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Editorial on the Research Topic

Role of Molecular Modulators in Combatting Cardiac Injury and Disease: Prevention, Repair

and Regeneration

Cardiovascular disease (CVD) is the leading cause of death in the United States with heart failure
(HF) being the highest reason for hospital admission. Despite improved therapies for CVDpatients,
the 5-year mortality rate after HF hospitalization remains around 40% (1). Preclinical and clinical
studies have attempted to promote healing and decrease HF incidence in high-risk patients. While
great strides have been made, significant knowledge gaps in our understanding of cardiac repair
and regeneration remain. Advanced interpretation of the molecular mechanisms that stimulate
beneficial vs. adverse remodeling is critical for improving current therapies.

In the current digest topic (https://www.frontiersin.org/research-topics/18185/role-of-
molecular-modulators-in-combatting-cardiac-injury-and-disease-prevention-repair-and-
regenera#overview), authors identify possible mechanisms for prevention, repair, and cardiac
regeneration. Here, we summarize the major findings of interest to the readership and provide a
frame of reference for future studies.

Over 50% of HF patients present with preserved ejection fraction (HFpEF), a prevalent
pathology with no specific therapy (2). Recent molecular and cellular studies provide evidence that
HFpEF is not a homogenous disease, instead, it presents through heterogeneous pathophysiology
with aging as a common denominator. Superimposed with aging, obesity activates multiple
inflammatory pathways that intersect with metabolic dysfunction and exacerbates uncontrolled,
non-resolving, inflammation in HFpEF patients. The review by Tourki and Halade compiles
current literature on obesity-drivenHFpEF and discusses the potential of formyl peptide 2 receptor,
an essential molecule for resolution of inflammation post-cardiac injury, as a prospective target
to promote tissue clearance and expedite cardiac repair and regeneration. The authors stress
the importance and benefit of an appropriate diet and nutrient intake as a preventative tool for
development and progression of HFpEF.
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FIGURE 1 | Broad and diverse mechanisms contribute to cardiac repair or regeneration. In the current topic issue, articles review the literature regarding NAD+

metabolome in CVD (Jahan and Bagchi), and inflammatory suppression via FRP2 activation (Tourki and Halade) or cGAS-STING inhibition (Rech and Rainer) in cardiac

repair. Primary research articles demonstrate a role for ECM proteins and tissue compliance in cardiac regeneration (Wang et al.), and dopaminergic signaling to

cardiac fibroblasts in cardiac repair post MI (Kisling et al.). Future studies should assess what molecular triggers can tip the balance to limit adverse remodeling and

the pathogenesis of HF promoting the reparative processes. Figure was generated using Biorender.com.

Inflammation plays a central role in CVD. However,
therapeutics that target inflammatory mediators have not been
effective, likely because a controlled inflammatory response is
necessary for repair and regeneration (3, 4). Rech and Rainer
describe emerging evidence of the therapeutic potential for
the innate immune DNA sensor cyclic GMP-AMP synthase
(cGAS) and stimulator of interferon genes (STING) pathway in
CVD. Many of the risk factors associated with CVD including
smoking, obesity, and aging are accompanied by alterations in
cGAS-STING signaling (5–9). Inhibition of cGAS and STING
activation has been shown to be beneficial in CVD ranging
from MI to models of HFpEF (10–12). While the data is
promising, Rech and Rainer indicate concern that long-term
inhibition of the cGAS-STING pathway could promote cancer or
viral infection.

Nicotinamide adenine dinucleotide (NAD) is an essential

cellular substrate critical for energy production. A decrease in

NAD+ abundance has been associated with metabolic stress,

chronic inflammation, and aging (13, 14). The review by Jahan

and Bagchi emphasizes NAD+ as a promising therapy for

reducing CVD risk through its actions on inflammation, muscle
function, and mitochondrial health. Highlighting clinical trials
such as NCT02921659 (15), the authors underline that direct and
indirect NAD+ supplementation (by either increasing NAD+

precursors, e.g., tryptophan or nicotinic acid, or inhibitingNAD+

processing enzymes) is associated with beneficial outcomes
such as decreased blood pressure and aortic stiffness, improved
hypercholesterolemia, and enhanced cardiac mitochondrial
function (15–18). Jahan and Bagchi stress that although boosting
NAD+ levels is promising both for therapy and prevention of
CVD, the type of NAD+ supplementation, as well as the dosage,
should be critically evaluated to ensure both the effectiveness of
treatment and prevention of potential side effects.

The ECM from neonatal hearts has pro-regenerative
properties compared to that of the adult heart (19–22).
Dissecting the bioactive vs. biomechanical aspects of the ECM
has been challenging and has limited our understanding of ECM
effects on cardiac regeneration. Wang et al. thoroughly explored
the role of heart stiffness, ECM proteins, and the combination
of these factors on the cardiac regenerative response in juvenile
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mice. The investigators administered β-aminopropionitrile
(BAPN) or genipin to alter tissue stiffness before subjecting
mice to myocardial infarction (MI) at postnatal day 5. After
MI, mice were given decellularized ECM (dECM) derived from
either fetal or adult pigs. Consistent with published literature,
fetal heart dECM produced pro-regenerative phenotypes
including improved ejection fraction, reduced scarring, and
increased cardiomyocyte cell cycle activity post-MI. Of particular
novelty, the effects of fetal dECM were substantially accentuated
when tissue stiffness was decreased by BAPN administration,
suggesting an interaction between bioactivity and biomechanics
in cardiac repair. Future studies identifying the specific ECM
factors mediating biomechanical transduction pathways and
cardiac regeneration will pave the way for new therapeutic
approaches in post-MI patients.

The principal functions of the heart are regulated by the
autonomic nervous system of which dopamine acts as an
important neurotransmitter by stimulating peripheral dopamine
receptors including D1R and D3R (23, 24). Kisling et al.
report for the first time the existence of an intrinsic cardiac
dopaminergic system as demonstrated by both D1R and D3R
expression in murine cardiac tissue and fibroblasts. Mice with
dysfunctional D3R displayed limited fibroblast proliferation and
migration, reduced viability, and increased expression of collagen
type 3. These phenotypes were recapitulated using a non-
ergot pharmacological inhibitor of D3R. While a large body of
evidence describes roles for dopamine and its receptors in the
neuro and renal-vascular systems (25–31), there is very little
information on the functions of these receptors in the heart.
Data described in this brief report points to a potential role for
the dopaminergic system in cell apoptosis and cardiac fibrosis,
making this system of interest when studying modulation of
cardiac repair and remodeling.

This editorial commentary highlights the key points from
the collection of review and original research articles in

the current topic issue (Figure 1). The phenotype of CVD
is broad and diverse; thus, defining each pathophysiological
process and understanding what factors contribute to repair
and regeneration is needed for improvement in prognosis. The
research community should strive to identify the correct balance
of molecular triggers that limit adverse remodeling and HF
pathogenesis by inhibiting an exacerbation of inflammation
and ECM accumulation and promoting reparative processes. In
addition, consideration for the role that primary risk factors
such as gender, aging, obesity, and drug interactions have on
the multiple molecular regulators of cardiovascular remodeling
is warranted.
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