s and vi 〉s + w}. When a MPR comes from a
fragment containing a w-sized deletion, its inferred insert
size will be w larger than the true size of the fragment. Thus,
MPRs from fragments containing deletions behave as if be-
ing sampled from insert size distribution fI+w instead of the
null distribution fI . Similarly, if the MPR spans an inser-
tion of size w, its expected insert size would be w smaller
than the null expectation, and thus the alternative insert size
distribution would be fI−w. For a variant present at mix-
ture fraction r, a fragment has probability r of spanning

the variant. To simplify notation, we let yi
�= |vi − ui | and

allow w to take negative values for w-sized insertions. For
MPRs that span the genomic segment of interest, Equa-
tion (1) and its rate function are altered by replacing fI
with (1 − r ) fI (yi ) + r fI+w(yi ). The log likelihood ratio scan
statistic LC

s,w for deletions LCd
(s,w) and insertion LCi

(s,w) from

MPRs in SC, from (13), is of the form

Lc
(s,w) = log

∏
(ui ,vi )∈SC

(1−r ) fI (yi )+r fI+w(yi )
fI (yi )

=
∑

(ui ,vi )∈SC log
[
(1 − r ) + r fI+w(yi )

fI (yi )

] (4)

The term fI+w(yi )/ fI (yi ) compares the likelihood of the
insert-size yi under the alternate hypothesis (where there is
a deletion of size w) to its likelihood under the null. For a
given value z, the function log(1 − r + r z) dampens smaller
values of z toward zero, thus reducing noise. Intuitively, this
scan statistic sums over the spanning read pairs a denoised
likelihood term reflecting the deviation of the insert-sizes
from the mean.

Likelihood ratio scan for hanging (anchoring) MPRs

The signal LU
s,w compares the rate of hanging pairs immedi-

ately upstream of s to the background rate, while the signal
LD

s,w compares the rate of hanging pairs immediately down-
stream of s + w to the background rate. We define hanging
MPRs (SAM flags: 73, 137, 121, 185, 105, 169, 89, 153) as
read pairs having only one mate anchoring within distance
� (down/up stream) from the SV window W:

SU = {(ui , vi ) : ui (vi ) i s + (−) and s − � < ui (vi )

< s and vi (ui ) = N.A.} and

SD = {(ui , vi ) : vi (ui ) i s + (−) and s + w < vi (ui )

< s + w + � and ui (vi ) = N.A.} ,

where N.A. means mapping position unavailable (i.e. the
read is unmapped). Due to the difficulty of mapping se-
quence reads across SV boundaries, both insertion and dele-
tions are expected to generate hanging MPRs belonging
to (SU) and (SD). The likelihood for an MPR in SU or
SD under the alternative that there is an SV at [s, s + w]
at proportion r in the sample depends on the distance of
the mapped read to the boundary. For example, an MPR
(u, N.A.) in SU can be generated in two ways: from a ref-
erence template, with the hanging read due to error, or
from a variant, in which case the hanging read may be
due to error or to its overlap with a deletion boundary
or inserted sequence. The rate for the former event is (1
− r)λ(u, v) and the rate for the latter event is rλ(u, v) +
r (1 − p)κ(u)κ̄[FI (s − u) − FI (s − R − u)], where FI is the
cumulative distribution function of fI and R is the read
length. In Equation (1), given the unknown value of � for
new sequence generated by an SV, we substitute it with the
average value κ̄.

Intuitively, the new rate function has higher probability
value for observing hanging read pairs, if the distance of
the mapped mate from the putative SV boundary is proba-
ble under the known insert size distribution. Letting xi be
the non-missing value of (ui , vi ) and R the read length, the
overall log likelihood ratio statistic to detect deletions for
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MPRs in SU is

LU
(s,w) =

∑
(ui ,vi )∈SU

× log
{

1 + r
2(1 − p)

p
[FI (s − ui ) − FI (s − R − ui )]

}

(5)

Similarly, the overall log likelihood ratio contribution
from MPRs in SD :

LD
(s,w) = ∑

(ui ,vi )∈SD

× log
{

1 + r 2(1−p)
p [FI (vi − (s + w)) − FI (vi − R − (s + w))]

}
.
(6)

The corresponding statistics to detect insertions are sim-
ilar. See Supplementary Text S1 and (14) for more details
regarding this likelihood process.

Joint whole genome scan and SV detection algorithm

To enable efficient and rapid computation, SWAN carries
out a joint genome-wide scan using all likelihood ratio pro-
cesses Lt

(s, w) for t = W, Cd , Ci , U, D and s ∈ G with a small
step size b (default value of b is 10 base pairs). SWAN re-
quires input of parameters w and r. While w and r are gen-
erally unknown and take on different values for different
instances of SV across the genome, we known from sim-
ulations that the power of the generalized likelihood ratio
statistics are only weakly dependent on assuming the cor-
rect values of w and r (14). For example, if we set w = 20
and r = 0.1, the scan maintains good sensitivity when the
actual deletion size is larger than 20 bp and the actual mix-
ing fraction is larger than 10%.

In (14), we demonstrated a method to compute thresh-
olds for Lt that controls the false positive rate at a given
Type-I error � for likelihood ratio scans on Poisson fields.
SWAN computes these thresholds instantaneously using
the estimated library parameters and scan settings (r, w, b).
After the joint genome-wide scan finishes, we collect the
statistically significant positions Pt

i = {i : Lt
i > Tt

i }, where
t = W, Cd , Ci , U, D and Tt

i is the local threshold for the
corresponding feature that controls Type-I error �.

Subsequently, the significant regions detected by LW, LCd

and LCi are combined with detections made simultane-
ously by LU and LD as follows: First, overlapping PW

i ’s and
PCd

i ’s are joined and merged to form deletion calls. Sec-
ond, we define a pair of hanging read signals(PU

i , PD
j ) as

a telescoping pair if they are within m bases apart, which
by default is three times the insert size standard deviation
m = 3min(σL, σR). This type of telescoping pair is produced
when a short insertion or deletion is contained between PU

i
and PD

j . Detections by LU and LD are made by taking all
such telescoping pairs. In our experience, the hanging read
scores are often noisy and a telescoping pair of hanging read
signals is much more reliable than a singleton peak.

We describe the indel detection process. A region is re-
ported to contain a putative deletion if it contains a cover-
age signal LW, a spanning pairs signal LCd or a telescoping
pair of hanging reads signals LU and LD. A region is re-
ported to contain a putative insertion if it contains a span-
ning pair’s signal LCi or a telescoping pair of hanging read

signals LU and LD. The set of putative deletion and inser-
tion regions can are then compared to the soft-clip/split
read remapping results for breakpoint confirmation, as il-
lustrated in Figure 1E. The inversion events are detected in
similar fashion as the insertions because they also generate
breakpoints and de novo sequence insertions.

Soft-clip and split read clustering and remapping

Soft-clip and split sequence reads resulting from mapping
issues that occur downstream and/or upstream flanks (i.e.
‘tips’); clipping of the sequence occurs because of mis-
matches with the reference. Depending on the size of the
clipped portion of the read and the aligner, the tips may
or may not have a secondary alignment (i.e. leading to a
split read). When there is a low background clip rate, soft-
clip/split reads offer evidence of break point location and
variant type. In SWAN, clusters of soft-clipped reads are
used in two ways. (i) SWAN brackets the left-clip and right-
clip clusters as possible evidence for insertions or inversions.
(ii) SWAN brackets pairs of soft-clip clusters and uses this
information to identify SV breakpoint junctions by remap-
ping the consensus clipped sequences.

SWAN’s soft-clip/split read scan has two stages. In the
first stage, it identifies all soft-clip/split read clusters that
have more than c reads and d bases clipped at the same
position and orientation (upstream/downstream) with the
clipped sequence forming a consensus. The thresholds (c, d)
are chosen based on taking the maximum between the top
percentile of the genome and the top percentile of the lo-
cal 10 Kb region. We call these clusters left (right) clusters
if they are up (down) stream clipped. In the second stage,
SWAN remaps the consensus sequence of these clusters to
the reference, and then screens for a pattern that we call re-
ciprocal mapping, as illustrated in Figure 1D. In reciprocal
mapping, the clipped consensus of one cluster is mapped di-
rectly adjacent to another cluster and the clipped consensus
of the other cluster maps back to the initiating cluster. Such
reciprocal mapping gives us highly confident and precise SV
boundaries.

Depending on the data quality, a relatively small fraction
of soft-clip clusters may achieve reciprocal mapping. To im-
prove sensitivity for insertions, SWAN scans the remaining
clusters for left and right cluster pairs that are within a half
read length of each other. These putative insertion points
are combined with likelihood ratio peaks as putative inser-
tion signals.

Benchmark data sets and validation of novel SVs

Simulated data sets. We generated simulated Illumina
WGS data sets (e.g. BAM files), spiking into the human ref-
erence genome (hg19) 15 000 SVs including deletions, inser-
tions, inversions, duplications and transpositions of vary-
ing sizes. We used SVEngine (http://bitbucket.org/charade/
svengine), BWA-MEM aligner (19) and SAMtools (20) to
simulate the data sets. One set of data had average sequenc-
ing coverage ranging from 5X to 50X with 100% SV allelic
fraction. The other data set had 50X coverage with from 5%
to 100% in SV allele fractions with 50X coverage.

http://bitbucket.org/charade/svengine
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With the simulated BAM file input, we benchmarked
SWAN along with CNVnator (21), BreakDancer (9), Delly
(11), Lumpy (13) and Clever (22). These benchmarked
methods are chosen because they are representative of a
general category of SV detection approaches. For instance,
the Phase One portion of the 1000 Genomes Project (23) uti-
lized several SV methods – CNVnator (21), BreakDancer
(9) and Delly (11), which used coverage, insert size, soft-
clip/split reads or a combination of the latter two, respec-
tively. Also, we included Lumpy (13), which combines the
latter two signals, and Clever (22), which is designed to de-
tect small to mid-range deletions.

There are many other SV calling methods exist that in-
clude the following: ReadDepth (24), RDXplorer (25) and
CNVeM (26), which use read depth; VariationHunter (27),
PEMer (28), HYDRA (29) and MoDIL (30), which use in-
sert size; and AGE (8), ClipCrop (31) and CREST (32),
which use hanging reads, split read remapping and soft-
clipped reads respectively. These other programs rely on se-
quence features that overlap with the SV callers that we
compared with SWAN. Testing all SV detection methods
was impractical so we focused on those that were represen-
tative of specific categories of detection methods.

Using our in silico data set, we compared each method’s
overall performance based on recall, precision, accuracy
(F1-measure) and FDR. We refer the readers to Supplemen-
tary Text S1 for the details of simulation process, program
parameters and performance measuring.

Platinum genome data sets. We compared the perfor-
mance of SWAN with other methods on the WGS sequence
data of NA12878 from the Illumina Platinum Genomes
project (ENA Accession: ERP001960). Two previously cu-
rated validated deletion sets are available for this sample,
one based on PCR amplicon confirmation of breakpoints
and the other based on long read (LR) sequencing. We com-
pared SWAN’s performance to the performance of Pindel
(10), Delly (11), GASVPro (12) and Lumpy (13), which are
all cited from Layer et al. (13).

Targeted sequencing. To confirm the presence and struc-
ture of novel indels detected by SWAN, we used a targeted
sequencing technology called Oligonucleotide-Selective Se-
quencing (OS-Seq) (33), which can accurately characterize
candidate SV boundaries with high accuracy (34). The ge-
nomic targets for potential breakpoints are shown in Sup-
plementary Table S1. Sequence read pileup tracks from OS-
Seq, overlaid on top of the SWAN detection segments, were
inspected to validate true positives and determine the pre-
cise sequence break points (example snapshots are shown in
Figure 2B–D). The OS-Seq sequence data were deposited to
NCBI’s Short Read Archive (id: SRX1059374).

RESULTS

Benchmark analysis with simulated data sets

The simulated spike-in data allow us to evaluate the accu-
racy of methods on SVs over a broad category of types,
sizes and allelic fractions. Each spike-in sample contains
2500 each of insertions, deletions, inversions, duplications

and transpositions, as well as 2500 insertions of random se-
quences derived from the adenovirus genome (Chimpanzee
adenovirus NC 017825.1). We focused primarily on the
mid-sized SV events that are smaller than 10 Kbp (8). De-
tails of the procedure details are described in Supplemen-
tary Text S1 and the simulated data set is downloadable
at http://hamachi.stanford.edu/publication-material/swan/
swan-data.tgz).

In Table 1 we summarize the sensitivity and FDR
of SWAN, Lumpy, Delly, BreakDancer, CNVnator and
CLEVER. The cells of Table 1 are colored by the achieved
sensitivity for a specific category of SV. The last row of the
table shows the FDR of each method. First, SWAN pro-
duced fewer false positives compared to the other meth-
ods. At this lower FDR, SWAN achieves comparable or im-
proved sensitivity across all variant types, size ranges and al-
lele frequency levels. From this study of simulated SV data,
we find that in addition to deletions, SWAN is able to de-
tect insertions, duplications and transposition events reli-
ably, thus complementing the detection spectrums of cur-
rent methods. SWAN maintains high sensitivity across the
spectrum of SV classes due to its integration of multiple
types of signals in the whole genome scan, and its use of
a probabilistic model for background adjustment. Addi-
tional simulation results can be found in Supplementary Ta-
ble S2 and Supplementary Figure S3, where comparisons
were plotted by gradients of SV allelic fractions, coverage
and variant sizes.

The complete pipeline SWAN is more sensitive than sim-
ply using any of its single likelihood tracks, each of which
is based on only one mapping feature. Detailed benchmark
results of SWAN against these single likelihood tracks are
given in Supplementary Table S3. For instance, for both ho-
mozygous and heterozygous variants of all types smaller
than 500 base pairs, SWAN has 96–97% combined sensitiv-
ity while the sensitivity from hanging reads alone (LD/LU)
is 41–42%, from insert-size alone (LC) is 28%, and from the
rest of the features combined (SoftClip, LW, etc) is 26–27%.
The same is true for larger variants and for variants of lower
allele-frequency. For example, for variants between 500 base
pairs and 1 Kbp of allele frequency (5–20%), SWAN has 96–
97% combined sensitivity while the sensitivity from hang-
ing read is 41–43%, from insert-size is 28% and from the
rest of signals combined is 26–27%. If one were to focus on
SVs of a specific size range, the complete SWAN pipeline
using all features remained the most sensitive among the
methods tested. However, SWAN’s sensitivity is nearly the
same when relying on only one feature. For example, for
homozygous and heterozygous deletions less than 500 base
pairs, SWAN has 98–99% sensitivity while the sensitivity
from insert-size alone is also 98–99%. These results show
that, by aggregating signals across features, SWAN achieves
high sensitivity for more structural variant types, across a
broader size range, and under lower allele frequency.

The superior sensitivity achieved by SWAN through fea-
ture aggregation does not significantly lower the precision,
which is at 86% across all variant types. There is a small
reduction in precision when each likelihood track is used
as a single metric. Citing an example, for calling homozy-
gous and heterozygous deletions, the insert size (LC) fea-
ture alone achieves a 99% precision, which is higher than

http://hamachi.stanford.edu/publication-material/swan/swan-data.tgz
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Figure 2. Performance benchmark and validation of novel indel calls with Platinum Genome data set (NA12878). (A) Study design of the OS-Seq targeted
sequencing validation. (B–D) Genome browser view of pileups plots of validated structural variant regions SWAN novel indel calls not previously identified
by literature: (B) a homozygous deletion, (C) a heterozygous deletion and (D) a homozygous insertion.
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Table 1. Performance benchmark based on simulated data with spike-in SV events

SWAN’s 86%, but its sensitivity is 28–29% much lower than
SWAN’s 96–98% (Supplementary Table S3). In summary,
the complete pipeline in SWAN significantly increases sen-
sitivity over individual likelihood scans while still main-
taining good precision. Simulated sequence data does not
fully capture the heterogeneity as seen in real sequence data
(which we will address in the analysis of actual WGS). How-
ever, these data allow us to systematically evaluate the ac-
curacy of methods across a broad spectrum of settings for
a comprehensive set of variants.

Benchmark analysis with platinum genomes

As an additional benchmark, we used SWAN to analyze the
WGS data of individual NA12878 from the Illumina Plat-
inum Genomes project. The NA12878 WGS sequence data
have been extensively analyzed in other studies. We exam-
ined both the original 50X average coverage data as well as
a down-sampled set of data with 5X average coverage (20).
Layer et al. (13) assembled two sets of deletions that un-
derwent validation in previous studies: 3376 deletions were
validated by individual PCR breakpoint amplicon assays
(7,23); 4095 deletions that have long read (labeled LR) sup-
port from Pacific Biosciences long reads (7).

Using these two validated deletion sets as ground truth,
we benchmarked SWAN’s performance with other meth-
ods, including Lumpy, Delly, GASVPro and Pindel. We
computed sensitivity and ‘FDR’. We put quotes on FDR
here because detections that are not in the validated dele-
tion set may also be true variants, as we show through addi-
tional validation experiments. The performance assessment
for Lumpy, Delly, GASVPro and Pindel are previously in-
dependently reported by Layer et al. (13).

Table 2 shows the recall proportion on both validated
sets, as a measure of sensitivity, as well as the overall FDR,
computed from the fraction of detections not found in ei-
ther validation sets (See Materials and Methods for defini-
tion of FDR). At 50X coverage, according to the PCR as-
say validation set, SWAN has the highest recall of the five
programs and the lowest FDR along with GASVPro. Ac-
cording to the long-read validation set, SWAN has the high-
est recall (along with Delly), and the lowest FDR (along
with Lumpy and GASVPro). With 5X coverage, SWAN has
a slightly higher FDR and substantially higher sensitivity
than the others, with the exception of GASVPro, which has
substantially lower FDR and sensitivity.

Identifying novel indels

As we previously described, the two validated sets of
NA12878 were based on consensus detections reported
from published studies (7,23). We examined the true pos-
itive rate among a set of SWAN’s novel indels that were
not among the externally validated SVs including PCR ver-
ification and long read sequencing. We chose 138 SWAN
novel candidate sites (87 deletions and 51 insertions) for
deep targeted re-sequencing (see Figure 2A). To confirm
the presence and structure of these novel indels detected
by SWAN, we used a targeted sequencing technology called
Oligonucleotide-Selective Sequencing (OS-Seq) (33). Previ-
ously, we had demonstrated that this method could accu-
rately characterize candidate SV boundaries with high ac-
curacy (34). We limited our study to SVs of size smaller than
500 base pairs, most having sizes in the 100–500 range, be-
cause we can validate indels with high confidence in this size
range using the OS-Seq targeted re-sequencing.
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Table 2. Performance benchmark based on Platinum genomics NA12878 data

50x Coverage 5x Coverage

Sensitivity ‘FDR’ Sensitivity ‘FDR’

PCR LR PCR+LR PCR LR PCR+LR

SWAN 74% 80% 42% 28% 23% 17%
Lumpy 61% 72% 43% 11% 8% 17%
Delly 60% 60% 73% 20% 12% 19%
Pindel 60% 82% 76% 14% 19% 15%
GasvPro 51% 59% 41% 15% 10% 9%

Table 3. Summary statistics of OS-Seq targeted sequencing analysis of
SWAN calls

DEL INS

Total 70 30
Validated 66 25
Rate 94% 78%

OS-Seq utilizes target specific primer-probe and oligomer
hybridization in a massively parallel fashion to provide
ultra-high coverage downstream target sequences (34)
within 1 Kb range of the designed primers. We successfully
developed up to two primer pairs (one pair is one reverse
and one forward strand primer) for 108 candidate SV sites
flanking the break points for special OS-Seq targeting as-
says. For the 108 selected indel candidates, we successfully
sequenced 102 (∼95% of 108, including 70 deletions and 32
insertions) with an average coverage of ∼14 000X. Using
these data, we sought to resolve the breakpoint boundaries.
Those candidate indels (30 sites) which we could not tar-
get sequence occurred in highly repetitive regions, thus lim-
iting the on-target selection of flanking sequences around
this subset of putative breakpoints (see primer designs in
Supplementary Table S1).

With this high depth of coverage, we resolved indel break-
points with high resolution and confidence. Among this 102
candidates underwent deep-targeted sequencing, SWAN
initially identified 70 as deletions and 32 as insertions. Our
targeted sequencing validation confirmed 66 (94%) of the 70
deletions and 25 (78%) of the 32 insertions (Table 3). These
new indels were missed by the previous studies because of
their small size, their heterozygous genotype (Figure 2B–
D), and/or the complexity in their structure. For example,
we identified two non-reference alleles (see Supplementary
Table S1).

In Figure 2B–D, we show three representative examples
of novel SWAN indel discoveries. The first is a homozygous
deletion of 53 base pairs (chr1: 175 091 594–175 091 647)
catalogued in the database of genomic variants (DGV) (35)
(id: nsv160653). As it turns out, this SV was independently
validated by sequencing of a fosmid clone as reported by
Mills et al. (36). This SV is a common variant with ∼60%
frequency in 2504 individuals impacting the intron region
of human tenascin N (TNN) gene (37). The second exam-
ple is a heterozygous deletion of 51 base pair (chr14: 98 822
621–98 822 672). This exact deletion has not been previously
catalogued but an overlapping deletion with similar bound-
aries is registered (id: esv2749092) in DGV. The final exam-
ple we cite is a homozygous insertion (chr2: 28 163 501–28

163 502) that overlaps with a 34 base pair common inser-
tion detected with ∼81% frequency in 2504 individuals and
residing in the intron region of BRE gene. Detailed informa-
tion of the other OS-Seq validated SWAN novel detections
are in Supplementary Table S1.

DISCUSSION

We described SWAN, a new statistical framework and algo-
rithm for SV detection from whole genome sequencing data.
SWAN integrates multiple features, including insert size,
hanging read pairs and read coverage into one statistical
framework and detects putative SVs through genome-wide
likelihood ratio scans. SWAN remaps soft-clip/split read
clusters to supplement the likelihood analysis, joins multi-
ple sources of evidence and identifies break points when-
ever possible. SWAN has improved sensitivity for detecting
structural variants smaller than 10 kilobases and is partic-
ularly successful at identifying deletions smaller than 500
base pairs.

The size range ≤100 bp is where SWAN has the most sig-
nificant improvement, due to SWAN’s careful modeling of
the insert size distribution. Indeed, 41 (58%) of the 70 vali-
dated SWAN de novo deletion calls fall into this range. The
simulation results for spike-ins with sizes in the range ≤100
bp (Supplementary Table S4) show that SWAN has the best
sensitivity for insertions, deletions and translocations for
variant fractions from 20% and up among all benchmarked
callers. In our simulation scenarios SWAN also has the low-
est false discovery rate among all callers, except Clever, a
deletion only caller.

Indels smaller than 10 kilobases occur frequently in the
human genome (8). Many SV detection algorithms have fo-
cused on either extremely short indels (38) or larger events
(39). To enable the accurate identification of indels, a num-
ber of specialized methods have been employed including
additional steps in sequencing library preparation, long
read sequencing and/or de novo genome assembly. Success-
ful analyses have been demonstrated only by specialized
data sets (40–42). SWAN improves the sensitivity for SVs
in the mid-size range (50 to 10 Kbp) using conventional
Illumina-based paired-end WGS sequencing data sets.

SWAN is designed as a standalone method for single or
paired sample analysis of WGS data of either low or high
coverage. Among the SWAN novel detections (see the an-
notation column of Supplementary Table S1), the majority
(97% for deletions and 69% for insertions) overlap similar
events from other individuals at the same locus but with
slightly different boundaries (data from DGV (35)). Pool-
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ing information across the population can further improve
the sensitivity of detection of such common variants (38).

In our current implementation, the run time of SWAN
is linearly related to the average sequencing coverage and
overall size of the genome. The memory use is also approx-
imately linear in coverage. The genome-wide likelihood ra-
tio scan is the most memory intensive part of SWAN. On
a 16-core 256 gigabytes memory cluster, the analysis of a
whole genome sequenced to 40X coverage requires one day
of parallel compute time. When using default parameters,
the analysis of chromosome 1 sequence requires up to 40 gi-
gabytes of memory and 10 hours of runtime. The genome-
wide soft-clip/split read remapping typically use less than
20 gigabytes of memory with the runtime depending mainly
on the frequency of clipping clusters in the data. At ∼1%
clipping rate, a genome-wide scan can be finished within 24
hours. The likelihood scan and soft-clip/split read remap-
ping steps can run in parallel. The final evidence-joining
stage of SWAN is rapid and memory efficient. It can be
completed within an hour on a single node with 40G of
memory.

SUPPLEMENTARY DATA

Supplementary Data are available at NAR Online.
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