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Abstract.—Species delimitation and species tree inference are difficult problems in cases of recent divergence, especially
when different loci have different histories. This paper quantifies the difficulty of jointly finding the division of samples
to species and estimating a species tree without constraining the possible assignments a priori. It introduces a parametric
and a nonparametric method, including new heuristic search strategies, to do this delimitation and tree inference using
individual gene trees as input. The new methods were evaluated using thousands of simulations and 4 empirical data
sets. These analyses suggest that the new methods, especially the nonparametric one, may provide useful insights for
systematists working at the species level with molecular data. However, they still often return incorrect results. [Brownie;
gene tree parsimony; gene tree species tree; speciation; species delimitation.]

Two of the main goals of systematics are divid-
ing the diversity of life into species and discovering
the phylogenetic relationships of these species. Both
can be difficult to achieve. Processes such as lineage
sorting, introgression, and undetected gene duplication
may cause gene trees to disagree with the true tree of
species, potentially obscuring the species tree signal
(Fitch 1970; Goodman et al. 1979; Avise 1983; Tajima
1983; Pamilo and Nei 1988; Doyle 1992; Hudson 1992;
Maddison 1997). For species delimitation, a systematist
must choose both a species concept and a criterion to
apply this species concept to data. Even if speciation
itself is effectively instantaneous, the time required for
sufficient evolutionary changes to appear to allow 2 dis-
tinct lineages to be recognized will not be (De Queiroz
2007). This causes delimitation of species to be difficult.

These two questions are biologically linked but rarely
methodologically coupled. If intervals between speci-
ation events were long enough that all species were
monophyletic for all their genes, once the species were
correctly delimited, any species could be adequately
represented by a single individual on a phylogeny. In
reality, putatively independently evolving lineages are
often not monophyletic (Funk and Omland 2003). The
phylogeny of species, unless they are defined under
a strict genealogical species concept (GSC; Baum and
Shaw 1995; Hudson and Coyne 2002), will have an as-
sortment of independent evolutionary lineages, which
will probably include paraphyly for at least some of
their genes. Here, I attempt to unite these two questions
as the more general one of jointly inferring the species
boundaries and the species tree. I calculate the com-
putational complexity of the problem, develop and
implement methods for addressing it, and perform sim-
ulations and analyses across hundreds of parameter
combinations to evaluate the feasibility. I also anal-
yse 4 empirical data sets, Drosophila (Machado et al.
2002; Machado and Hey 2003), Manacus (Passeriformes)
(Brumfield et al. 2008), Lactarius fungi (Nuytinck and

Verbeken 2007), and Melanoplus grasshoppers (Carstens
and Knowles 2007), to evaluate the performance of the
new methods.

MATERIALS AND METHODS

Problem Definition

Given a set of sequences from multiple individuals,
the general problem is to allocate those individuals into
putative species and estimate the species tree. This so-
lution, the species tree with assignment of samples to
species, is termed the “delimited species tree.” Opti-
mally, a method will assign species and estimate the
species tree correctly, in a statistically and computa-
tionally efficient manner. An estimate of the delimited
species tree may differ from the true delimited species
tree in topological error and/or through assignment
of individuals to the wrong species. The latter might
happen by merging 2 species that should be 1, splitting
1 true species into 2, having an individual of 1 species
assigned to a different species, or a complex mixture of
these. This is a more difficult problem than is typically
addressed in DNA barcoding approaches (Hebert et al.
2003; Tautz et al. 2003), where 1 or more unknown in-
dividuals are assigned to existing species (Manel et al.
2005; Matz and Nielsen 2005; Abdo and Golding 2007;
Zhang et al. 2008).

Most methods in systematics work on restrictions
of this general problem, such as assuming that assign-
ments to species are known (Nielsen and Wakeley 2001;
Carstens and Knowles 2007; Edwards et al. 2007; Liu
and Pearl 2007) or assuming that the gene tree matches
the species tree (Hebert et al. 2003; Pons et al. 2006).
I follow the approach of several recent authors (Pons
et al. 2006; Carstens and Knowles 2007; Knowles and
Carstens 2007; Mossel and Roch 2007; Kubatko et al.
2009), in restricting the problem using estimated gene
trees as input rather than by integrating across a set of
possible gene trees. The restricted problem still makes
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no assumptions about species assignment, species-tree
topology, or match between the gene trees and the
species tree. Thus, the restricted problem addressed
here is defined as follows: given a set of estimated gene
trees from multiple individuals, those individuals must
be split into putative species and the species tree must
be estimated. For the purposes of this paper, “speci-
ation” will be defined as occurring when gene flow
permanently stops between 2 populations.

Computational Complexity of the Problem

The task of finding the delimited species tree with
minimum total cost, given just a set of gene trees with
leaves unassigned to species, is computationally daunt-
ing. First, finding the optimal species tree given a set of
gene trees, with gene tree samples already assigned to
the species, is NP complete (Ma et al. 1998; Fellows et
al. 2003). Therefore, as with all NP-complete problems,
such as finding the most parsimonious tree given a set
of DNA sequences (Foulds and Graham 1982), there
are no known fast (polynomial time) algorithms guar-
anteed to find the solution, but verifying a solution is
relatively easy. Second, even the mapping of gene tree
leaves to species tree leaves is unknown. Thus, while
the number of possible bifurcating rooted topologies
for k samples is (2k−3)!

2k−2(k−2)! (Cavalli-Sforza and Edwards
1967), the number of possible species topologies and
assignments is far greater. Both the number and the
composition of terminals can vary (there can be from 1
to k species for a given set of k samples), and, for each
assignment of samples to species, there may be multiple
possible species-tree topologies. The number of possible
ways to subdivide n samples into k species is S(n, k),
where S(n, k) is a Stirling number of the second kind
(Abramowitz and Stegun 1972).

S(n, k) =
1
k!

k∑

i=0

(−1)k−i k!
(i− k) ! i!

(i)n. (1)

Thus, for n samples being assigned to an unknown num-
ber of species, there are

1 +
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1
k!
•
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possible rooted bifurcating species topologies (n >2).
For example, for 3 samples, there are 3 possible rooted
bifurcating gene topologies, but 7 possible delimited
species trees. For 7 samples, there are 10,395 gene
topologies but 51,157 possible species topologies and
assignments. For 30 samples, there are 4.95 × 1038

gene topologies but 2.95 × 1041 species topologies and
assignments.

Proposed Methods

I develop 2 new methods of delimited species tree
inference. These new approaches start with inferred

gene trees rather than actual sequence data, like many
others in the literature (Maddison and Knowles 2006;
Pons et al. 2006; Carstens and Knowles 2007; Knowles
and Carstens 2007; Kubatko et al. 2009) and there-
fore differ from the “BEST” approach (Edwards et al.
2007; Liu and Pearl 2007; Liu et al. 2008) or impor-
tance sampling or related approaches that integrate
over the gene trees (Beerli and Felsenstein 1999, 2001;
Yang 2002; Rannala and Yang 2003). Thus, the gene trees
and delimited species trees are estimated sequentially
rather than jointly and a single optimum is used for
the gene tree. One approach follows naturally from the
work of Knowles and Carstens (Carstens and Knowles,
2007; Knowles and Carstens 2007) and seeks the de-
limited species tree that maximizes the probabilities of
the gene topologies. The second approach minimizes
intraspecific structure, which might indicate an under-
split species, and gene tree–species tree conflict, which
might indicate an oversplit species or incorrect species
topology. Both approaches use novel heuristic search
strategies and are implemented in the program Brownie
(O’Meara et al. 2006)

Approach 1: KC delimitation.—The first approach, called
“KC delimitation,” is a basic extension of Knowles and
Carstens (2007). It has roots in earlier literature (e.g.,
Maddison 1997) and seeks to find the delimited species
tree that maximizes the probability of the gene trees.
Knowles and Carstens (2007) used the program COAL
(Degnan and Salter 2005) to calculate this probability
and then used a likelihood-ratio test to compare 2 speci-
fied species topologies. This approach, and similar non-
parametric approaches (Maddison and Knowles 2006),
compares a small number of prespecified species topolo-
gies. For example, in the simulation done by Knowles
and Carstens (2007), 2 possible delimited species trees
are compared to decide whether a specified set of sam-
ples form 3 or 4 species. Had there been no knowledge
about the placement or assignment of any of the 20 sam-
ples, 6.03 × 1023 possible delimited species trees would
have had to be evaluated. The proposed extension takes
their method of calculating gene tree probabilities for
a given delimited species tree and comparing these
likelihoods between species trees and embeds it in a
heuristic search algorithm to find the optimal delimited
species tree without needing to prespecify it. Details of
the heuristic algorithm are below. I implemented the
Akaike information criterion (Akaike 1973, 1974) and
corrected Akaike information criterion (Sugiura 1978)
approaches for model selection. Likelihood-ratio tests
are not appropriate because most pairs of delimited
species trees are not nested models.

Two ways to calculate the probability of a gene tree
topology (no branch lengths) given a species tree (with
branch lengths) are available. The first is to explicitly
calculate this probability using equations from Degnan
and Salter (2005) for the multiple species case and equa-
tion 5.3 of Harding (1971) in the single species case.
Knowles and Carstens (2007) use COAL (Degnan and
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Salter 2005) to calculate these probabilities for specified
species trees. STEM (Kubatko et al. 2009) could be used
instead of COAL for calculating this probability if gene
trees with branch lengths, rather than just topologies,
were the intended input. I implemented this approach
using COAL, but some technical impediments made
the implementation currently impractical to use across
hundreds of analyses. Though analytical expressions
exist for calculating the probabilities of gene topologies
given species trees matching certain conditions (Degnan
and Salter 2005), these solutions may not exist for more
complex but realistic scenarios, like slowly diminishing
gene flow, geographic structure, or occasional intro-
gression after speciation. However, although develop-
ing analytical expressions may be difficult, simulating
gene trees under even complex speciation scenarios,
such as geographic structure and ongoing gene flow, is
quite feasible (Hudson 2002). The proportion of times a
gene tree is recovered in simulations using a particular
species tree can be taken as an estimate of its probability
given the species model. This approach is closely re-
lated to approximate Bayesian computation approaches
(Tavare et al. 1997; Beaumont et al. 2002), but simula-
tions are used just to approximate likelihoods (proba-
bility of the data, in this case gene topologies, given the
hypothesis) rather than posterior distributions. Similar
approaches have been applied in phylogenetics by Weir
and Schluter (2007) and Ree et al. (2005). The glaring
disadvantage of this method is the potential amount
of time required, as millions of simulations might need
to be performed to estimate low probabilities precisely.
This number will vary with different problem sizes and
even across different gene trees. The new approach uses
the program ms (Hudson 2002) to simulate gene trees
under each examined species tree, which necessarily
includes branch lengths.

Under the simple models used in this paper, sam-
ples within a species are interchangeable—labels can be
swapped between any 2 samples from a species and the
probabilities of the 2 gene trees can be the same—and
the approach takes advantage of this fact to reduce the
number of simulations needed. The estimation strat-
egy has the risk of resulting in an infinite negative log
likelihood if there are no simulations of a given gene
topology. There are various ways of dealing with this,
such as increasing the number of simulations, and the
approach adopted here was to substitute a large nega-
tive log likelihood for the actual negative log likelihood.
In practice, this did not appear to happen frequently
under the simulation conditions and analysis settings
(100,000 simulated gene trees per gene per species
tree).

Approach 2: nonparametric delimitation.—The above ap-
proach uses explicit models and may take quite some
time to complete a search. I also developed a non-
parametric approach based on 2 ideas. First, except
in some cases involving short internal edges (Degnan
and Rosenberg 2006), the most probable gene tree
should match the species topology. As a result, there

is a tendency for gene trees to be somewhat congruent
with each other for interspecific branches. Long species
tree branches with small population sizes will result in
gene trees better matching the species tree (Maddison
1997) and therefore gene trees will tend to agree more
with each other in these regions. Incomplete lineage
sorting (lack of coalescence of intraspecific sequences
between speciation events) will tend to weaken this
signal, as will errors in inferring the gene tree. In con-
trast, within species, gene trees should show no such
structure. In a panmictic population without selection,
migration, or linkage, each gene tree is a random draw
from the neutral coalescent tree distribution. Assuming
no selection, while unrealistic, simplifies the develop-
ment of a method and is commonly done in population
genetics. Population structure tends to make these trees
more similar than expected under neutral coalescence.
If one envisions a consensus tree of the gene trees, bi-
partitions on this tree where many gene trees agree on
topology will likely be interspecific branches, whereas
branches where many gene trees disagree on topology
will likely be within species. The nonparametric method
developed here attempts to recover the species assign-
ment and species tree, which, together, are the delimited
species tree, that minimizes gene tree conflict on the in-
terspecific portions of the tree while minimizing excess
structure within each species. To do this, “gene tree con-
flict” and “excess structure” must be quantified, and
then these 2 measures combined in some manner (see
Fig. 1 and below).

A common way to calculate the gene tree conflict
with a given species tree is the number often referred
to as the minimum number of gene duplication events
(Goodman et al. 1979), which is used in gene tree par-
simony (Slowinski et al. 1997). For example, imagine
genes evolving up the rooted species tree (A,(B,C)). In
the branch leading up to the common ancestor of A, B,
and C, let many different alleles evolve from one com-
mon ancestor and assume that just alleles descended
from alleles x and y still exist at the time of the diver-
gence of A from (B, C). Both may persist in the 2 descen-
dent lineages for some time, but then A may become
fixed for x. If B and C both inherit only x-type alleles,
the gene history will match the species tree. If B and C
both inherit only y-type alleles, the gene tree topology
will match the species tree (B and C still a clade), but
the divergence times will reflect the split of alleles x
and y, which predates the A|(BC) split. If one of B or C
becomes fixed for x, and the other for y, then the gene
tree will show the species that has the x copy as sister to
A, which conflicts with the species tree. Without intro-
gression or incorrect estimation of the gene tree or the
species tree, this result of gene tree–species tree conflict
can only occur if there were 2 segregating alleles (x and
y) that originated before a species split and persisted
until the next species split. The minimum number of
such origins of alleles (the number of x–y splits) where
both copies persisted long enough to explain gene tree–
species tree incongruence is the minimum number of
gene duplication events.
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FIGURE 1. Nonparametric approach description. On the left are 2 gene trees (solid and dotted lines) embedded within a 2 species tree. The
cost function (lower left) has 2 components, the structure cost and the gene tree parsimony cost. The upper right panel shows the calculation of
the structure cost. Within each of the 2 species, the gene trees are decomposed into triplets (rooted 3 taxon statements). Note that in cases where
a gene tree does not form a single clade within a species (as in the solid tree in the first species), it is split into separate subtrees. For each pair of
loci, the number of their identical triplets is calculated and compared with a distribution under a panmictic population to find the probability
of getting that many overlaps or more within a single panmictic species (0.33143 and 1.0 for the left and right species, respectively). This is then
translated into a cost. The between-species portion of the cost comes from the number of duplication events required to reconcile the gene and
species trees.

The related measure of minimum number of deep
coalescences (Maddison 1997) is similar; however, it
counts the number of branches over which both copies
must have persisted rather than the number of times
both copies are created and persist over at least 1
branch. Minimizing the number of deep coalescences
is equivalent to having a cost of 0 for introducing a
gene duplication and a cost of 1 for each time the du-
plicate copies persist in subsequent lineages. The idea
still holds with more than 2 copies persisting in lineages
but would require a longer explanation. A more gen-
eral model would allow the creation and persistence
costs to be any nonnegative number rather than just 0
or 1. In an ideal such model, as in parametric models,
the effect of time as well as effective population sizes
within lineages would be incorporated. I used the num-
ber of duplications (persistence cost of 0) as the gene
tree conflict cost, as there are fast algorithms for calcu-
lating it. However, having a persistence cost of 1 (deep
coalescences) might be more realistic, as maintaining
2 copies across more speciation events, which probably
entails more time and more bottlenecks, should be less
likely and therefore costlier than maintaining 2 copies
on just 1 branch. Future work could explore the more
general model of having any nonnegative persistence
cost as well as the effect of using deep coalescences as a

measure, though it has been argued that the deep coa-
lescence cost and duplication costs are highly correlated
(Zhang 2000; Cotton and Page 2003). The algorithm
used to calculate the minimum number of duplications
comes from Sanderson’s modification in the program
gtp (Sanderson and McMahon 2007) of the Zmasek and
Eddy (2001) algorithm. This algorithm requires bifur-
cating gene trees. Only lineage sorting events occurring
on interspecific branches of the species tree are counted.

Calculating the penalty for excess structure is more
difficult. Unlike the gene tree conflict case, where the
ideal number of disagreements is 0, in the case of struc-
ture, there will be some agreement between gene trees
just based on chance even in the case of a panmictic
population of very large size. One way of characteriz-
ing structure is the number of triplets (rooted 3-taxon
statements) in common between 2 gene trees. Too many
triplets in common between pairs of trees would rep-
resent too much structure. For each possible number
of samples per species, up to 50 samples per species,
100,000 simulations were performed under a neutral
coalescent to estimate the distribution of triplet overlap
between pairs of gene trees assuming linkage equilib-
rium. For more than 50 samples per species, approxima-
tions of triplet distance (Critchlow et al. 1996) are used.
The proportion of simulated pairs of trees with equal
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or greater overlap in the number of triplets as the given
pair of gene trees is treated as a P value (the more over-
lap in a given pair, the lower the P value). This excess
structure cost is calculated within each species. In the
case of a gene tree for which a species is paraphyletic,
each subtree of the gene tree completely enclosed within
a species is compared with (sub)trees from other genes.
The genealogical sorting index (Cummings et al. 2008)
is an additional way to assess intraspecific structure but
is not examined or implemented here.

Gene conflict cost is in units of number of lineage sort-
ing events. Excess structure cost is in units of probabil-
ity of at least that the observed triplet overlap for pairs
of gene trees for each species. It is impossible to con-
vert number of lineage sorting events to a probability
without making many assumptions or inferences about
speciation times and ancestral population sizes. Instead,
the structure cost is converted to a number that grows
larger with more excess structure. For a given delim-
ited species tree, the structure cost is, summed over all
pairs of genes for all species, the reciprocal of the prob-
ability of at least as much structure as is observed un-
der the null model, −1. The reciprocal is taken so that
more structure (lower probability) results in a higher
cost. One is subtracted from this so that the total cost
has a minimum of 0, as the reciprocal of the probability
is 1 or greater. Gene conflict is calculated as 1 gene at a
time and so increases linearly with the number of genes,
whereas structure is calculated taking all possible pairs
of genes so increases with the square of the number of
genes. To make the 2 costs scale in the same way with the
number of genes, the structure cost is then divided by
the number of genes. Thus, the structure cost, where the
number of genes is g and the number of species is n, is
∑g

Gene A=1

∑g
Gene B=Gene A+1

∑n
Species=1

1
g

(
1

P−value − 1
)

.

Thus, both gene conflict cost and structure cost range
in value from 0 to positive infinity (though there is an
upper limit for each based on data set size). The total
cost is just a sum of these 2 costs. Being able to weight
these 2 costs might be desirable. If the relative weight
for structure cost is too low, “lumping” samples into
few species will be favoured, as that will minimize
the gene tree conflict cost, as all conflicts, as well as
some congruence, will be within species. If the relative
weight for structure cost is too high, the method will
be biased toward “splitting” species, minimizing the
costs of structure within species. Allowing the weight
to be adjusted might be useful in tuning the method
to maximize its chance of accurately delimiting species
as well as allow sensitivity analyses. As in other non-
parametric approaches, such as gap extension and gap
creation costs for alignment or relative weights of dif-
ferent codon positions in a parsimony analysis, deter-
mining this weight is often an arbitrary but sometimes
important decision. The combined score for a delimited
species tree is

Total score = (1−weight)× gene tree parsimony score

+ weight× structurecost.

Figure 1 shows how a score is calculated using the
nonparametric method. One deficiency of the method is
that any overlap of triplets within a species is assigned a
cost. To investigate the influence of this, I added an ad-
ditional parameter, the P-threshold, to the cost function
to only count structure costs corresponding to P values
below a fixed threshold.

Search Strategy

Given the complexity of the problem, I developed a
heuristic approach to finding the delimited species tree.
The first step in the heuristic search is finding associa-
tions of samples. If 2 samples always form a clade on
all input gene trees, for example, it is useful to start
most searches with those samples assigned to the same
species. The distance between pairs of samples on the
input trees is measured as the proportion of 3 taxon
trees in which the 2 samples form a clade. This is di-
rectly related to the measure for within-species structure
for the nonparametric method. The matrix of pairwise
distances is then analysed using neighbour joining to
create a guide tree. Note that this guide tree is not a con-
straint tree but is more a guide tree in the sense used in
progressive alignment. In progressive alignment (Feng
and Doolittle 1987), as used, for example, in the popular
program Clustal (Higgins et al. 1992; Thompson et al.
1994), a guide tree is used to determine the order in
which sequences are aligned, though the alignment pro-
cedure itself does not take phylogeny into account. In
the search strategy developed in this paper, all samples
occurring together in clades on the guide tree are stored
as sets of samples to attempt to move as a group (see
below). Longer edges on the guide tree correspond to
clades containing taxa found more frequently together.
For each search replicate, the guide tree is subdivided
into 1 or more subtrees by deleting edges, with a bias
for deleting long edges. The samples in each subtree are
assigned to 1 species, then a random tree joining these
species is used as a starting delimited species tree. This
approach of using triplets in the gene trees to create a
guide tree with neighbour joining does not require that
all the taxa be present in all the gene trees. It should
thus work where other methods, such as majority rule
consensus trees, might fail.

Once the starting delimited species tree is constructed,
it is then transformed using 5 or 6 different moves, de-
pending on the optimization criterion. The delimited
species tree’s topology can be transformed through 1)
subtree pruning and regrafting (SPR) (Swofford 1990)
or through 2) rerooting on random branches. 3) Two
terminal sister species on the tree (a “cherry” sensu
McKenzie and Steel 2000) can be merged into 1 species.
4) One terminal species can be split into 2 species. The
assignment of samples to these 2 species is nontrivial. If
the initial species has 25 samples in it, there are S(25,2),
or 16,777,215, different possible assignments of samples
to the 2 resulting species. In practice, the program ex-
amines a subset of the possible assignments (the relative
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size of this subset may be chosen), and the best taken as
the cost of the tree as the result of move. 5) Samples
may be moved from one terminal species to another.
Moving a single sample at a time is insufficient. For
example, if 2 samples form a clade on all gene trees, but
that clade is placed in the wrong species in the species
tree, it would be difficult to fix that through a reassign-
ment. The samples would have to be moved one at a
time, breaking up the consistent clade. Moving groups
of samples at random would also be inefficient. Instead,
the set of samples in clades on the guide tree as well as
the individual samples are all attempted to be moved.
6) In the case of the simulation approach, branch lengths
on the species tree must also be optimized. This is done
through 1 of 2 kinds of moves, either a stretching or
shrinking of the whole tree or a movement of 1 internal
node up or down.

The program proposes moves until no improvement
in the score of the current delimited species tree can be
found through any of the nonbranch length moves. As
there are an infinite number of possible branch length
changes, they are not used as a stopping criterion. A
new starting tree is then created. At each step, the
current best tree and assignment are saved in a file.
Program options can be set to prevent certain kinds of
moves with all methods and the relative weight of the
structure and gene conflict costs in the nonparametric
method may also be set (by default set at 0.5, the value
of this parameter may strongly affect the results; see
below). The program can become a program for find-
ing the best species tree under gene tree parsimony
(Slowinski et al. 1997) by fixing the assignment of sam-
ples to species, using the nonparametric criterion, and
limiting moves to SPR and rerooting.

Simulations

To test the methods’ effectiveness, I performed a
variety of simulations of gene trees within species
trees using Hudson’s ms program (Hudson 2002). Be-
sides the complexity introduced through gene history–
species history mismatch, estimation of a given gene
history using sequence data is also a difficult prac-
tical problem. To include this aspect of the problem
difficulty, I evolved gene sequences along each gene
tree returned from ms using a complex model with
parameter estimates derived from an empirical data
set (Carstens and Knowles 2007). I then analysed the
sequences using a simpler model to return estimates of
the gene trees using approaches appropriate to each
tested method.

I used 3 different models for simulations (Fig. 2). The
first model simulated 1 species being divided into 2
species at a particular time. All 3 lineages have the same
effective population size. Parameters varied were depth
of the split, number of bases simulated per gene (0.25,
1, and 16 times the 648 bp typically used in DNA bar-
coding), number of samples from each of the 2 species,
and number of loci for 135 unique combinations of

FIGURE 2. Simulation models. Three simulation models were
used. a) shows a single species being split into 2. The time of the split
was varied across simulations, as were 3 other parameters. b) shows
the model used for population subdivision. Nine populations were
simulated, with flow between neighbouring populations. At a time t in
the past, gene flow was ceased between the middle (fifth) population
and its neighbours. Samples are taken from the second, fourth, sixth,
and eighth populations. c) shows a 4 species model using an ultra-
metric pectinate tree. Length of the 2 internodes and shortest terminal
branches on the tree are varied. Under some parameter combinations,
the most probable gene tree conflicts with the species tree (Degnan
and Rosenberg 2006).

parameters. In the second model, the effect of popu-
lation substructure was evaluated. Nine populations
arranged in a line were simulated, with 5 individuals
sampled from each of populations 2, 4, 6, and 8. Each
population exchanged migrants symmetrically with
its neighbour(s) until a specified time point, when gene
flow between populations 4 and 5 and between popu-
lations 5 and 6 was stopped, resulting in a speciation
event. As the fifth population was not sampled, this
is functionally equivalent to extinction of a connect-
ing population in the middle of a species’ range, re-
sulting in 2 allopatric species. The third model used
a 4 species pectinate species tree. For some values of
branch lengths, this tree falls in the “anomaly zone” of
Degnan and Rosenberg (2006), where the most frequent
gene tree for 4 samples differs from the species tree
topology. Lengths of the first internode, second in-
ternode, and shortest terminal branches were varied
to include species trees both inside and outside the
anomaly zone for 180 unique combinations of param-
eters. Except where noted, in all these simulations,
648 bases were simulated per locus, 5 loci were sim-
ulated, 5 individuals were sampled per species, and
20 replicates were performed per each unique com-
bination of parameters. In all models, speciation was
defined to occur when gene flow between a set of
populations dropped to zero. For details of the simu-
lations, see supplementary Appendix 1 (available from
http://www.sysbio.oxfordjournals.org/).
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The KC delimitation approach using simulation to es-
timate gene topology probabilities was used with de-
fault parameter settings in Brownie. The nonparametric
approach used a range of parameter values for structure
weight (0.1, 0.5 [default], and 0.9) and P-threshold (0.05,
0.5, and 1.0 [default]). All analyses were performed on
the Duke Shared Computing Resource on 64-bit process-
ing machines. Each simulation replicate, including all
analyses, was performed on 1 node so that the speed for
different analytical methods could be compared on the
same hardware. As different replicates were on different
nodes with potentially different speeds, Yang’s “small”
program, part of Speedtest v. 2 (Yang 2005), was run
with each simulation to provide a standard measure of
processor speed.

Comparisons

A new method should generally perform as well
or better than existing methods to be worth adopting.
Though the problem described here, that of identify-
ing the species assignments and species tree for a set
of samples present on multiple gene trees, is relatively
novel, there are several existing tree-based species de-
limitation approaches that can be used for this. I chose 3
approaches to use for comparisons. Dettman et al. (2003)
advocated a complex procedure involving a parsimony
search on each locus and then estimation of bootstrap
support using parsimony and posterior probabilities
for clades for each locus, then identifying clades with
strong enough bootstrap plus posterior support plus
presence in at least 75% of gene trees as “independent
evolutionary lineages,” followed by a collapse of some
of these lineages to form species. This approach was
used with 1 empirical example and no simulations in
the original paper. It was implemented here as a series
of batch files for PAUP generated by Perl scripts fol-
lowed by the collapsing procedure, which was imple-
mented in Brownie (O’Meara et al. 2006). To reduce the
time required for this approach, the Bayesian searches
were omitted from the implementation. The GSC oper-
ationally divides taxa into species based on a consensus
of the gene trees (Baum and Shaw 1995). Although the
species concept used by the new methods focuses on
groups no longer exchanging genes rather than basal,
exclusive groups, the 2 concepts do relate (De Queiroz
2007), and the consensus tree approach used by the GSC
utilizes input topologies in a way grossly similar to
that done by the nonparametric delimitation approach.
Clades in majority rule consensus trees present in 100%,
95%, 70%, or 50% of the input trees were defined as
species under the GSC approach used here. Finally, the
classic DNA barcoding approach (Hebert et al. 2003) cal-
culates Kimura’s 2-parameter distance between a set of
samples for a single region of cytochrome oxidase I and
uses a cutoff to divide samples into different species.
This approach was implemented here using Perl scripts
and PAUP with distance thresholds of 1%, 3%, and 10%
(3% was used by Hebert et al. 2003). When analysing

simulated data, the first tree simulated was used as the
input for barcoding.

Empirical Data Sets

Empirical data sets may exhibit problems and com-
plexity not present in the simulated data sets such as
uncertainty in reconstructed gene trees, introgression
between species, changing population sizes, and so
forth. The methods developed here require gene trees
from multiple unlinked loci, each with multiple sam-
ples per putative species. I examined 4 different data
sets, from flies, birds, fungi, and grasshoppers. The fly
data set comes from the work of Machado and col-
leagues (Machado et al. 2002; Machado and Hey 2003).
This consists of sequences from Drosophila pseudoobscura
pseudoobscura, Drosophila persimilis, Drosophila miranda,
and Drosophila pseudoobscura bogotana (the 2 pseudoob-
scura subspecies are treated as 2 separate species in
the genetics literature, though the taxonomy has not
been updated to reflect this view) for several genes.
Drosophila miranda is an outgroup to the other 3 taxa
and is used to root the gene trees, then excluded from
analysis. The 2 D. pseudoobscura taxa are estimated to
have last shared a common ancestor with D. persimilis
approximately 550,000 years ago and with each other
only 230,000 years ago (Wang et al. 1997). Drosophila
pseudoobscura pseudoobscura and D. persimilis form fe-
male (but not male) hybrids in nature and hybrids are
known to be fertile, so gene flow may occur between
these 2 species. Drosophila pseudoobscura bogotana does
not overlap in range with the other species in nature, so
ongoing hybridization is not possible (summarized in
Machado and Hey 2003). The data set used consists of
10 loci, with samples pruned to include only individuals
sequenced for all loci.

The bird data set comes from Brumfield et al. (2008)
and consists of 5 nuclear loci for 4 Manacus named
species, with 1 of these 4 split by the authors into 1
species occurring on the western side of the Andes and
another on the eastern side, plus outgroups, which are
used to root the gene trees and then excluded. There
is evidence of gene flow between at least 2 of those
species (Brumfield et al. 2008). The fungus data set
comes from Nuytinck and Verbeken (2007) and consists
of 1 nuclear and 1 mitochondrial gene. Both genes were
treated identically, without accounting for differences
between nuclear and mitochondrial inheritance pat-
terns. The original study had 9 species, but I pruned the
examined data set to those 5 species (Lactarius semisan-
guifluus, Lactarius salmonicolor, Lactarius fennoscandicus,
Lactarius deterrimus, and Lactarius deliciosus) with at least
3 samples per species, a requirement of the nonpara-
metric method. An additional 2 species were used as
outgroups to root the gene trees and then excluded. The
grasshopper data set comes from Carstens and Knowles
(2007) and consists of 5 nuclear and 1 mitochondrial
loci for 5 species of Melanoplus grasshoppers, with 4
samples per species. All 4 empirical data sets represent
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recent taxa with difficult taxonomy and have multiple
loci with multiple samples per putative species. For
each data set, a “standard” tree was constructed based
on the tree presented as the best depiction of species
assignment and phylogeny in each source paper.

For each locus, I estimated the parameters of an
HKY+gamma likelihood model on a UPGMA topology
using PAUP* 4b10 (Swofford 2003). I then performed a
likelihood tree search for each locus using the parameter
values estimated previously, rooting using outgroups if
available and with midpoint rooting otherwise. These
trees were passed as input to the inference procedures
in Brownie or to the other analysis tools used in the
simulations.

RESULTS

In total, the simulations and analyses in this paper
required over 30 computer-years on the Duke Shared
Cluster Resource. Use was limited to 64-bit Linux ma-
chines, generally with a CPU speed of 3 GHz or higher,
and I compiled all programs but PAUP to take advan-
tage of the 64-bit architecture. Table 1 shows the number
of hours required for different methods for simulation
model 1 with 648 bp simulations. The nonparametric
method and the approach of Dettman et al. (2003) all
took a small amount of time over the simulation con-
ditions plotted, as majority rule trees and traditional
barcoding approaches are almost instantaneous. The
KC delimitation approach took substantially more time,
starting with an average of 23 min for small data sets
of 3 loci with 6 samples total and taking nearly 4 d to
complete with 10 loci and 20 samples total. This may re-
flect both the higher number of moves required because
branch lengths of the species tree must be optimized
and the amount of time to calculate the score for each
proposed species tree. Interestingly, the simulation de-
limitation approach took much longer in simulations
with 162 bp of sequence data per gene, suggesting that
data sets with stronger signal finish sooner.

Figure 3 shows the result of the simulation involving
a single species splitting into 2 at a given time in the past

TABLE 1. Time (hours) required for various methods

Samples Number of KC delimitation Nonparametric Dettman et al.
per species genes delimitation
3 3 0.39± 0.19 0.00± 0.00 0.00± 0.00
3 5 0.59± 0.28 0.00± 0.00 0.00± 0.00
3 10 1.19± 0.49 0.00± 0.00 0.00± 0.00
5 3 10.29± 3.67 0.00± 0.00 0.00± 0.00
5 5 16.43± 41.74 0.00± 0.00 0.00± 0.00
5 10 31.68± 42.27 0.00± 0.00 0.00± 0.00

10 5 38.19± 45.27 0.01± 0.00 0.01± 0.01
10 10 91.87± 37.73 0.02± 0.01 0.02± 0.01

Notes: Time required for the simulation delimitation, nonparametric
delimitation, and the Dettman et al. (2003) methods are shown. Since
the computers used varied in speed, times were calculated relative to
the time required to complete a standard test (Yang 2005). Absolute
times were calculated by multiplying the relative times by the average
time required to complete the speed test.

(result is averaged over other parameters). Of the 2 new
methods, the nonparametric version outperformed the
KC delimitation version. This may be due to inefficien-
cies or other problems with the heuristic search. Figure
S1 shows that, for a given depth and number of loci, the
KC delimitation approach performed worse with many
rather than few samples per species. Generally, meth-
ods appeared to perform better with deeper splits in the
species tree, which would allow more time for coales-
cence within each species. The decrease in performance
at shallow splits was less pronounced for the nonpara-
metric method than others. The nonparametric method
showed some sensitivity to penalty costs.

One unexpected result was the apparent insensi-
tivity of the results to length of simulated sequences
(see Fig. S1). Though sequence length per gene varied
64-fold, from 162 to 10,368 bp of sequence, within a
set of simulation parameters, most results did not vary
based on sequence length, with the exception of the
KC delimitation approach, which did perform better
with longer sequences. One possibility is that even
the shortest sequence length was long enough to re-
cover the generating tree. To test this, I used PAUP
to calculate Robinson–Foulds tree distance (Robinson
and Foulds 1981) between each pair of simulated and
estimated gene trees under one set of population con-
ditions (depth of split = 16Ne, number of samples per
species = 5) and compared these with the distance be-
tween random trees. The maximum distance is 14 and
minimum is 0. Random trees had an average distance of
13.6, trees from simulations with 162 bp had an average
distance between true and estimated tree of 7.3, trees
from simulations with 648 bp had an average distance
of 5.7, and trees from simulations with 10,368 bp had
an average distance of 1.4. Thus, under these simula-
tion conditions, more base pairs did improve gene tree
inference, and even the trees inferred using more than
10,000 sites per gene were often not inferred completely
correctly.

Figure 4 shows the performance of methods with
population subdivision and a species split. Only the
results from the deepest split are shown in Figure 4.
Results from all depths are shown in Figure S2. The KC
delimitation method was very subject to oversplitting
the species. The nonparametric methods tended to in-
correctly create 4 species at low levels of gene flow and
sometimes got the correct answer at higher levels of
gene flow. At the deep species split shown in Figure 4,
the method of Dettman et al. (2003) and simple majority
rule trees dramatically outperformed the new meth-
ods. At shallower splits, methods generally performed
worse, though the nonparametric approach declined
less at intermediate depth.

Figure S3 shows the performance of methods inside
and outside the anomaly zone (Degnan and Rosenberg
2006). The new approaches, especially with recent diver-
gences, sometimes subdivided samples correctly into 4
species but did not return the correct arrangement of
these species on a tree, and overall they performed
poorly.
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FIGURE 3. Number of species and accuracy for single split model. Each panel represents the results from one method with particular settings.
Within each panel, the x-axis represents the depth of the species split (in units of Ne). The height of the bar above the black line shows the median
number of recovered species across all examined combinations of number of loci, number of samples per species, and numbers of bases per
gene. Black means the median number of species was correct (2 species). The depth of the bar below the black line shows the median accuracy
(100% accuracy [black bars] means that all samples were correctly assigned to species and the species tree was correct). Vertical lines on each
bar show 1 standard deviation. Figure S1 shows the same information without aggregation across variables.

Results from the empirical data sets were also mixed.
With the fly data set (Machado et al. 2002; Machado
and Hey 2003), the KC delimitation approach wildly
oversplit the samples (see Fig. 5). The nonparametric
approach with a structure weight of 0.5 and any of the
3 examined structure cutoffs resulted in a tree with 3
species, with every sample assigned correctly except
1 D. pseudoobscura bogotana species incorrectly placed
with the D. persimilis samples, but returned the wrong
species topology. The nonparametric approaches with

other structure weights performed less well. The bird
data set (Brumfield et al. 2008) proved difficult (Fig. S4).
Most of the nonparametric analyses returned just 1
species (in contrast to their tendency in the simulated
data to split or oversplit). Occasionally a second, in-
correct, small species was created. The KC delimitation
method returned 2 species (most samples in 1 species),
neither matching an actual population or species. The
fungus data set (Nuytinck and Verbeken 2007), consist-
ing of just 2 genes, was the most successfully analysed

FIGURE 4. Number of species and accuracy for model with substructure. Figure design as for Figure 3, but with columns corresponding to
different pairwise flow rates . The plot represents a split depth of 32 Ne. With shallower depths (1 and 4 Ne), all methods performed worse, but
the reduction in performance for the new methods was least severe (see Fig. S2).
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FIGURE 5. Results from fly data set. Delimited species trees are represented by trees of samples, where samples in a polytomy represent
samples assigned to a single species. The “true” delimited species tree is shown in the top left, followed by trees from each of the methods
examined in the paper. A = Drosophila pseudoobscura bogotana, B= Drosophila pseudoobscura pseudoobscura, and C= Drosophila persimilis.

(Fig. S5). The KC delimitation and nonparametric
approaches returned the same result, which matched
the standard tree in topology and assignment except
for the inclusion of 1 L. fennoscandicus sample with
L. deterrimus samples (as was found in the original
study). The grasshopper data set (Carstens and Knowles
2007) proved difficult (Fig. S6). The KC delimitation
approach oversplit the species. The nonparametric ap-
proach with a low structure weight returned a single
species. The rest of the nonparametric analyses returned
2 species, but in no case did any of these species repre-
sent a clade or a single species on the standard tree.

DISCUSSION

Difficulties for Any Method

The problem of reconstructing species boundaries as
well as species tree is demanding. As shown above, the
computational difficulty of this problem is far worse
than the problem of reconstructing a species tree when
the species assignments are fixed, as in much of tra-
ditional phylogenetics. Moreover, shallow divergences
can be remarkably hard to reconstruct. DNA substitu-
tions, even if not evolving under a clock, still need to
accumulate over some time period in order to be able to
reconstruct gene tree topologies. With recent speciation
events, or short intervals between speciation events,
there may just not be enough changes on many genes to
reconstruct their topologies accurately. For example, as
shown above, with reasonable models of evolution,
5 samples per species, and a species split of depth
16 Ne, even 10,000 bp of nonrecombining sequence are
not enough to guarantee recovering the correct gene
tree. Processes such as selection, population subdi-
vision, introgression, and recombination may further
complicate the picture.

Developing empirical data sets suitable for this prob-
lem may be difficult as well. For many loci for recent
splits, there will simply be no information on the gene
tree topologies. Longer sequences can be used in an
attempt to get more informative characters, but recom-
bination within a gene region can obscure the signal. For
example, if one-half of a gene has undergone a lineage
sorting event rendering its history different from that
of the species tree, whereas the other half has simply
followed the species tree, a nonreticulate reconstruc-
tion of the entire gene’s evolution will be incorrect.
Uniparentally inherited regions with limited effective
recombination, such as mitochondria, provide only
1 locus for use in these methods, so fast nuclear markers
must be used as well. This is possible and becoming
easier with the continual sequencing of new genomes
but is still an obstacle. The fact that the methods can
sometimes work with as few as 2 gene trees (as in the
fungus data set) makes the use of empirical data sets
more feasible. As the approaches developed here re-
quire gene trees with moderate resolution, they cannot
easily take advantage of innovative methods for get-
ting many independent sites for species delimitation,
such as that of Shaffer and Thomson (2007). The non-
parametric method, due to the details of the algorithm
for calculating the gene tree parsimony score, requires
fully resolved trees, but this could be changed with new
algorithms for calculating the score.

Progress?

Given the intrinsic theoretical and empirical difficul-
ties of the problem, any success would be surprising.
Simulations employed realistic rates of sequence evo-
lution, depths, and length of gene sequences, and the
empirical data sets were at levels for which correct alpha
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taxonomy was an interesting question and therefore not
trivial to answer. Nonetheless, the new methods in this
paper, as well as existing methods in the literature for
slightly different problems, on occasion returned correct
results, suggesting that there is some hope for develop-
ing approaches that will be empirically useful. In the
analyses here, the new approaches performed well in
simulated cases of simple splits of 1 panmictic species
into 2, even when this occurred recently. There was
also qualified success with the empirical data sets of
flies and fungi. The new methods performed less well
with population subdivision (though still performed
correctly under some conditions) and downright poorly
in other analyses (4 species pectinate tree simulations,
bird and grasshopper data sets). The new approaches
often performed better than existing approaches such as
DNA barcoding or majority rule trees, suggesting that
they may represent an improvement on existing meth-
ods. Note, however, that, in many cases, the method of
Dettman et al. (2003) as implemented here performed
nearly as well, if not better, and it was certainly faster
than the KC delimitation approach. Performing the
nearly 7000 replicates of simulations required extensive
computing power, but individual searches under the
nonparametric model are feasible to run on desktop
machines (all the empirical data sets, e.g., take under
1 h to run in Brownie). The KC delimitation approach
can take considerably more time, due to its costly esti-
mation of the gene tree probabilities and need to opti-
mize delimited species tree branch lengths, making it
currently less feasible for moderate to large data sets.

Surprising results included occasionally better perfor-
mance of the nonparametric method at shallow rather
than deep divergences (especially with the 4 taxon pecti-
nate tree simulation) and worse performance of the KC
delimitation method with increasing number of samples
per species. Deeper divergences should be easier to re-
cover correctly, as there has been more time for genes
to coalesce within each lineage. It appears that when
methods performed better, in terms of getting the num-
ber of species correct or overall accuracy, at shallow di-
vergences, it was due to less oversplitting than at deep
divergences. Thus, such cases point to a possible bias
toward oversplitting in the particular methods devel-
oped rather than an overall easier problem at shallow
divergences. Similarly, more data should result in better
answers. However, in this problem, adding more sam-
ples also increases the size of the problem space. It may
be easier to return the exactly correct species tree with
just 7 samples, where there are only 51,157 possible de-
limited species trees, than for 30 samples, where there
are 2.95× 1041 possible delimited species trees. The raw
amount of data may have increased by a factor of 4.3,
but the size of the problem space has increased by a fac-
tor of over 1036.

Algorithm Rationale

The strategies to calculating the costs for the nonpara-
metric approach justifiably appear somewhat ad hoc.

Gene tree parsimony has a long history in systematics
(Goodman et al. 1979) and papers using it still appear
(Sanderson and McMahon 2007; Wehe et al. 2008), so
it is a natural choice for this problem. However, deep
coalescences (Maddison 1997) would also likely work
and may better represent the evolutionary process, as
having 2 gene copies persist without coalescing across
several speciation events should have nonzero cost.
Gene tree parsimony was chosen over deep coalescence
primarily due to easier implementation and the effect of
doing so rather than using deep coalescence cost instead
remains to be evaluated. The choice for structure cost
was less obvious. The chosen approach to calculating
the structure cost has the advantages of not needing
adjustment in the case of incomplete overlap of sam-
ples across genes and of being tied to an explicit model
while being relatively fast to calculate. Analyses hinted
at moderate insensitivity of results to specific settings
combining the 2 costs, though increasing the relative
weight of structure did tend to lead to more splitting of
taxa.

The nonparametric approach is odd in that it ignores
any information about branch length or population sizes
in the species tree, which largely determine the probabil-
ities of similarities and conflicts between gene trees. An
analogous case is the traditional use of maximum parsi-
mony for tree reconstruction: substitutions on branches
are a function of mutation rates, the effect of selection
and drift on mutations, and branch lengths. Parsimony
does not take these into account (though see Tuffley and
Steel 1997) and simply seeks to minimize the required
number of substitutions to fit the data to the tree. This
has long been known to lead to potential errors n
theory (Felsenstein 1978) and perhaps in practice
(Huelsenbeck 1997). However, parsimony remains a
useful tool in phylogenetics. For example, it can be
used to estimate starting trees for likelihood-based tree
search (Stamatakis et al. 2005). In the same way, the
nonparametric approach here ignores many important
parameters of the evolutionary process but may, on
occasion, return a useful result.

The heuristic search strategy developed here is also
just one possible solution. As with the simpler problem
of finding the best species tree given a fixed assign-
ment of samples to species (the traditional question ad-
dressed by phylogenetics), better heuristic approaches
may continue to be developed. The search strategy here
evolved from existing moves in phylogenetics, such
as SPR (Swofford 1990) and rerooting the tree, as well
as obvious new moves related to the problem (such as
moving samples from one species to another). Better
moves certainly exist. One area for future improvement
is in the splitting of samples when 1 species is divided
into 2. For an initial species with N samples, there are
S(N,2) possible ways to split it. The implementation of
the search currently only examines a random subset of
these. This introduces a bias toward lumping due to the
heuristic search. Joining 2 species always results in the
same score, and so this move will always be taken if op-
timal, but a move to split a given species may not find
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the optimal split of samples into 2 species, and so this
splitting move may be rejected even if an unexamined
division of samples results in a better score.

The nonparametric method has some disadvantages
not shared by the KC delimitation approach. The non-
parametric cost function is rather arbitrary, combining
a P value for excess structure with the gene tree parsi-
mony score. Investigations of the weighting parameters
involved in that cost function in simulations and empir-
ical data sets show that the values can affect results, but
there are no consistently optimal values. Similar ques-
tions arise with other nonparametric methods, such as
the proper weight to assign to transitions and transver-
sions using parsimony for tree inference. One option
would be to develop some sort of cross-validation ap-
proach to estimate the best parameter values, as has
been done for calibrating trees by Sanderson (2002),
but the fact that consistency of results can be ensured
by choosing parameters that always result in 1 species
being returned makes designing such an approach
difficult.

The potential benefit of a guide tree to somehow in-
corporate information about samples often occurring
together on the input gene trees, and thus most likely
assigned to the same species became apparent with
preliminary analyses. This information could be used
in deciding which groups of samples to move from one
species to another rather than the alternatives of try-
ing only moves of single samples or trying all possible
combinations of moves of samples. It could also be used
to decide on initial groupings of samples for the start-
ing delimited species trees. The search is more efficient
starting from a species tree where samples occurring
together on the gene trees tended to be put within the
same species than starting from a species tree where
samples were initially assigned randomly to species
and then had to be moved together. One way to do
this, if the gene trees always had the same taxa, would
be to compute majority rule consensus trees and then
split the trees on edges frequently present in the input
gene trees to get the initial groupings of samples. Given
that, in practice, some samples may not be present for
some genes, a different approach was needed. One such
approach would have been matrix representation with
parsimony (Baum 1992; Ragan 1992) but that requires
a heuristic search itself and does not naturally return
information on agreement between the input trees. In-
formation on triplets was already being used in the
nonparametric approach and so could be useful in do-
ing initial clustering under that approach. Measuring
triplet overlap also naturally lends itself to representa-
tion in a distance matrix (proportion of times 2 samples
form a clade in a triplet containing them). Neighbour
joining is an efficient way to summarize the informa-
tion in such a matrix and returns a tree where branch
lengths contain information about agreement between
gene trees. This could be used to get the set of samples
to move together (all clades on this tree) and groups of
samples most likely to be from the same species (those
together in clades with long subtending edges). This is

the purpose of the guide tree and rationale for the new
approach to recover it. Note that the guide tree does not
provide the initial species topology, which is just a ran-
dom tree connecting the semirandom starting species
assignments, nor is the search constrained to match the
topology or grouping of samples on the guide tree.

Dealing with Uncertainty

Estimating uncertainty is currently difficult. One
could bootstrap data, generate gene trees from this
data, and perform inference on these bootstrap repli-
cates, but this just estimates uncertainty due to uncer-
tainty in the gene trees given the data. However, even
if the gene trees are known exactly, they are still ran-
dom draws from a coalescent process, and a repeat of
this sampling would almost certainly result in a differ-
ent set of trees. One way to assess this uncertainty is
to use parametric bootstrapping, simulating gene tree
evolution under a specified species tree model, spec-
ifying divergence times, population sizes, population
structure, and any gene flow, using a program such as
ms or Mesquite (Maddison W.P. and Maddison D.R.
2007), and then analysing these simulated samples in
the same way the original data were analysed. How-
ever, this requires knowing in detail the hypothesis to
test. Simply bootstrapping estimated gene trees will not
work, as sampling with replacement would often result
in the same gene tree being sampled more than once,
inflating the excess structure score and thus tending to
cause more splits. Jackknifing the gene trees (sampling
without replacement) may provide some estimate of
the uncertainty if there are enough gene trees sampled.
Currently, the implementation of the new approaches
returns multiple solutions if it finds more than one of
equal score, which can give a faint idea of uncertainty
in the result. The KC delimitation approach could be
modified to save all results found within a certain log
likelihood of the optimum result, but the current search
strategy is inadequate to estimate the contents of this
region. The KC delimitation could be used in a full
Bayesian search, though the time required might be
prohibitive.

Related Work

There are numerous methods related to those devel-
oped here. There has been a recent trend in phylogenet-
ics toward creating species trees as seen as something
potentially distinct from the gene tree(s). Most of these
methods, such as the BEST approach (Edwards et al.
2007; Liu and Pearl 2007; Liu et al. 2008), the “STEM”
approach (Kubatko et al. 2009), the “Minimize Deep
Coalescences” approach (Maddison and Knowles 2006),
the “GLASS” method (Mossel and Roch 2007), or the
“coalescent-based approach” (Carstens and Knowles
2007), have a fixed assignment of samples to species,
though some approaches (Knowles and Carstens 2007)
do allow some optimization of this assignment. The KC
delimitation developed here is largely an extension of
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the Knowles and Carstens (2007) approach, using a sim-
ilar optimality criterion (probability of the gene trees
given the species tree), but allowing a search over all
possible assignments. In theory, many of these other
approaches to recovering the species tree could be ex-
tended in the same way, though the increased size of
the problem space may make such methods imprac-
tical (and methods without some sort of intraspecific
cost, such as the Minimize Deep Coalescences approach
[Maddison and Knowles 2006], would generally re-
turn only 1 species). The new approaches optimize the
species tree over a set of gene trees rather than over
the gene sequences directly, a deficiency shared by all
the above methods but the BEST method.

A different set of methods are being developed for
DNA barcoding, which typically uses a single locus
where the assignment of samples to species is at best
only partially known, but the species tree itself is not of
interest. A particularly sophisticated approach to DNA
barcoding is the generalized mixed Yule-coalescent
(GMYC) model (Pons et al. 2006), which seeks to cut
a single locus tree into a portion where a speciation pro-
cess affects the branch lengths and a portion where a
coalescent process within species comes into play, using
this boundary to define species. It is grossly similar to
the nonparametric method in that it divides a species
tree into inter- and intraspecific portions, though it
uses a model to do this and uses just 1 locus. How-
ever, GMYC will not work well with small numbers of
species or gene trees with zero length terminal branches
(Barraclough T., personal communication), whereas the
methods developed here are most feasible with small
numbers of species and ignore gene tree branch lengths
(though do require resolved gene trees).

Finally, there are methods for estimating gene flow be-
tween populations, which could, in theory, be used to
decide when there is no gene flow (speciation, by some
definitions) between populations. There are numerous
coalescent-based approaches for this, such as those im-
plemented in MIGRATE (Beerli and Felsenstein 1999)
and IM (Nielsen and Wakeley 2001), which also gen-
erally start from genetic data rather than fixed inferred
gene trees. An approach vaguely similar to the nonpara-
metric approach is the cladistic measure of gene flow de-
veloped (Slatkin and Maddison 1989), which uses a gene
trees with population assignments of samples known
to make estimates of migration rate between popula-
tions and which compares favourably with FST-based
approaches for estimating migration rates under some
conditions (Hudson et al. 1992).

Utility

In practice, the question answered here, the sorting
of anonymous samples into species while inferring a
species tree, is unlikely to be one asked by taxonomists
working on groups like angiosperms or vertebrates.
Most such groups have some previous work done
on them, and much of the work of a revision is de-
ciding whether to split or lump old species as well

as deciding whether new samples belong in existing
species. Such taxonomists often also have additional
information available, such as localities of specimens,
morphological characters, and hypotheses drawn from
other approaches. Given the deficiencies in the new
methods developed in this paper, it is premature to
use them alone to do alpha taxonomy in such cases,
but they may be a useful addition to a taxonomist’s
toolbox. However, the new methods, and even simpler
approaches like computing majority rule trees or using
the approach of Dettman et al. (2003), may be especially
useful when dealing with groups for which there are no
existing taxonomic or phylogenetic hypotheses, such as
environmental samples of fungi or other understudied
groups, where the methods can fairly quickly return
an estimate of the species boundaries and phylogeny
with basically no initial information required other than
knowing which gene sequences correspond to the same
individual organism. For all taxa, the methods can help
infer a species tree in the presence of widespread in-
complete lineage sorting events, and they can provide
evidence otherwise hard to obtain, such as whether 3
allopatric populations form 1 or multiple species. The
implementation allows fixed assignment of samples to
species, so alternate possible assignments such as un-
certainty regarding whether to split an existing species
can be evaluated (as in Knowles and Carstens 2007, but
without requiring specification of all branch lengths).
The methods here may also be useful for providing a
first working hypothesis of relationships and species
limits when revising a group. Where conservation plans
rest on taxonomic decisions, these methods, like other
algorithmic methods, have the advantage of reducing
apparent subjectivity of assigning species rank, but the
fact that they often give incorrect answers mandates
caution and judgment when interpreting results.

Speciation is a complex process. Scientists have de-
veloped numerous tools to help make inferences about
speciation. This paper describes the problem and
provides additional tools that allow information from
multiple genes to be used, ideally in concert with other
approaches, to help delimit species and infer the species
tree.

PROGRAM NOTE

The methods described here are implemented in the
open source program Brownie 2.1. The program reads
standard Nexus files containing a set of rooted, bifurcat-
ing gene trees with, optionally, tree weights. If species
assignments are fixed, the program can also serve as a
heuristic search tool for the optimal species tree given
gene trees under gene tree parsimony. The program is
available at http://www.brianomeara.info/brownie.

DATA NOTE

Output from all analyses are available at http://www.
brianomeara.info/jistdata/index.html.
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