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Masato Maruyama,3,7 Ryosuke Baba,1 and Chiho Kawashima1,8

SUMMARY

Elucidating fine architectures and functions of cellular and synaptic connections
requires development of new flexible methods. Here, we created a concept
called the ‘‘battle of transgenes,’’ based on which we generated strategies using
genetically engineered battles of multiple recombinases. The strategies enabled
split-tunable allocation of multiple transgenes. We demonstrated the versatility
of these strategies and technologies in inducing strong and multi-sparse alloca-
tions of multiple transgenes. Furthermore, the combination of our transgenic
strategy and expansion microscopy enabled three-dimensional high-resolution
imaging of whole synaptic structures in the hippocampus with simultaneous visu-
alizations of endogenous synaptic proteins. These strategies and technologies
based on the battle of genes may accelerate the analysis of whole synaptic and
cellular connections in diverse life science fields.

INTRODUCTION

Genes work cooperatively, competitively, and sometimes selfishly in the cells of the body (Dawkins, 1976).

Cellular and synaptic connections are essential for almost all mammalian functions (Gumbiner, 1996; Südhof

and Malenka, 2008). Genetic labeling of small groups of cells and synaptic structures is crucial to understanding

the basal and functional mechanisms of the brain and body (Arenkiel and Ehlers, 2009). Blended expressions of

multicolored fluorescent proteins are widely used for labeling neurons in neuroscience studies (Livet et al., 2007;

Weissman and Pan, 2015; Sakaguchi et al., 2018), despite limitations in flexibility and tunability. To date, consid-

erable efforts have been made to visualize and dissect whole synaptic structures using light microscopy (Nim-

chinsky et al., 2002; Rochefort and Konnerth, 2012), but most of these studies only succeeded in labeling half

of the synaptic structures (Nimchinsky et al., 2002; Rochefort and Konnerth, 2012; Chen et al., 2015; Tillberg

et al., 2016; Asano et al., 2018) such as spines or presynaptic terminals alone.

In this study, we created a concept called the ‘‘battle of the transgenes.’’ Based on this concept, we

designed three strategies, named BATTLE-1, 2, and 2.1 enabling splittable, tunable, intense, multi-sparse,

triple splittable allocation of transgenes. BATTLE-1 used two genetically engineered recombinase proteins

and induced recombinase fights for the mutually exclusive allocation of transgenes. BATTLE-2 used two

genetically engineered recombinase proteins and a genetically engineered shadow recombinase protein

to induce intense, tunable, andmultiple sparse allocation of transgenes. BATTLE-2.1 used three genetically

engineered recombinase proteins to induce triple splittable allocation of transgenes.

We combined BATTLE-1 with a method called expansion microscopy (ExM) (Chen et al., 2015; Tillberg

et al., 2016; Asano et al., 2018), a high-resolution method that allows three-dimensional (3D) high-resolu-

tion imaging of whole, synaptic structures of hippocampal neural circuits. We called this BATTLE-1EX.

RESULTS

Battle of Recombinases and Genetically Engineered Strategies, BATTLE-1

To establish the concept of the battle of transgenes, we generated genetically battle-oriented recombi-

nase proteins. Cyclization recombination (Cre) and flippase O (FLPO) recombinase proteins can originally

excise a transgene flanked by two similar recombinase recognition sites (Nagy, 2000) (such as loxP and
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Figure 1. Battle of Recombinases

BATTLE-1: split-tunable allocation of transgenes by recombinase ‘‘fights.’’

(A) In the BATTLE-1 technology, Cre and FLPO are expressed under the control of CamKIIa promoter. The Cre transgene

flanked by two FRT5 is designed to be a target of the FLPO recombinase. The FLPO transgene flanked by two loxN is

designed to be a target of the Cre recombinase. Cre- and FLPO-dependent AAVs expressing mCherry and YFP,

respectively, were used.

(B) Representative maximum intensity projection image of injected hippocampus. When the Cre to FLPO ratio was 1:1,

the splitting allocation of YFP and mCherry was observed in hippocampal neurons.

(C) Magnified confocal image of the boxed area in (B).

(D) Quantification of percentage of cells expressing fluorescent proteins in the dentate gyrus.
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flippase recognition target [FRT]). We designed multiple battle-oriented recombinases by aligning a Cre

transgene flanked by two FRT mutant sites (Schlake and Bode, 1994) (FRT5) and an FLPO transgene flanked

by two loci of X-over P1 (loxP) mutant sites (Livet et al., 2007) (loxN, Figure 1A). In this configuration, Cre is

oriented to excise the FLPO transgene, which is then oriented to excise the Cre transgene.

To achieve the battle of transgenes in the mouse brain, we simultaneously injected lentiviruses encoding

Cre flanked with FRT5 and ones encoding FLPO flanked with loxN at the same ratio (Cre:FLPO = 1:1) into

the mouse hippocampus. Three weeks later, we injected Cre- and FLPO-dependent adeno-associated

viruses (AAVs) expressing mCherry and yellow fluorescent protein (YFP), respectively, into the same region.

YFP and mCherry were co-expressed with CamKIIa proteins in hippocampal neurons under the control of

the CamKIIa (1.3 kb) promoter, indicating their specific expression in excitatory neurons (Benson et al.,

1992) (CamKIIa+:100% of 148 mCherry-positive neurons, 100% of 101 YFP-positive neurons, and 100% of

one mCherry-YFP double-positive neuron in the dentate gyrus, N = 3 mice, Figure S1).

Mixed viral infections mostly induce co-allocation of multiple transgenes in many cases (Weissman and Pan,

2015; Sakaguchi et al., 2018; Gomez-Nicola et al., 2014; Chan et al., 2017). We observed that YFP and mCherry

were separately allocated in amajority of the fluorescence-positive neurons in the dentate gyrus (Figures 1B–1D,

mCherry+:YFP+:mCherry-YFP double+ = 61.3% G 5.8%:38% G 5.8%:0.7% G 0.2%, mean G SEM; n = 827

granule neurons, N = 5 mice) and in the CA2-3 region of the hippocampus (mCherry+:YFP+:mCherry-YFP

double+ = 78% G 2.7%:21.4% G 2.7%:0.6% G 0.4%, mean G SEM; n = 292 pyramidal neurons in CA2-3,

N= 5mice). Only a fewneurons showed co-allocation of the transgenes (Figure 1D). Furthermore, weperformed

experiments with different dosages and observed similar splitting allocations of YFP andmCherry in dentate gy-

rus: 500 nL dosage, mCherry+:YFP+:mCherry-YFP double+ = 55.9% G 1.5%:43.8% G 1.6%:0.3% G 0.1%,

meanG SEM,n= 1,111granule neurons,N= 3mice; 1,500nLdosage,mCherry+:YFP+:mCherry-YFPdouble+=

57.4% G 1.4%:41.9% G 1.6%:0.7% G 0.3%, mean G SEM, n = 1,458 granule neurons, N = 3 mice (Figure S2).

These data suggest that the battle of multiple recombinases occurred and induced splitting allocation of YFP

and mCherry. We called this strategy, based on the battle of multiple recombinases, BATTLE-1.

Then, we similarly injected BATTLE-1 lentiviruses at different ratios (Cre: FLPO = 1: 0.01, Figure 1E). Under

this condition, we observed biased and splitting allocation of transgenes in the dentate gyrus (Figures 1E–

1G, mCherry+:YFP+:mCherry-YFP double+ = 98.7%G 0.2%:1.1%G 0.2%:0.2%G 0.1%, mean G SEM, n =

1,153 granule neurons, N = 3 mice) and the CA2-3 region (mCherry+:YFP+:mCherry-YFP double+ =

96.2% G 0.8%:3.6% G 0.9%:0.1% G 0.1%, mean G SEM, n = 442 pyramidal neurons in the CA2-3 region,

N = 4 mice). These data suggest that the dominant battle of recombinases induced biased allocation of

transgenes in the hippocampus. Therefore, we generated the battle of transgenes in themouse hippocam-

pus (Figures 1H and 1I). For this purpose, we generated the BATTLE-1 technology enabling the splitting

and tunable allocation of multiple transgenes in the mouse hippocampus.

BATTLE-2 for Splittable, Tunable, Intense, andMulti-sparse Allocation ofMultiple Transgenes

Next, we created the BATTLE-2 technology based on genetically engineered ‘‘fights’’ between triple recombi-

nases consisting of Cre transgene flanked by two FRT5-rox sites, FLPO transgene flanked by two loxN-rox sites,

and Dre recombinase (Anastassiadis et al., 2009) transgene flanked by two FRT5-loxN sites (Figure 2A). We used

Cre- and FLPO-dependent AAVs expressing mCherry and YFP, respectively, in BATTLE-2. Under this configura-

tion, the Dre recombinase, referred to as ‘‘shadow fighter,’’ did not induce the expression of specific transgenes.

To test the BATTLE-2 technology, we simultaneously injected lentiviruses encoding Cre flanked with FRT5-rox,

one encoding FLPO flanked with loxN-rox sites, and the one encoding a Dre transgene flanked by two FRT5-

loxN sites at the same ratio (Cre:FLPO:Dre = 1:1:1, Figure 2A).

Figure 1. Continued

(E) Representative maximum intensity projection image of injected hippocampus. When the ratio of Cre to FLPO was

1:0.01, most of the cells expressed mCherry, whereas few cells expressed YFP in the hippocampus.

(F) Magnified confocal image of the boxed area in (E).

(G) Quantification of percentage of cells expressing fluorescent proteins in the dentate gyrus.

(H) Illustration shows the battle of recombinases and BATTLE-1 system at a Cre to FLPO ratio of 1:1. After the first injection

of mixed viruses, Cre and FLPO started recombinase battles in each infected neuron. Then, only the winning recombinase

survived to induce its specific mutually exclusive allocation of transgenes (mCherry or YFP).

(I) Illustration shows the battle of recombinases and BATTLE-1 system at Cre to FLPO ratio of 1:0.01. In this situation, Cre

wins over FLPO in many cells. Then mCherry is allocated in many cells, whereas YFP is allocated in a few cells.
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Figure 2. BATTLE-2 (with Shadow Fighter): Split-Tunable and Multi-sparse Allocation of Transgenes Using the

Battle of the Recombinases

(A) In BATTLE-2 technology, Cre, FLPO, and Dre are expressed under the control of CamKIIa promoter. Then, Cre excises

FLPO and Dre transgenes, whereas FLPO excises Cre and Dre transgenes. In addition, Dre excises FLPO and Cre

transgenes. Using AAVs, Cre induces mCherry expression and FLPO induces YFP expression. However, Dre as a shadow

fighter did not induce expression of transgenes.

(B) (Left) A representative maximum intensity projection image of dentate gyrus infected with BATTLE-2 system when the

ratio of Dre:Cre:FLPO was 1:1:1. (Right) Quantification of cell number of neurons expressing fluorescent protein in the

dentate gyrus. Data are represented as mean G SEM.
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Three weeks later, we injected Cre-dependent AAV expressing mCherry and FLPO-dependent one ex-

pressing YFP in the same region. YFP and mCherry were co-expressed with CamKIIa proteins in hippocam-

pal neurons under the control of the CamKIIa (1.3 kb) promoter, indicating their specific expression in excit-

atory neurons (Figure S3). We observed splitting allocation of mCherry and YFP in the dentate gyrus

(Figure 2B, mCherry+:63.1 G 10.2, YFP+:13.9 G 1.8, and mCherry-YFP double+:0.3 G 0.2, mean G

SEM, number of expressing cells/400 mm2, n = 618 granule neurons in the dentate gyrus, N = 3 mice)

and CA2-3 (mCherry+:39.8 G 8.5, YFP+:5.1 G 1.4, and mCherry-YFP double+:0.6 G 0.4, mean G SEM,

number of expressing cells/400 mm2, n = 364 pyramidal neurons in CA2-3, N = 3 mice). Furthermore, we

observed similar splitting allocation of mCherry and YFP in dentate gyrus with different dosages of mixed

lentiviruses: 500 nL dosage, mCherry+:YFP+:mCherry-YFP double+ = 73.3%G 4.1%:26.3%G 4.1%:0.5%G

0.3%, mean G SEM, n = 569 granule neurons, N = 4 mice; 1,000 nL dosage, mCherry+:YFP+:mCherry-YFP

double+ = 81.1%G 1.7%:18.9%G 1.7%:0.2%G 0.2%, meanG SEM, n = 618 granule neurons, N = 3 mice;

1,500 nL dosage, mCherry+:YFP+:mCherry-YFP double+ = 80.8% G 2.5%:18.5% G 2.4%:0.7 G 0.3%,

mean G SEM, n = 674 granule neurons, N = 3 mice (Figure S4).

To achieve multiple sparse allocation of transgenes, we injected a lentivirus encoding Cre flanked with

FRT5-rox, one encoding FLPO flanked with loxP-rox sites, and another encoding Dre transgene flanked

by two FRT5-loxP sites (Cre:FLPO:Dre = 1:10:200), following Cre- and FLPO-dependent AAV injection.

BATTLE-2 induced intense and double sparse allocation of mCherry and YFP in granule neurons of the den-

tate gyrus (Figure 2C, mCherry+:3.4 G 0.9, YFP+:4.9 G 0.8, and mCherry-YFP double+: 0, mean G SEM,

number of expressing cells/400 mm2, n = 66 granule neurons in dentate gyrus, N = 4 mice) and pyramidal

neurons in the CA2-3 (mCherry+:1.1 G 0.4, YFP+:1.9 G 0.3, and mCherry-YFP double+:0, mean G SEM,

number of expressing cells/400 mm2, n = 14 pyramidal neurons in CA2-3, N = 6 mice).

In contrast to the excessively dense green protein fluorescence (GFP) expression with unclear cell morphol-

ogies induced by conventional viruses (Figure 2D), dendritic and axonal morphologies were strongly,

sparsely, and clearly labeled using the BATTLE-2 technology (Figure 2E and Video S1).

Furthermore, we created Dre-dependent AAV expressing mTFP (Chuang et al., 2015; Ai et al., 2006). To

confirm Dre-specific recombination of Dre-dependent AAV, crosstalk activities between Cre, FLPO, and

Dre were examined. We did not observe crosstalk activities in our experimental conditions (Figure S5).

Using BATTLE-2 with this AAV, we observed triple splitting allocations of mTFP, YFP, and mCherry in

granule neurons of the dentate gyrus and pyramidal neurons in the CA2-3 and called this BATTLE-2.1:

500 nL dosage, mCherry+:mTFP+: YFP+:mTFP-YFP double+:mTFP-mCherry double+:mCherry-YFP

double+:triple+ = 62.3% G 2.4%:18.5% G 1.8%:18.5% G 1.7%:0%:0.4% G 0.2%:0.2% G 0.2%:0%,

mean G SEM, n = 740 granule neurons, N = 4 mice; 1,000 nL dosage, mCherry+:mTFP+: YFP+:mTFP-

YFP double+:mTFP-mCherry double+:mCherry-YFP double+:triple+ = 73.4% G 2.8%:13.7% G

1.5%:12.4% G 1.8%:0%:0.4% G 0.2%:0.3% G 0.2%:0%, mean G SEM, n = 910 granule neurons, N = 4

mice; 1,500 nL dosage, mCherry+:mTFP+: YFP+:mTFP-YFP double+:mTFP-mCherry double+:mCherry-

YFP double+:triple+ = 71.6% G 3%:11.7% G 1.8%:16.2% G 1.9%:0%:0.1% G 0.1%:0.4% G 0.2%:0%,

mean G SEM, n = 1,127 granule neurons, N = 4 mice (Figure 3, Figure S6).

High-Resolution Imaging of Whole Synaptic Structures Using Multicolor

Immunohistochemistry with BATTLE-1EX

Conventional methods using AAV-expressing GFP did not clearly reveal whole synaptic structures (Fig-

ure 4A). To visualize whole structures of synaptic connections clearly, we combined BATTLE-1 with ExM

(BATTLE-1EX), which is a high-resolution method (Figure 4B, top). Hippocampal slices infected by BAT-

TLE-1 were expanded linearly by 4.1 times (Figure 4B bottom, Figure S7, 4.1 G 0.0, mean G SEM, n = 5

Figure 2. Continued

(C) (Left) Representative maximum intensity projection image of dentate gyrus infected with BATTLE-2 system when the

ratio of Dre:Cre:FLPO was 200:1:10. (Right) Quantification of cell number of neurons expressing fluorescent protein in the

dentate gyrus. Data are represented as mean G SEM.

(D) Representative maximum intensity projection image of dentate gyrus infected with conventional virus AAV-CAG-GFP.

Note that the morphologies of mossy cells are unclear.

(E) Representative maximum intensity projection image of dentate gyrus infected with BATTLE-2 (double sparse). Note

that the morphologies of multiple mossy cells are clear using BATTLE-2 double sparse expression.
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slices). Therefore, a lens with a diffraction limit of �280 nm (60X, 1.2 numerical aperture water objective

from Olympus) would attain an effective resolution of �280 nm/4.1 z 70 nm. In this area (44.3 mm 3

44.3 mm3 6.8 mm), we observed that 14 YFP-positive presynaptic terminals stochastically formed the whole

synapse with mCherry-positive postsynaptic spines of CA3 neurons. Other cases consisting of mCherry-

positive presynaptic terminals with YFP-positive postsynaptic spines were also observed (see Figure 5B).

Using BATTLE-1EX, whole synaptic structures consisting of YFP-positive presynaptic terminals from the

dentate gyrus and mCherry-positive postsynaptic spines of CA3 pyramidal neurons were clearly visualized

(Figures 4C and S8). Furthermore, the localizations of Bassoon and Homer, which are presynaptic and post-

synaptic proteins, respectively, were also simultaneously identified in whole synaptic structures (Figure 4C

and 4D). We performed volume rendering, offering 3D whole synaptic structures and 3D localization of

Bassoon and Homer of DG-CA3 synapses in the hippocampus (Figures 4E and 4F, Video S2). High-resolu-

tion imaging of the whole synaptic structures was performed at sequential z stacks (Figure 4G). We further

Figure 3. BATTLE-2.1: Triple Splitting Allocation of Transgenes Using the Battle of the Recombinases

(A) In BATTLE-2.1 technology, Cre, FLPO, and Dre are expressed under the control of CamKIIa promoter. Cre excises

FLPO and Dre transgenes, whereas FLPO excises Cre and Dre transgenes. Dre excises FLPO and Cre transgenes. Using

AAVs, Cre induces mCherry expression and FLPO induces YFP expression. In addition, Dre induces mTFP expression.

(B) A representative maximum intensity projection image of hippocampus infected with the BATTLE-2.1 system when the

ratio of Dre:Cre:FLPO was 1:1:1. Scale bar, 100 um.

(C) Magnified maximum intensity projection image (6 mm thickness) of the boxed area in (B). Red color shows mCherry

expression.

(D) Magnified maximum intensity projection image of the boxed area in (B). Yellow color shows YFP expression.

(E) Magnified maximum intensity projection image of the boxed area in (B). Blue color shows mTFP expression.

(F) Superposed maximum intensity projection image of the boxed area in (B). Red, yellow, and blue show mCherry, YFP

and mTFP, respectively. Scale bar, 10 mm.
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performed volume rendering (Figures 5A–5E) to visualize the 3D high-resolution whole synaptic structures

of synapses from granule neurons to hilar mossy cells.

DISCUSSION

The concept, battle of transgenes, offers a theoretical and experimental base for the progress of research

in the various scientific fields including life science, biotechnology, bioengineering technology, and artifi-

cial intelligence technology. BATTLE-recombinase systems, generated on this concept, are transgenic

strategies for wide-scale studies of cellular and synaptic interactions in the life sciences and have two

key advantages. First, they allow genetically engineered recombinases to ‘‘fight,’’ and only the winning re-

combinase survives in the infected cells to induce its specific transgene allocation. Unlike other systems

(Zong et al., 2005; Saunders et al., 2012; Lao et al., 2012; Tasic et al., 2012; Pontes-Quero et al., 2017),

the subsequent mutually exclusive transgene allocation is flexible and tunable by simply changing the ratio

of mixed BATTLE-recombinase viruses without re-designing basic constructs of the viral vectors. The inter-

leaved strategy is based on the competition between two recombinases and is useful for splitting

Figure 4. BATTLE-1EX: Three-Dimensional (3D) High-Resolution Imaging of Whole Synaptic Structures

(A) (Top) Illustration of DG-CA3 synapse visualized using AAV-CAG-GFP. (Left) Representative maximum intensity projection image in the CA3 region

infected with conventional virus AAV-CAG-GFP. (Right) Magnified confocal image of boxed area to the left. Note unclear morphologies of whole synaptic

structures of DG-CA3 synapses.

(B) (Top) Illustration showing BATTLE-1EX. BATTLE-1-infected slices are expanded using 4.13 expansion microscopy (ExM). (Bottom) Representative

maximum intensity projection image of CA3 stratum lucidum of BATTLE-1EX slices.

(C) (Top left) Magnified maximum intensity projection image of boxed area in (B). (Top, right) Magnified confocal images of boxed area in (C) top left.

(D) Cross-sectional line profiles of fluorescent intensities in boxed region in (C) right.

(E) Representative volume-rendering 3D image of the whole synaptic structure of DG-CA3 synapses. Scale bar, 732 nm.

(F) Same volume-rendering 3D image in (D) without YFP.

(G) (Left) Magnified images of (E). (Right) the sequential z stack images of the boxed area in (left). Scale bar, 500 nm.
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transgene expression in transgenic animals, but it has less flexibility than a battle strategy and lacks

tunability (He et al., 2017). BATTLE-recombinase systems have considerable potential to be applied to

functional studies such as optogenetics (Fenno et al., 2011; Boyden, 2011; Kohara et al., 2014) and pharma-

cogenetics (Roth, 2016).

In contrast, other systems using blended multiple transgenes such as Brainbow systems (Livet et al., 2007;

Weissman and Pan, 2015; Sakaguchi et al., 2018) are not suitable for these applications. The other combi-

natorial targeting strategies and tools are useful and versatile for functional and developmental studies of a

small population of cells, like inhibitory neurons (He et al., 2016). However, they do not have either the split-

tunability or sparseness-tunability of multiple transgene allocation, in contrast to BATTLE-recombinase

systems. In addition, they are mainly based on double- or triple-transgenic mice, which aremore expensive,

and it takes a relatively long time to start experiments. Second, BATTLE-recombinase strategies produce

flexible, intense, and tunable multiple sparse allocation of transgenes. Other sparse expression systems

have limited expression levels (Zong et al., 2005; Tasic et al., 2012; Young et al., 2008), flexibility (Zong

et al., 2005; Saunders et al., 2012; Young et al., 2008; Luo et al., 2016; Mikuni et al., 2016), and applicability;

mastering the techniques is difficult (dal Maschio et al., 2012; Schubert et al., 2018). Notably, BATTLE-re-

combinase strategies have high versatility and are independent of leaky feedback expression systems

based on the TetO system (Luo et al., 2016; Lin et al., 2018). Consequently, these systems have the potential

to be combined with large-scale conditional TetO transgenic mice (Lewandoski, 2001).

Cre and FLP systems are widely popular, and over 1,000 Cre- and FLP-dependent AAV vectors and numerous

pre-made Cre-dependent AAVs are commercially available from companies and institutions (such as Addgene).

Remarkably, the BATTLE-recombinase system can be quickly applied and widely custom-built to standard and

pre-existing Cre- and FLP-dependent AAV resources, offering a huge variety. In addition, there are also consid-

erable floxed transgenic mouse resources for region-specific knockout studies (Lewandoski, 2001) and single-

cell gene knockout studies (Kohara et al., 2007; Young et al., 2008; Luo et al., 2016; Mikuni et al., 2016). BAT-

TLE-2 technology has great potential to be applied to single-cell gene knockout studies.

We combined the BATTLE-recombinase strategy with ExM to create BATTLE-1EX that enabled 3D high-reso-

lution imaging of whole synaptic structures. Brainbow technology using multiple colors is mostly incompatible

with immunohistochemistry of endogenous proteins and synaptic proteins because it usesmultiple colors (Livet

et al., 2007;Weissman and Pan, 2015; Sakaguchi et al., 2018). Therefore, it is insufficient to perform unambiguous

identifications and dissections of whole synaptic structures and synaptic proteins. In this study, we visualized and

Figure 5. BATTLE-1EX: Three-Dimensional (3D) High-Resolution Imaging of Hilar Mossy Cells in the Hippocampus

(A) Representative maximum intensity projection 3D image of hilar mossy cells of BATTLE-1EX.

(B–E) Volume-rendering 3D image of box area in (A). Blue, Green, Red, and White show YFP, mCherry, Homer, and

Bassoon respectively. Note that mCherry-positive presynaptic terminals form a whole synapse with YFP-positive

postsynaptic spines of a mossy cell in the hippocampus.
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dissected the whole synaptic structures of local circuits in the hippocampus (DG-CA3 circuits andDG-mossy cell

circuits), and BATTLE-1EX has the potential to be extended to other regions.

Many brain diseases are known to be accompanied by abnormal morphologies in dendrites (Irie et al.,

2014) and synaptic structures (van Spronsen and Hoogenraad, 2010; Penzes et al., 2011). However, consid-

erable efforts have been made to develop technologies for visualizing whole synaptic structures using light

microscopy to understand the functions of normal mouse brains as well as the pathogenic mechanisms in

the brains of disease mouse models. BATTLE-recombinase technologies could provide opportunities for

the dissections of whole synaptic structures of the local circuits of mouse models of disease.

Recently developed and growing all-optical electrophysiology technologies (Hochbaum et al., 2014;

Kannan et al., 2018; Fan et al., 2018) have great potential to reveal electrophysiological interactions

between neurons in the local circuits. Because these technologies require mutually exclusive transgene ex-

pressions in many cases (Kannan et al., 2018; Fan et al., 2018), more flexible and tunable associated tech-

nologies might further facilitate the expansion of their use. Therefore, BATTLE-recombinase strategies

might have a considerable and flexible potential to promote all-optical electrophysiology studies.

For a wide range of studies in the life sciences, both the CamKIIa promoter and other systems such as syn-

apsin and actin promoters (Chan et al., 2017; Huda et al., 2014) could be applied to BATTLE-recombinase.

In mouse studies, region-specific transgenic mice are well developed, but require large animal facilities and

are expensive. Furthermore, the region-specific mice are insufficient to understand the homo relationship

of intra-regions and intra-cell types. The BATTLE-recombinase systems might offer more flexible ap-

proaches to understanding the local circuits and cell interactions in the regions and cell groups.

Limitations of the Study

We acknowledge that in the current study the BATTLE-recombinase systems could be applied to local

regions, like the hippocampus, but not global regions. Future studies may update BATTLE-recombinase

systems to enable split-tunable allocations of multiple transgenes at the whole-body level.
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Figure S1. Specific transgene expressions of YFP and mCherry in excitatory neurons,  Related to 
Figure 1.
a, Representative confocal image of dentate gyrus in hippocampus injected with BATTLE-1. Arrow-
heads indicate YFP-positive and mCherry-positive granule neurons. b, Specific transgene expression of 
YFP in CamKIIa expressing excitatory granule neurons. Magenta color shows CamKIIa immunoreac-
tivity. c, Specific expression of mCherry in CamKIIa expressing excitatory granule neurons. Cyan color 
shows CamKIIa immunoreactivity. Scale bar represents 5 µm.
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Figure S2. Splitting allocations of YFP and mCherry to granule neurons injected with BATTLE-1 
at 500, 1000, and 1500 nL dosages, Related to Figure 1.
a-c, Representative maximum intensity projection image of dentate gyrus in the hippocampus injected 
with BATTLE-1 at 500, 1000, and 1500 nL dosages of mixed lentiviruses. Scale bar represents 10 µm. 
d, Quantification of the percentage of cells expressing fluorescent proteins in the dentate gyrus injected 
with BATTLE-1 (left, 500 nL; middle, 100 nL; right, 1500 nL). Red, green, and yellow represent the 
percentage of cells expressing mCherry-positive, YFP-positive, and YFP- and mCherry- double-
positive granule neurons, respectively. For the 1000 nL dosage, the percentage of cells that were 
mCherry-positive, YFP-positive, and YFP- and mCherry- double positive were 61.3, 38.0, and 0.7%, 
respectively.
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Figure S3. Specific transgene expressions of YFP and mCherry in excitatory neurons injected 
with BATTLE-2, Related to Figure 2. 
a, Representative confocal image of dentate gyrus in the hippocampus injected with BATTLE-2. Arrow-
heads indicate YFP-positive and mCherry-positive granule neurons. b, Specific transgene expression of 
YFP in CamKIIa expressing excitatory granule neurons. Magenta represents CamKIIa immunoreactiv-
ity. c, Specific expression of mCherry in CamKIIa expressing excitatory granule neurons. Cyan repre-
sents CamKIIa immunoreactivity. Scale bar represents 5 µm.
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Figure S4. Splitting allocations of YFP and mCherry to granule neurons injected with BATTLE-2 
at 500, 1000, and 1500 nL dosages, Related to Figure 2.
a-c, Representative maximum intensity projection images of dentate gyrus in the hippocampus injected 
with BATTLE-2 at 500, 1000, and 1500 nL dosages of mixed lentiviruses. Scale bar represents 10 µm. 
d, Quantification of the percentage of cells expressing fluorescent proteins in the dentate gyrus injected 
with BATTLE-2 (left, 500 nL; middle, 1000 nL; right, 1500 nL). Red, green, and yellow represent the 
percentage of cells expressing mCherry-positive, YFP-positive, and YFP- and mCherry- double-
positive granule neurons, respectively.
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Figure S5. Recombinase-specific transgene expression of Cre-, FLPO-, and Dre-dependent AAV,  
Related to Figure 3.
a, Representative confocal image of dentate gyrus in hippocampus after injections of AAV-Ef1a-DIO-
mCherry, AAV-EF1a-F-flex-YFP, and AAV-Ef1a-dDIO-mTFP. b, Representative confocal image of 
dentate gyrus in hippocampus after injections of lentivirus expressing Cre recombinase, AAV-Ef1a-
DIO-mCherry, AAV-EF1a-F-flex-YFP, and AAV-Ef1a-dDIO-mTFP. c, Representative confocal image 
of dentate gyrus in hippocampus after injections of lentivirus expressing FLPO recombinase, AAV-
Ef1a-DIO-mCherry, AAV-EF1a-F-flex-YFP, and AAV-Ef1a-dDIO-mTFP. d, Representative confocal 
image of dentate gyrus in hippocampus after injections of lentivirus expressing Dre recombinase, 
AAV-Ef1a-DIO-mCherry, AAV-EF1a-F-flex-YFP, and AAV-Ef1a-dDIO-mTFP. Scale bar represents 20 
µm.
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Figure S6. Triple splittable allocations of YFP, mTFP, and mCherry to granule neurons injected 
with BATTLE-2.1 at 500, 1000, and 1500 nL dosages, Related to Figure 3.
a-c, Representative maximum intensity projection images of dentate gyrus in the hippocampus injected 
with BATTLE-2.1 at 500, 1000, and 1500 nL dosages of mixed lentiviruses. Scale bar represents 10 µm. 
d, Quantification of the percentage of cells expressing fluorescent proteins in the dentate gyrus injected 
with BATTLE-2.1 (left, 500 nL; middle, 100 nL; right, 1500 nL). Red, blue, green, yellow, and purple 
represent the percentage of cells expressing mCherry-positive, mTFP-positive, YFP-positive, YFP- and 
mCherry- double-positive, and mTFP- and mCherry- double-positive granule neurons, respectively. 

10 μm



Expansion

a

b YFP mCherry mCherry

mCherry mCherry

c

d e

YFP

YFP YFP

BATTLE-1

BATTLE-1EX

Figure S7. Comparison of sample images between pre- and post-expansion in BATTLE-1EX, 
Related to Figure 4.  
a, Schematic images of pre- and post-expansion samples in BATTLE-1EX. b and c, Representative 
maximum intensity projection 2D images of hippocampal pyramidal neurons were compared between 
pre-expansion (b) and post-expansion (c). Scale bars: 50 μm. d and e, Magnified views of boxed 
regions in (b) and (c), respectively.
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Figure S8. Other representative images of high-resolution imaging of DG-CA3 synapses in the 
hippocampus using BATTLE-1EX, Related to Figure 4.  
a and b, Representative confocal image of DG-CA3 synapses using BATTLE-1EX. c, Line profiling 
analysis of boxes in a and b. d and e, Another representative confocal image of DG-CA3 synapses 
using BATTLE-1EX. f, Another line profiling analysis of boxes in d and e. Scale bars represent 500 nm.



Transparent Methods 

Experiments were conducted in accordance with Kansai Medical University 

regulations and approved by the committee on Animal Care. Mice were housed as 2–5 

littermates per cage with a regular dark-light cycle and access to water and food. Post-

surgery mice were individually housed. 

 

Generation of viruses 

To create the lentivirus-CamKIIa (1.3 kb)-FRT5-iCre-FRT5-WPRE vector, a 

synthesized transgene FRT5-iCre-FRT5 was inserted into the BamHI-EcoRI site of the 

lentiviral backbone vector (Addgene 20943). Then, a synthesized transgene loxN-FLPO-

loxN was also inserted into the BamHI-EcoRI site of the lentiviral backbone vector 

(Addgene 20943) to create lentivirus-CamKIIa(1.3 kb)-loxN-FLPO-loxN-WPRE vector. 

For BATTLE-2 viral Cre vectors, a synthesized transgene BamHI-FRT5-rox-AgeI was 

inserted into the BamHI-AgeI site of lentivirus-CamKIIa(1.3 kb)-FRT5-iCre-FRT5-

WPRE vector.  

Then, a synthesized transgene NheI-rox-FRT5-EcoRI was inserted into the 

Nhe-EcoRI site of lentivirus-CamKIIa(1.3 kb)-FRT5-rox-iCre-FRT5-WPRE vector. For 

BATTLE-2 viral FLPO vectors, synthesized transgene BamHI-loxN-rox-AgeI was 



inserted into the BamHI-AgeI site of lentivirus-CamKIIa (1.3 kb)-loxN-FLPO-loxN-

WPRE vector. A synthesized transgene NheI-rox-loxN-EcoRI was inserted into the NheI-

EcoRI site of lentivirus-CamKIIa (1.3 kb)-loxN-rox-FLPO-loxN-WPRE vector to create 

the lentivirus-CamKIIa(1.3 kb)-loxN-rox-FLPO-rox-loxN-WPRE vector.  

For BATTLE-2 viral shadow Dre vectors, a synthesized transgene BamHI-

FRT5-loxN-Dre-LoxN-FRT5-EcoRI was inserted into the BamHI-EcoRI site of the 

lentivirus-CamKIIa (1.3 kb) backbone vector to create the lentivirus-CamKIIa (1.3 kb)- 

FRT5-loxN-Dre-LoxN-FRT5-WPRE vector. These five lentiviruses were packaged at 

Gunma University. For AAV vectors, a synthesized transgene NheI-YFP-BSrGI was 

inserted into the NheI-BSrGI site of AAV F-Flex backbone vector (Addgene 60661) to 

create the AAV-EF1a-F-flex-YFP vector. A synthesized transgene KpNI-Rox12-Rox2-

speI-reverse complement mTFP-reverse complement Rox12-reverse complement Rox2-

EcoRI was inserted into the KpnI-EcoRI site of pAAV-EF1a-double floxed-

hChR2(H134R)-EYFP-WPRE-HGHpA vector (Addgene 20298) to create AAV-Ef1a-

dDIO-mTFP. AAV-Ef1a-DIO-mCherry (Addgene Plasmid 47636), AAV-EF1a-F-flex-

YFP, and AAV-Ef1a-dDIO-mTFP were packaged at Gunma University. 

 

Stereotaxic injections of viruses 



Mice were anesthetized with isoflurane and placed in a stereotaxic apparatus 

(World Precision Instruments). Tapered glass capillaries were processed by Micropipette 

Puller (Sutter). The tapered glass capillary and Hamilton syringe with a 26-gauge needle 

were filled with mineral oil and used to inject the viruses that were injected into the 

hippocampal DG-CA2-3 area in the right hemisphere at the predetermined coordinates (-

1.94 mm AP, +2.14 mm ML, -2.32 mm DV) from the bregma. For BATTLE-1 viruses, 

adult mice were infected with 1 µL mixed lentiviruses (lenti-CamKIIa-FRT5-Cre-

FRT5:lenti-CamKIIa-loxN-FLPO-loxN=1:1 [each virus consisted of 5×10E8 copies] or 

lenti-Cre:lenti-FLPO=1:0.01 [5×10E8 and 5×10E6 copies, respectively]) with the first 

injections. For BATTLE-1 virus dosage experiments, adult mice were infected with 500 

nL or 1500 nL mixed lentiviruses (lenti-CamKIIa-FRT5-Cre-FRT5:lenti-CamKIIa-loxN-

FLPO-loxN=1:1). 

Three weeks later, AAV-EF1a-DIO-mCherry (1 µL, titer: 1.43×10E13) and 

AAV-EF1a-DIO-YFP (1 µL, titer: 1.43×10E13) were mixed and injected at the same sites 

used for the first injections. The mice were then perfused 1 week after the second 

injections. For BATTLE-2 virus injections for splitting transgene expression, adult mice 

were infected with BATTLE-2 lentiviruses (1 µL, Lenti-CamKIIa-FRT5-rox-Cre-

FRT5:lenti-CamKIIa-loxN-rox-FLPO-rox-loxN:lenti-CamKIIa FRT5-loxN-Dre-loxN-



FRT5=1:1:1, each virus consisted of 3×10E8 copies) with the first injections. For 

BATTLE-2 virus dosage experiments, adult mice were infected with 500 nL or 1500 nL 

mixed lentiviruses (Lenti-CamKIIa-FRT5-rox-Cre-FRT5:lenti-CamKIIa-loxN-rox-

FLPO-rox-loxN:lenti-CamKIIa-FRT5-loxN-Dre-loxN-FRT5=1:1:1). Three weeks later, 

AAV-EF1a-DIO-mCherry and AAV-EF1a-DIO-YFP (both 1 µL, titer: 1.43×10E13) were 

mixed and injected at the same sites used for the first injections. The mice were perfused 

1 week after the second injections. For BATTLE-2.1 triple-color virus experiments, adult 

mice were infected with 500 nL or 1000 nL or 1500 nL mixed lentiviruses (Lenti-

CamKIIa-FRT5-rox-Cre-FRT5:lenti-CamKIIa-loxN-rox-FLPO-rox-loxN:lenti-CamKIIa 

FRT5-loxN-Dre-loxN-FRT5=1:1:1). Three weeks later, AAV-EF1a-DIO-mCherry, 

AAV-EF1a-fFlex-YFP, and AAV-Ef1a-dDIO-mTFP (all 667 nL, titer: 1.81×10E13) were 

mixed and injected at the same sites used for the first injections. For crosstalk control 

experiments, AAV-EF1a-DIO-mCherry, AAV-EF1a-fFlex-YFP, and AAV-Ef1a-dDIO-

mTFP (all 667 nL, titer: 1.81×10E13) were mixed and injected into the hippocampus. The 

mice were then perfused 1 week after the second injections. 

For crosstalk recombinase experiments, adult mice were infected with 1 µL 

lenti-CamKIIa-FRT5-loxN-Dre-loxN-FRT5 or lenti-CamKIIa-FRT5-rox-Cre-rox-FRT5 

or lenti-CamKIIa-loxN-rox-FLPO-rox-loxN (viruses consisted of 0.5×10E9 copies). Then, 



AAV-EF1a-DIO-mCherry, AAV-EF1a-fFlex-YFP, and AAV-Ef1a-dDIO-mTFP (all 667 

nL, titer: 1.81×10E13) were injected on the same day as the first injections. The mice were 

then perfused 1 week after the second injections. 

For BATTLE-2 virus injections of multi-sparse transgene expressions, adult 

mice were infected with 1 µL lenti-CamKIIa-FRT5-loxN-Dre-loxN-FRT5:lenti-

CamKIIa-FRT5-rox-Cre-FRT5:lenti-CamKIIa-loxN-rox-FLPO-rox-loxN=200:1:10 

(viruses consisted of 1×10E9, 5×10E6, and 5×10E7 copies, respectively). Then, AAV-

EF1a-DIO-mCherry and AAV-EF1a-DIO-YFP (1 µL, titer: 1.43×10E13) were injected 

on the same day as the first injections. The mice were perfused 2 weeks after the viral 

injections. Adult mice were infected with conventional AAV-CAG-GFP viruses 

(Addgene 37825-AAVrg, 1 µL, titer 1×10E13) and then they were perfused 7 days later. 

 

Immunohistochemistry  

Adult mice were anesthetized with a mixture of medetomidine, midazolam, and 

butorphanol, and then transcardially perfused with ice-cold 4% (w/v) paraformaldehyde 

(PFA) in phosphate-buffered saline (PBS) using a peristaltic pump. Then, the brains were 

post-fixed in the same solution for 24 h, transferred to 30% (w/) sucrose in PBS, and 

embedded in optimal cutting temperature compound (Sakura). The brains were then 



frozen with isopentane and liquid nitrogen and sectioned using a cryostat (Leica, 60 µm-

thick sagittal sections).  

For CamKIIa staining, freely floating sections were incubated with 3% (v/v) 

goat serum in 0.3% Triton X-PBS for 1 h, followed by incubation with primary mouse 

monoclonal antibody against CamKIIa (1:300, Abcam ab22609) in 3% goat serum plus 

0.3% Triton X-PBS overnight at 4 °C. After rinsing the sections three times with 0.3% 

Triton X-PBS for 15 min, they were incubated with secondary anti-mouse goat antibody 

conjugated with Alexa Fluor 647 Plus (1:1000, A32728, Thermo Fisher Scientific) for 2 

h.  

Then, the sections were rinsed three times with 0.3% Triton X-PBS for 15 min. 

Co-expression of CamKIIa and fluorescent proteins was determined based on their 

expressions in the cytoplasm of cell bodies in confocal images captured using an Olympus 

confocal microscope (FV3000). All sections were mounted on glass slides using Vector 

shield and visualized using 4',6-diamidino-2-phenylindole (DAPI, Vector Lab).  

 

Fluorescence imaging 

Fluorescence images were acquired using an inverted confocal fluorescent 

microscope (Zeiss, LSM700, LSM710 and Olympus FV3000) using 10×, 20×, 40×, 60×, 



and 63× objectives. Maximum intensity projection images were generated using Zenblack 

software (Zeiss), FV31S-SW software (Olympus), and Imaris 9.1 (Bitplane). 3D volume 

rendering (Figs. 3e, f, and 4) was generated after background subtraction using Imaris 9.1 

(Bitplane). 

 

Analysis of splitting expression of fluorescent protein 

To analyze the splitting allocation of YFP and mCherry, fluorescent images 

were captured using confocal microscopy (Zeiss LSM700) with a 20× objective lens. To 

analyze the splitting allocation of mTFP, YFP, and mCherry in triple-color BATTLE-2.1 

experiments or crosstalk experiments, fluorescent images were captured using confocal 

microscopy (Zeiss LSM710) with a 20× objective lens, 458 nm laser, 514 nm laser, and 

561 nm laser. Fluorescence intensity was measured from square regions (3.9 µm × 3.9 

µm) on the cell bodies of DG granule and CA2-3 neurons in the confocal images (400 µm 

× 400 µm × 2 µm) using the ZenBlue 2012 software (Zeiss). The co-expressions of mTFP, 

YFP, and mCherry were determined when both fluorescence intensities were higher than 

the background fluorescence (Arbitrary unit 10). 

 

BATTLE-1EX (expansion microscopy of BATTLE-1) 



ExM (expansion microscopy) was performed according a published method with minor 

modifications (Asano et al., 2018). Free-floating sections were subjected to antigen 

retrieval in citrate buffer (10 mM citric acid plus 0.05% Tween 20, pH 8.0) at 80 °C for 

30 min, and washed four times with PBS for 5 min. Sections were permeabilized and 

blocked with blocking buffer containing 1% bovine serum albumin (BSA), 0.1% Triton 

X-100 in PBS for 1 h at 26 °C. Sections were then incubated with primary chicken 

polyclonal antibody to GFP (1:500, ab13970, Abcam), rat monoclonal antibody to RFP 

(1:100, 5f8-100, Chromotek), mouse monoclonal antibody to Bassoon (1:100, ab82958, 

Abcam), and rabbit polyclonal antibody to Homer1 (1:100, 160003, SYSY) in blocking 

buffer for 2 days at 4 °C, followed by washing four times with blocking buffer for 5 min.  

Sections were incubated with secondary anti-chicken donkey antibody 

conjugated with Alexa488 dye (1:200, 703-545-155, Jackson), anti-rat donkey antibody 

conjugated with Alexa568 dye (1:100, ab175710, Abcam), anti-mouse goat antibody 

conjugated with Atto647N dye (1:100, 50185, Rockland), and anti-rabbit goat antibody 

conjugated with CF405M dye 1:100, 20373, Biotium) in blocking buffer for 1 day at 4 °C, 

washed sequentially three times each with blocking buffer, high-salt PBS (PBS+350 mM 

NaCl), and PBS for 5 min each time. Anchoring treatment was performed in Acryloyl-X 



(0.1 mg/mL) in PBS for more than 6 h at room temperature, washed five times with PBS 

for 5 min each time.  

For gelation, sections were immersed in the gelling solution (monomer solution 

[8.6% sodium acrylate, 2.5% acrylamide, 0.15% N,N′-methylenebisacrylamide, and 

11.7%  NaCl in PBS] mixed with ammonium persulfate, tetramethylethylenediamine, 

and 4-hydroxy-TEMPO at a ratio of 47:1:1:1) for 30 min on ice. Sections were then 

transferred to the gelling chamber (samples were sandwiched by a glass slide and cover 

slip on either side of the samples for spacers), and gelled for 2 h at 37 °C.  

The hippocampal regions were trimmed from gelled sections and incubated with 

digestion buffer (50 mM Tris-HCl [pH 8.0], 23 mM ethylenediaminetetraacetic acid 

[EDTA], 0.5% Triton X-100, 0.8 M guanidine HCl, and 8 U/mL ProK) overnight, washed 

three times with PBS for 5 min, and then stored at 4 °C in the dark until expansion. For 

expansion, samples were washed five times with water for 10 min before transferring to 

the imaging chamber where they were sandwiched between a coverslip and silicon sheets, 

with silicon sheets on either side as spacers. The magnification was calculated using 

physical distances of two landmark positions in the pre- and post-expansion images 

measured by Imaris 9.1 (Bitplane).  

 



Line profiling analysis of fluorescent intensities in whole synapses 

To quantify whole synaptic structures and the distributions of Homer and 

Bassoon, measurements were conducted on a boxed area (478 nm × 1094 nm) of the whole 

synaptic area. The line profiling analysis of fluorescent intensities of YFP, mCherry, 

Homer, and Bassoon was performed using the Image J program (National Institutes for 

Health [NIH]). 

Reproducibility 

All experiments were conducted more than three times. 
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