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Abstract

Protein misfolding, and subsequent aggregation have been proven as the leading cause of most known dementias. Many of these, in addition to
neurodegeneration, show profound changes in behaviour and thinking, thus, psychiatric symptoms. On the basis of the observation that pro-
gressive myoclonic epilepsies and neurodegenerative diseases share some common features of neurodegeneration, we proposed autophagy as
a possible common impairment in these diseases. Here, we argue along similar lines for some neuropsychiatric conditions, among them
depression and schizophrenia. We propose that existing and new therapies for these seemingly different diseases could be augmented with
drugs used for neurodegenerative or neuropsychiatric diseases, respectively, among them some which modulate or augment autophagy.
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Protein aggregation is present in
neurodegenerative and
neuropsychiatric disorders

Protein folding in cells is normally maintained by the action
of chaperones. When a mutation or cellular stress occurs [e.g.
acidification, increased temperature, increased reactive oxygen
species (ROS) generation, hypoxia], proteins can misfold and
aggregate.

Protein aggregation and amyloid fibril formation are at the core of
many neurodegenerative diseases (NDs) [1]. The original amyloid

cascade hypothesis [2] stated that the amyloid plaques formed by
amyloid beta (Ab) peptide deposit in brain cause a cascade of events
leading to the observed pathology of Alzheimer’s disease (AD). How-
ever, later work showed that intracellular soluble oligomers and pre-
fibrillar aggregates may be the actual neurotoxic agents. The severity
of the cognitive decline in AD correlated with levels of oligomers in
the brain, rather than the total Ab plaque burden [3].
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Protein aggregates share a common mechanism of damage to
neurons and glia. This includes impairment of mitochondria [4], slow-
ing of axonal transport [5] and oxidative stress [6]. Amyloid toxicity
is suggested to derive from the interaction of oligomers with mem-
branes and formation of channels (pores) [7].

Variations in Disrupted in Schizophrenia 1 (DISC1) gene is impli-
cated in major neuropsychiatric disorders (NPs), such as schizophre-
nia, bipolar disorder, depression and autism. DISC1 is expressed in
neuronal dendritic spines and controls spine and synapse develop-
ment [8]. It has a dual role in both progenitor proliferation and
post-mitotic neuronal migration that are regulated through (de)phos-
phorylation [9]. DISC1 forms dimers, octamers, higher oligomers and
insoluble aggregates in some chronic psychiatric diseases [10, 11]. It
was recently published that the formation of DISC1 aggregates [12]
led to a decrease of available soluble protein and a gain in toxic func-
tion by affecting axonal mitochondrial transport [13]. Furthermore, a
S704 mutant associated with major depression and schizophrenia
has a higher tendency to form aggregates [14] and another rare
sequence variant, R37W, was recently shown to directly impair
anterograde mitochondrial transport [15]. Furthermore, oxidative
stress was proposed to contribute to various cognitive impairments
in a transgenic DISC1 mouse model [16].

One of many toxic molecular mechanisms of protein aggregation
is sequestration of chaperones. Chaperones normally act as an effec-
tive first line of defence against misfolded proteins. Unfolded or mis-
folded proteins thus should not present a problem for healthy
neurons or other cells. Namely, regulatory function of molecular
chaperones is tightly connected with other pathways of protein degra-
dation if this protective mechanism fails. Misfolded proteins and
aggregates are cleared from the cell by either ubiquitin–proteasome
system (UPS) or autophagy.

Role of the UPS and autophagy in NDs

Sequestration and degradation of soluble oligomers and aggregates
of misfolded proteins by the UPS and autophagy are a well-regulated
pro-survival response. Whereas autophagy is mainly responsible for
the degradation of long-lived proteins and is largely non-specific, the
UPS is used for rapid and specific degradation of proteins, mediated
by polyubiquitination [17].

In autophagy, cytoplasmic components, whole organelles, viruses
and proteins are delivered to the lysosomal compartment for degrada-
tion. Autophagy has been mainly described as non-selective degrada-
tive pathway induced by starvation; however, autophagy is needed
more than just for nutrient management [18]. One of the main func-
tions of autophagy is to enforce intracellular quality control by selec-
tive disposal of protein aggregates and damaged organelles (for
review see [19]). In fact, ablation of two genes essential for auto-
phagy, atg5 and atg7, leads to accumulation of ubiquitin-positive
aggregates and progressive loss of neurons in mice [20, 21].

Macroautophagy (hereafter referred to as autophagy) starts with
engulfing a portion of the cytoplasm surrounded by an isolation
membrane into a cup-shaped phagophore, eventually forming a new
vacuole known as an autophagosome. Next step is fusion of the

autophagosome with lysosome. This step can be inhibited by dys-
function in the lysosomal pathway and/or the susceptibility of the
lysosome to oxidative stress. When cells are overwhelmed by ROS
accumulation, the resulting oxidative stress can additionally destroy
mitochondrial integrity and lead to apoptosis.

The UPS and autophagy are complementary in their mode of action
[22]. When an increased accumulation of misfolded proteins over-
whelms the UPS, ubiquitinated, misfolded proteins are transported to
the nucleus where they form aggresomes, which are predominantly
cleared by autophagy [23, 24]. Many NDs are characterized by an
accumulation of ubiquitinated misfolded protein deposits, pointing to a
failure of UPS to clear them. At this stage, misfolded proteins accumu-
lated in aggresomes should be further degraded by autophagy that is
less specific than the UPS. On the other hand, in several NDs, autopha-
gic vacuoles (autophagosomes or autophagolysosomes) accumulate,
suggesting lysosomal dysfunction. One of the dynein motor proteins
was shown to be essential for autophagy and protein clearance [25].
Direct impairment of autophagy was recently observed in Parkinsons’s
disease (PD) and amyotrophic lateral sclerosis (ALS) upon inhibition
or knockdown of dyneins respectively [26, 27]. Similarly, it was
recently suggested that the impairment of the microtubule transport in
an Alzheimer’s disease (AD) Drosophila model is because of defective
phosphorylation of the tau protein [28]. On the other hand, in Hunting-
ton’s disease (HD), it seems that the physiological rate of autophagic
turnover remains intact; however, the cells are unable to recognize the
cytosolic deposits [29].

We propose that cellular stress in the form of ROS or general met-
abolic imbalance/acidification could cause proteins to misfold and
aggregate. This would in turn diminish or overwhelm degradation and
chaperone machineries. Because of autophagy and mitophagy impair-
ment, cells would be unable to clear aggregates and damaged organ-
elles. Additional mitochondrial dysfunction, excitotoxicity and pore
formation lead to increased intracellular Ca2+ levels, which is a
characteristic feature of both necrosis and apoptosis.

Possible entry points for targeting
autophagy

Autophagy is regulated by intracellular and extracellular signals medi-
ated by at least two complexes: (1) Atg1/unc-51-like kinase (ULK)
complex that acts downstream of the mammalian target of rapamycin
(mTOR) complex 1 (mTORC1) and (2) Beclin 1/class III phosphatidyl-
inositol 3-kinase (PI3K) complex. mTORC1 (a polyprotein complex
that contains mTOR Ser/Thr kinase) regulates cell growth, transcrip-
tion, translation and autophagy [30], is inhibited by starvation, i.e.
amino acids, growth factors, the cellular AMP:ATP ratio and by
calcium signalling.

Because the signalling pathways of autophagy are very complex
and still not fully understood, there are many potential entry points
where the pathways could be modulated. Rapamycin, one of the best
known inducers of autophagy through mTOR inhibition, has shown
promise in a fruit fly model of HD [31] and other proteinopathies like
PD [32] and in AD [33] and prion [34, 35] mouse models (for review
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see [36]). Furthermore, caloric restriction and resveratrol both pro-
mote Sirtuin1 (SIRT1)-dependent autophagy, which was shown to be
neuroprotective in models of AD and ALS [37]. Resveratrol was addi-
tionally shown to reduce oxidative stress and neuronal cell death [38]
and protect from Ab neurotoxicity in a rat model [39]. Interestingly,
acetylase inhibitor spermidine stimulated autophagy independent of
SIRT1. In spite of the difference in the primary targets of resveratrol
and spermidine, both agents activate convergent pathways and elicit
similar changes in the (de)acetylation pattern of proteins [40]. Sper-
midine was found to reduce neuron loss in ALS mouse model [41]
and improve memory in a HD rodent model [42]. Trehalose is another
autophagy-inducing component acting independently of the mTOR
pathway. It has shown promise in models of HD [43], ALS [44], tau-
opathies [45, 46] and prion disease [47]. It was recently reported that
astemizole, a drug already approved for human use, inhibited patho-
logical prion protein (PrPSc) replication and induced autophagy
through an unknown mechanism [48].

On the other hand, it was reported that a mouse ALS model pre-
sented exacerbated apoptosis of neuronal cells and disease progres-
sion after treatment with rapamycin [35]. Specific pathogenesis of the
disease and the fact that rapamycin is primarily used as an immuno-
suppressant may underlie the devastating effects on neurons as other
previously mentioned autophagy inducers improved cell survival in
ALS models. This also points out the importance of finding the right
target of the complex autophagic machinery.

One should also be aware of counterproductive effects of auto-
phagy boosting in specific neurodegenerative cases. This especially
holds true in cases when an important component of the autophagic
process is missing downstream of the activation complexes. In this
case, boosting autophagic activation may lead to an increased accu-
mulation of non-degradable autophagosomes and even contribute to
the aetiology of the disease.

Autophagy impairment is shared
between NDs, PMEs and
neuropsychiatric diseases

Neurodegenerative diseases, whose frequency increases with ageing,
place a considerable burden on Western societies. Whereas NDs such
as AD and PD are in most cases sporadic and are associated with
multiple gene abnormalities, progressive myoclonus epilepsies
(PMEs) [49] are monogenic, familial syndromes. PMEs, among them
Unverricht–Lundborg disease (EPM1) and Lafora disease (EPM2), are
a group of different genetic generalized epilepsies with myoclonic and
tonic–clonic seizures, dementia and progressive neurodegeneration
of grey matter [50].

On the basis of the observation that PMEs and NDs share com-
mon features of neurodegeneration, we previously proposed auto-
phagy as such a possible common impairment [51]. Here, we argue
along similar lines for some NPs, among them depression and
schizophrenia.

Overlapping disease signs between NDs and NPs can be observed
in both human patients and animal models. Several neuropsychiatric

comorbidities like depression and apathy have been observed in
patients with NDs [51]. Abnormalities in social behaviour have been
observed also in mouse models of PD [52], AD [53] and HD [54]. Dis-
eases like schizophrenia and bipolar disorder are considered more
neurodevelopmental and the neurodegenerative hypothesis is still
controversial [55, 56], although schizophrenic mouse models are
known to exhibit thinning of the cerebral cortex [57].

It was recently reported that there is a reduction in Beclin 1, one
of the key proteins in autophagy, mRNA levels in the hippocampus of
schizophrenia patients [58]. Additionally, a novel neurological and
psychiatric disorder was recently described and termed Beta-propeller
Protein Associated Neurodegeneration (BPAN). Patients are described
with intellectual disability, depression disorders, epileptic seizures
and parkinsonism. The underlying cause of BPAN is a mutation in the
WD repeat containing protein 45 (WDR45) gene, coding for WIPI4
protein [59]. WIPI4 belongs to the WD-repeat protein Interacting with
Phosphoinosides (WIPI) family that is important for autophagosomal
membrane formation.

An antidepressant activity of rapamycin was reported in an animal
model, although the authors proposed other intracellular interactions
besides mTOR inhibition contributed to the effect [60]. Similarly, anti-
depressant-like effects were observed in mice with manic-like behav-
iours after treatment with trehalose [61].

Lithium, a classic mood stabilizer, was proposed for treatment of
HD [62], ALS [63], and was shown to reduce PrPSc through the
induction of autophagy [64]. Together with two other mood-stabiliz-
ing and anticonvulsant drugs, valproic acid (VPA) and carbamazepam
(CBZ), lithium was suggested to indirectly induce autophagy through
inhibiting inositol monophosphatase (IMPA1) and other enzymes in
the phosphatidylinositol pathway [65, 66]. It was shown that lithium
and valproate have a synergistic neuroprotective effect in an ALS
mouse model [67] and the effect of lithium was matched with
increased expression of phosphoinositide phosphatase PTEN, a posi-
tive regulator of autophagy [68]. Unfortunately, several follow-up
studies on mice and patients found no significant effect of lithium on
the ALS disease pathology (reviewed in [69]). On the other hand,
other studies show effects of lithium and CBZ in mouse models of
tauopathy [70] and AD [71].

A link between Wnt and mTOR
signalling and link to
neurodegenerative and
neuropsychiatric diseases

Wnt and mTOR signalling pathways are tightly linked to autophagy,
which is their common downstream event (Fig. 1).

Wnt signalling is involved in the development of the brain and
spinal cord and in the extension of numerous subpopulations of sen-
sory and motor neurons. However, some central nervous system
(CNS)-related diseases in adulthood have also been associated with
components of the Wnt signalling pathway, highlighting the funda-
mental role of this pathway in the proper functioning of the mature
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CNS. Recently, it was shown that both autophagy and proteasome-
mediated degradation negatively regulate Wnt signalling by promoting
degradation of Dishevelled (Dsh), a centre mediator in Wnt signalling
pathway [72]. Dsh inhibits glycogen synthase kinase 3 beta (GSK3b),
which, when active, inhibits b-catenin – another important mediator
of the Wnt pathway. b-catenin was shown to be negatively regulated
by FIP200, a known positive regulator of autophagy, through ubiquiti-
nation [73]. b-catenin is also a negative regulator of the LKB1/AMPK
pathway that, when activated, suppresses mTOR signalling [74]. Fur-
thermore, Wnt also activates mTOR signalling through inhibition of
GSK3b. When GSK3b is active, it phosphorylates tuberous sclerosis
protein 2 (TSC2) and suppresses mTOR [75].

DISC1 was shown to determine the proliferation and fate of neural
progenitors by stabilizing b-catenin through a direct interaction with
GSK3b and regulation of b-catenin activity [76]. On the other hand,
DISC1 suppression in neurons led to overactivation of Akt signalling.
This effect could be prevented by mTOR inhibition, a downstream tar-
get of Akt [77]. Of note, DISC1 loss of function as a result of oligo-

merization and aggregation is implied in schizophrenia and some
other neuropsychiatric diseases.

Although activation of Wnt signalling has been proven as benefi-
cial in cell and animal models [78–80], conflicting results are being
reported. For example, different modes of cytotoxicity have been sug-
gested for Ab. Firstly, an antagonistic effect of Ab on the canonical
Wnt/b-catenin signalling was reported [81] and just recently, other
authors reported a positively regulated non-canonical Wnt/PCP (pla-
nar cell polarity) signalling in a Ab-based mouse model [82].

Nevertheless, data from other ND models suggest that there is, in
fact, an increase in activation of the canonical Wnt pathway. Evidence
for a direct interaction between the PD-associated protein parkin
(ubiquitin E3 ligase) and b-catenin has been published; increased lev-
els of total and active (dephosphorylated) b-catenin were found in
mice lacking parkin. This increase in Wnt/b-catenin signalling resulted
in an increase in dopaminergic (DA) neuron proliferation and death,
suggesting that a decrease in the degradation of b-catenin may lead
to loss of DA neurons as they try to re-enter the cell cycle [83].

Fig. 1 The signalling pathways connected to autophagy. Phosphatidylinositol signalling pathway is regulated by Class I phosphoinositide 3-kinases
(PI3Ks), which are activated by kinase receptors like insulin receptors (IR) and responsible for the production of phosphatidylinositol (3,4,5)-triphos-

phate (PIP3) from phosphatidylinositol 4,5-bisphosphate (PIP2). Phospholipase C (PLC) cleaves the PIP2 into diacyl glycerol and inositol 1,4,5-tris-

phosphate (IP3). Inositol polyphosphate 1-phosphatase (IPPase) catalyses inositol bisphosphate (IP2) to inositol monophosphate (IP), which is

further dephosphorylated by inositol monophosphatase (IMPase) to inositol. High-affinity inositol transport is additionally catalysed by the active
myo-inositol/H+ transporter (MIT). MIT, IPPase and IMPase are all inhibited by carbamazepine (CBZ), valproic acid (VPA) and lithium (Li+). PI3Ks
have been linked to an extraordinarily diverse group of cellular functions through regulation of the Akt/TSC1-TSC2/mTOR pathway. Disrupted in

Schizophrenia 1 (DISC1) in its wild-type form also negatively regulates both GSK3b and Akt (also known as Protein Kinase B, PKB). Tuberous scle-
rosis protein 1 and 2 (TSC1/2) form a complex that like rapamycin (Rap) inhibits mammalian target of rapamycin kinase (mTOR). Wnt signalling

activation is mediated through binding of a Wnt-protein ligand to a Frizzled family receptor, which passes the biological signal to the protein Dishev-

elled (Dsh). Dsh negatively regulates glycogen synthase kinase-3 beta (GSK3b), which alternatively inhibits b-catenin, one of the central proteins of

the Wnt signalling pathway. b-catenin, however, negatively regulates LKB1/AMPK pathway (liver kinase B1/5’ adenosine monophosphate-activated
protein kinase) that indirectly regulates autophagy.
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Mutations in malin, an E3 ubiquitin ligase, are associated with the
appearance of the severest type of PME, Lafora disease. It was
recently shown that a decrease in malin levels significantly increased
the levels of Dsh and up-regulated Wnt signalling. Overexpression of
malin enhanced the degradation of Dsh through K48- and K63-linked
ubiquitination that are linked to both proteasome and autophagy deg-
radation [84].

Mutations in Prickle-1 are associated with a form of progressive
myoclonic epilepsy, similar to EPM1. Prickle is part of the non-canon-
ical Wnt/PCP pathway and was shown to interact with RE1-silencing
transcription factor, an essential regulator of neuronal genes. Deplet-
ing Prickle-1 gene in the zebra fish embryo altered the convergent
extension movements essential for gastrulation and disrupted normal
calcium signalling [85]. Furthermore, Prickle-1 was capable of lower-
ing Dsh in vitro and negatively regulated Wnt/b-catenin pathway by
promoting Dsh degradation through ubiquitination in liver cancer
(Prickle-1 was also found to be underexpressed in human hepatocel-
lular carcinoma) [86].

Concluding remarks

1 We propose that an impaired autophagy could be involved in
neuropsychiatric diseases similarly to NDs, such as AD, PD, ALS
and prion diseases. A vicious circle may perpetuate: autophagy is
compromised, protein aggregates accumulate and eventually

overload cellular degradation and transport systems. These
impairments could also explain an increase in oxidative stress.
2 It was shown for major mental disorders involving DISC1
that they have increased protein aggregation and oxidative
stress was shown.
3 In accordance, augmenting autophagy could be beneficial for
several proteinopathies and neuropsychiatric conditions. Indirect
evidence suggests that in addition to lithium, anticonvulsant
drugs and mood stabilizers such as CBZ and VPA both posi-
tively influence mood and stimulate autophagy. In the light of
recent findings that DISC1, protein implicated in major NPs,
forms aggregates these drugs could also be used to augment
cognition in schizophrenia and depression.
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