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A B S T R A C T

Multi-contrast MRI captures information about brain macro- and micro-structure which can be combined in an
integrated model to obtain a detailed “fingerprint” of the anatomical properties of an individual’s brain. Inter-
regional similarities between features derived from structural and diffusion MRI, including regional volumes,
diffusion tensor metrics, neurite orientation dispersion and density imaging measures, can be modelled as
morphometric similarity networks (MSNs). Here, individual MSNs were derived from 105 neonates (59 preterm
and 46 term) who were scanned between 38 and 45 weeks postmenstrual age (PMA). Inter-regional similarities
were used as predictors in a regression model of age at the time of scanning and in a classification model to
discriminate between preterm and term infant brains. When tested on unseen data, the regression model pre-
dicted PMA at scan with a mean absolute error of 0.70 ± 0.56 weeks, and the classification model achieved
92% accuracy. We conclude that MSNs predict chronological brain age accurately; and they provide a data-
driven approach to identify networks that characterise typical maturation and those that contribute most to
neuroanatomic variation associated with preterm birth.

1. Introduction

Preterm birth is closely associated with increased risk of neurode-
velopmental, cognitive and psychiatric impairment that extends across
the life course (Anderson, 2014; Mathewson et al., 2017; Nosarti et al.,
2012; Van Lieshout et al., 2018). Structural and diffusion MRI (sMRI
and dMRI) support the conceptualisation of atypical brain growth after
preterm birth as a process characterised by micro-structural alteration
of connective pathways due to impaired myelination and neuronal
dysmaturation (Anjari et al., 2007; Back and Miller, 2014; Ball et al.,
2013b; Batalle et al., 2017; 2018; Boardman et al., 2006; Counsell et al.,
2008; Eaton-Rosen et al., 2015; Telford et al., 2017; Thompson et al.,
2016; Van Den Heuvel et al., 2015); this leads to a “dysconnectivity
phenotype” that could form the basis for long term functional impair-
ment (Batalle et al., 2018b; Boardman et al., 2010; Caldinelli et al.,
2017; Cao et al., 2017; Keunen et al., 2017). However, there has not
been a unified approach that incorporates information from sMRI and
dMRI to study brain maturation in the perinatal period so the set of

image features that best capture brain maturation, and support image
classification, are unknown.

The majority of neonatal connectomics studies have used single
modes of data such as dMRI tractography (Batalle et al., 2017; Blesa
et al., 2019; Brown et al., 2014) or resting-state functional connectivity
(Ball et al., 2016; Smyser et al., 2016a). An alternative connectome
model is the structural covariance network (SCN) approach (Alexander-
Bloch et al., 2013) in which covariance between regional measurements
is calculated across subjects, resulting in a single network for the entire
population. Other approaches have constructed subject-specific SCNs
(Li et al., 2017; Mahjoub et al., 2018) or higher order morphological
networks to model the relationship between ROIs across different views
(Soussia and Rekik, 2018), but these techniques have been restricted to
the use of morphometric variables available through standard struc-
tural T1-weighted MRI sequences and by using a single metric (e.g.
cortical thickness) to assess the “connectivity” between nodes
(Shi et al., 2012).

Based on observations that integrating data from different MRI
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sequences enhances anatomic characterization (Ball et al., 2017;
Kulikova et al., 2015; Melbourne et al., 2014; Thompson et al., 2018a),
we investigated whether whole-brain structural connectomes derived
from multi-modal data within a prediction framework can capture
novel information about perinatal brain development. We used mor-
phometric similarity networks (MSNs) to model inter-regional correla-
tions of multiple macro- and micro-structural multi-contrast MRI vari-
ables in a single individual. This approach was originally devised to
study how human cortical networks underpin individual differences in
psychological functions (Seidlitz et al., 2018), and we adapted it to
describe both cortical and subcortical regions in the developing brain.
The method works by computing for each region of interest (ROI) a
number of metrics derived from different MRI sequences which are
arranged in a vector. The aim is to obtain a multidimensional de-
scription of the structural properties of the ROIs. The MSN is then built
considering the ROIs as nodes and modelling connection strength as the
correlation between pairs of ROI vectors, thus integrating in a single
connectome the ensemble of imaging features. The pattern of inter-re-
gional correlations can be conceptualised as a “fingerprint” of an in-
dividual’s brain.

We investigated the utility of MSNs for describing brain maturation,
and for patient classification. The edges of individual MSNs were used
to train two predictive models: a regression model to predict post-
menstrual age (PMA) at scan and identify the set of image features that
best model chronological brain age; and a classification model to dis-
criminate between preterm infants at term equivalent age and term
neonates, and thereby identify the networks that explain neuroana-
tomic variation associated with preterm birth. We hypothesized that
predictive models based on MSNs, which integrate information from
multiple data modalities, would outperform models based on single
metrics and single data modalities.

2. Material and methods

2.1. Participants and data acquisition

Participants were recruited as part of a longitudinal study designed
to investigate the effects of preterm birth on brain structure and long
term outcome. The study was conducted according to the principles of
the Declaration of Helsinki, and ethical approval was obtained from the
UK National Research Ethics Service. Parents provided written in-
formed consent. One hundred and twelve neonates underwent MRI at
term equivalent age at the Edinburgh Imaging Facility: Royal Infirmary
of Edinburgh, University of Edinburgh, UK, and 105 had multi-modal
imaging suitable for MSN analysis (7 acquisitions did not yield usable
datasets across all modalities due to motion or wakefulness during one
or more sequences). The study group contained 46 term and 59 preterm
infants (details are provided in Table 1). The distribution of PMA at
scan for all participants, for the term and preterm groups, and the
distribution by gender are shown in Fig. 1. Of the preterm infants, 12
had bronchopulmonary dysplasia, 3 had necrotising enterocolitis and 3
required treatment for retinopathy of prematurity.

A Siemens MAGNETOM Prisma 3 T MRI clinical scanner (Siemens
Healthcare Erlangen, Germany) and 16-channel phased-array

paediatric head coil were used to acquire: 3D T1-weighted MPRAGE
(T1w) (acquired voxel size = 1mm isotropic) with TI 1100 ms, TE
4.69 ms and TR 1970 ms; 3D T2-weighted SPACE (T2w) (voxel size =
1mm isotropic) with TE 409 ms and TR 3200 ms; and axial dMRI. dMRI
was acquired in two separate acquisitions to reduce the time needed to
re-acquire any data lost to motion artefact: the first acquisition con-
sisted of 8 baseline volumes (b = 0 s/mm2 [b0]) and 64 volumes with b
= 750 s/mm2, the second consisted of 8 b0, 3 volumes with b = 200 s/
mm2, 6 volumes with b = 500 s/mm2 and 64 volumes with b =
2500 s/mm2; an optimal angular coverage for the sampling scheme was
applied (Caruyer et al., 2013). In addition, an acquisition of 3 b0 vo-
lumes with an inverse phase encoding direction was performed. All
dMRI images were acquired using single-shot spin-echo echo planar
imaging (EPI) with 2-fold simultaneous multislice and 2-fold in-plane
parallel imaging acceleration and 2 mm isotropic voxels; all three dif-
fusion acquisitions had the same parameters (TR/TE 3400/78.0 ms).

Infants were fed and wrapped and allowed to sleep naturally in the
scanner. Feeds were timed to increase the likelihood of post-prandial
sleep, flexible earplugs and neonatal earmuffs (MiniMuffs, Natus) were
used for acoustic protection, and a soothing environment was created in
terms of light and noise. Pulse oximetry, electrocardiography and
temperature were monitored. All scans were supervised by a doctor or
nurse trained in neonatal resuscitation. Each acquisition was inspected
contemporaneously for motion artefact and repeated if there had been
movement but the baby was still sleeping; dMRI acquisitions were re-
peated if signal loss was seen in 3 or more volumes. The majority of the
cohort had one or more sequences repeated in order to acquire the best
possible quality data for processing.

Conventional images were reported by an experienced paediatric
radiologist (A.J.Q.) using a structured system (Leuchter et al., 2014;
Woodward et al., 2006), and none of the images included in the final
sample ( =N 105) showed evidence of focal parenchymal injury (de-
fined as post-haemorrhagic ventricular dilatation, porencephalic cyst or
cystic periventricular leukomalacia), or central nervous system mal-
formation.

2.2. Data preprocessing

All the following preprocessing steps, including maps calculation
and quality check, were performed using dcm2niix, FSL, MRtrix,
MIRTK, ANTs, Connectome Workbench and cuDIMOT (Avants et al.,
2011; Hernandez-Fernandez et al., 2019; Li et al., 2016; Makropoulos
et al., 2014; Marcus et al., 2011; Smith et al., 2004; Tournier et al.,
2019).

First, all DICOM image files (dMRI and sMRI) were converted to
NIFTI (Li et al., 2016). Structural data were preprocessed using the
developing Human Connectome Project (dHCP) minimal structural
processing pipeline for neonatal data (Makropoulos et al., 2018).
Briefly, the T1w image was co-registered to the T2w image, both were
corrected for bias field inhomogeinities (Tustison et al., 2010) and an
initial brain mask was created (Smith, 2002). Following this, the brain
was segmented into different tissue types (CSF: cerebrospinal fluid;
WM: white matter; cGM: cortical grey matter; GM: subcortical grey
matter) using the Draw-EM algorithm (Makropoulos et al., 2014).

Table 1
Participant characteristics. The last column reports the p values of the group differences computed with the Wilcoxon rank-sum test for continuous variables and with
the chi-squared test for categorical variables.

preterm (N=59) term (N=46) all (N=105) preterm vs. term

PMA at birth (weeks) 23.42-32.00 37.00–42.00 23.42-42.00 = ×
−p 1.88 10 18

Birth weight (grams) 454–2100 2556–4560 454–4560 = ×
−p 1.93 10 18

PMA at scan (weeks) 38.00–44.56 38.28–43.84 38.00–44.56 =p .0035
M:F ratio 29:30 26:20 55:50 =p .4532

PMA = Postmenstrual age, M = male, F = female.
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Twenty manually labelled atlases (Gousias et al., 2012) were then re-
gistered to each subject using a multi-channel registration approach,
where the different channels of the registration were the original in-
tensity T2-weighted images and GM probability maps. These GM
probability maps were derived from an initial tissue segmentation,
performed using tissue priors propagated through registration of a
preterm probabilistic tissue atlas (Serag et al., 2012). The framework
produces several output files, but for this study only the aligned T1w
and the T2w images and the parcellation in 87 ROIs were used
(Makropoulos et al., 2018). Note that from these 87 ROIs six were re-
moved: the background, the unlabelled brain area (mainly internal
capsule), the CSF, the lateral ventricles (left and right) and the corpus
callosum (see Section 2.4).

Diffusion MRI processing was performed as follows: For each subject
the two dMRI acquisitions were first concatenated and then denoised
using a Marchenko-Pastur-PCA-based algorithm (Veraart et al., 2016;
2016b); the eddy current, head movement and EPI geometric distor-
tions were corrected using outlier replacement and slice-to-volume re-
gistration with TOPUP and EDDY (Andersson et al., 2017; 2016; 2003;
Andersson and Sotiropoulos, 2016; Smith et al., 2004); bias field in-
homogeneity correction was performed by calculating the bias field of
the mean b0 volume and applying the correction to all the volumes
(Tustison et al., 2010). This framework only differs from the optimal
pipeline for diffusion preprocessing presented in Maximov et al. (2019)
in that we did not perform the final smoothing or the gibbs-ring re-
moval (Kellner et al., 2016) due to the nature of the data (partial fourier
space acquisition).

The mean b0 EPI volume of each subject was co-registered to their
structural T2w volume using boundary-based registration (Greve and
Fischl, 2009), then the inverse transformation was used to propagate
ROI labels to dMRI space, with a modified bbrslope parameter of 0.5,
which is used for neonatal data (Toulmin et al., 2015).

For each ROI, two metrics were computed in structural space: ROI
volume and the mean T1w/T2w signal ratio (Glasser and
Van Essen, 2011). The other ten metrics were calculated in native dif-
fusion space: five metrics derived from the diffusion kurtosis (DK)
model (Jensen et al., 2005) and five derived from the Neurite Or-
ientation Dispersion and Density Imaging model (NODDI) (Tariq et al.,
2016; Zhang et al., 2012).

2.3. Feature extraction

2.3.1. Structural metrics
ROI volumes were calculated without normalising for the whole

brain volume, as they are used only to compute inter-regional simila-
rities within subjects. The mean T1w/T2w signal ratio was calculated
before the bias field correction. The T1w/T2w ratio was used because it
enhances myelin contrast and mathematically cancels the signal in-
tensity bias related to the sensitivity profile of radio frequency receiver

coils (Glasser and Van Essen, 2011).

2.3.2. Diffusion kurtosis metrics
The diffusion kurtosis (DK) model is an expansion of the diffusion

tensor model. In addition to the diffusion tensor, the DK model quan-
tifies the degree to which water diffusion in biological tissues is non-
Gaussian using the kurtosis tensor. The reason for this is that the
Gaussian displacement assumption underlying the diffusion tensor
breaks at high b-values (Jensen et al., 2005). On the kurtosis compo-
nent, we only focus on the mean value along all diffusion directions.

The metrics obtained from the DK model for each ROI are the means
of: The fractional anisotropy (FA), mean, axial and radial diffusivity
(MD, RD, AD) and kurtosis (MK). The MK map quantifies the deviation
from Gaussianity of water molecule displacement and can reflect dif-
ferent degrees of tissue heterogeneity (Steven et al., 2014).

2.3.3. NODDI metrics
We included NODDI metrics alongside the more commonly adopted

diffusion tensor measures as previous studies have shown that NODDI
indices are sensitive to underlying biological changes in the brain and
provide more specific microstructural characteristics, in agreement
with histology (Batalle et al., 2018; Grussu et al., 2017).

For the NODDI measures, the Bingham distribution was employed
(Tariq et al., 2016) as it allows extra flexibility by describing fibre
dispersion along two orthogonal axes. From this NODDI implementa-
tion we obtain five metrics: intracellular volume fraction (υic), isotropic
volume fraction (υiso), the orientation dispersion index along the pri-
mary and secondary directions (ODIP and ODIS) and the overall or-
ientation dispersion index (ODITOT).

One limitation of this model is that it requires fixing a value for the
diffusivity along the axons. However, optimal values for this parameter
are region-dependent (Karmacharya et al., 2018) and the default value
may be suboptimal for the neonatal population as it has been optimised
using an adult cohort (Karmacharya et al., 2018; Zhang et al., 2012).
Several studies have been reporting NODDI values for neonates using
default (or unspecified) parameters (Bastiani et al., 2018; Batalle et al.,
2018; Karmacharya et al., 2018) or modified ones (Jelescu et al., 2015;
Kunz et al., 2014). As our goal was not to report NODDI values for the
different areas, and because of the lack of reference values for this
population, we calculated NODDI maps using default parameters
(Batalle et al., 2018).

2.4. Data quality control

The parcellations obtained after the processing were visually in-
spected and parcels corresponding to CSF and background parcels were
excluded because they do not represent brain tissue. We observed a
poor segmentation of the corpus callosum in part of the subjects, but we
did not find any anomalies in the rest of the parcels. This effect could be

Fig. 1. Distribution of postmenstrual age at scan for all subjects. a) Age distribution for the for term (blue) and preterm (orange) groups. b) Age distribution for male
(blue) and female (pink) participants. (For interpretation of the references to colour in this figure legend, the reader is referred to the web version of this article.)
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caused by different factors: a) This area is problematic to segment due
to the proximity to CSF and its small thickness (see for example
Otsuka et al. (2019)); b) the framework we used was optimised for the
dHCP data that have a very high resolution (0.5 mm3 isotropic) and
data quality, making the partial volume effect more noticeable in data
with a resolution of 1 mm3; c) or susceptibility artifacts. Instead of
removing the subjects with a poor segmentation, we decided to remove
the corpus callosum from the model, aiming at maximising the number
of subjects. As a result of the whole quality check, we include the whole
population ( =N 105) and each network is composed of 81 nodes
(ROIs).

For the dMRI data we use eddy QC (Bastiani et al., 2019). The
quality control is performed at subject level and group level. Eddy QC
provides several measures related to the rotation, translation and out-
liers of the images. In addition, it also computes the signal-to-noise
(SNR) ratio maps of the b0 volumes and the contrast-to-noise (CNR)
ratio maps for the different b-values. These maps can be used at group
level to visualise the quality of the data (Bastiani et al., 2018). The
results show that the overall quality of the data-set was good (Fig. 2).
For eddy QC to work, we removed the b-value = 200 s/mm2 only from
the quality control. This is because the low number of volumes with this
b-value sometimes leads the Gaussian process performed by eddy to
produce a perfect fit, which makes the CNR maps unrealistic.

Fig. 2 shows two representative subjects, one from the top quartile
of the SNR and CNR distributions (green star) and one from the bottom
quartile (red star). In the first panel we can see where they are placed in
terms of SNR and CNR over the overall population. The second panel
shows the SNR maps (for the b0) and the CNR maps (for the rest of b-
values). The bottom panel of the Fig. 2 shows the b0 before and after
the processing of the selected subjects. It is possible to observe the effect
of the different steps involved, such as the EPI geometric corrections or
the bias field inhomogeneity correction. Supplementary Figs. S8 and S9
report the above results for the term and preterm population respec-
tively.

Following Bastiani et al. (2019), for each volume, motion is quan-
tified by averaging voxel displacement across all voxels (computed as 3
translations and 3 rotations around the x, y and z axes). Absolute dis-
placement is computed with respect to the reference volume, while
relative displacement is computed with respect to the previous volume.
A summary measure for each subject is calculated as the average (ab-
solute or relative) displacement across all volumes. In Supplementary

Fig. S10 we show the distribution of absolute and relative motion for
the term and the preterm groups. We compared the distributions with a
Wilcoxon rank-sum test and found no difference between the relative
motion scores ( = =W p1330, 0.43) and a significant difference be-
tween the absolute motion scores ( = =W p1720, 0.02). However, as
the violin plot shows, this difference is driven by the presence of out-
liers.

2.5. Experimental design and statistical analysis

The models and the analyses described in this section were im-
plemented in Python (v3.6.4) using open source libraries and frame-
works for scientific computing, including SciPy (v1.0.0), Numpy
(v1.14.0), Statsmodels (v0.8.0), Pandas (v0.22.0), Scikit-learn (v0.19.1)
and Matplotlib (v2.1.2) (Hunter, 2007; Jones et al., 2001; McKinney,
2010; Pedregosa et al., 2011; Seabold and Perktold, 2010; Van Der Walt
et al., 2011).

2.5.1. Network construction
The MSN for each subject was constructed starting from 81 ROIs;

each of the ROI metrics was normalised (z-scored) and Pearson corre-
lations were computed between the vectors of metrics from each pair of
ROIs. In this way, the nodes of each network are the ROIs and the edges
represent the morphometric similarity between the two related ROIs
(Fig. 3). In the following, the terms “edge”, “connection” and “inter-
regional similarity” are used interchangeably to refer to the correlation
between the regional metrics of a pair of ROIs.

2.5.2. Confounding variables
Early exposure to the extrauterine environment due to preterm birth

exposes infants to several processes that are known to impact brain
maturation (e.g. specific co-morbidities such as bronchopulmonary
dysplasia and necrotising enterocolitis (Barnett et al., 2018)), and other
processes and diseases that can modify brain maturation (for example
gestational age at birth, chorioamnionitis, fetal growth restriction, nu-
tritional insufficiency, pain and medication exposures (Anblagan et al.,
2016; Barnett et al., 2018; Blesa et al., 2019; Duerden et al., 2018;
2016; Schneider et al., 2018)). In addition, there may be as yet un-
known environmental risks to brain structural connectivity and
genomic and epigenomic factors may interact with gestational age at
birth to confer risk (Batalle et al., 2018b; 2017; Boardman et al., 2014;

Fig. 2. Quality control results. a) Results for
the overall population with two selected sub-
jects, one from the top quartile of the SNR and
CNR distributions (green star) and the other
from the bottom quartile (red star). b) The SNR
and CNR maps for the selected subjects. c) The
b0 of both subjects before and after the pro-
cessing pipeline. (For interpretation of the re-
ferences to colour in this figure legend, the
reader is referred to the web version of this
article.)
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Krishnan et al., 2017; Sparrow et al., 2016). Therefore, it is not possible
to define a preterm infant cohort without any exposures to processes
that could influence brain maturation. As our intention was to develop
an integrated approach for characterising dysmaturation in a study
group representative of the target population, rather than to investigate
possible drivers of dysmaturation, we did not control for any of the
above factors.

We did however find that the preterm group was characterised by
higher in-scanner motion than the term-group, hence we considered
absolute displacement as a confounder (Section 2.4). We also observed
a positive correlation ( = =ρ p0.27, 0.0048) between PMA at scan and
PMA at birth and a negative correlation ( = − =ρ p0.22, 0.0233) be-
tween PMA at scan and gender (coded as a binary variable where 0
indicates female infants and 1 male infants), implying that in our
sample term subjects and female subjects tend to have their scan ac-
quired at a later age (see also Fig. 1). To control for potential bias, we
used these confounders as predictors and compared their predictive
performance with our network-based features. We tested the interac-
tion between gender and prematurity in a linear regression model of
PMA at scan, but the interaction term was not significant ( =p 0.9634).
Birthweight was not included explicitly as a confounder due to its
collinearity with PMA at birth.

2.5.3. Regression model for age
We trained a linear regression model with elastic net regularisation

to predict PMA at scan – i.e. chronological brain age – in both preterm
and term infants starting from individual MSNs. This model was chosen
for its ability to cope with a high number of features (Zou and
Hastie, 2005). For each subject, the edges of the MSN (inter-regional
correlations) were concatenated to form a feature vector to be given as
input to the regression model. Since the connectivity matrix re-
presenting the MSN is symmetric, we considered only the upper trian-
gular matrix for each subject. Gender and age at birth were included in
the model to control for their possible confounding effects. The pre-
diction performances were evaluated with a leave-one-out cross-vali-
dation (LOOCV) scheme, by computing the mean absolute error (MAE)
averaged across subjects. Within each fold of the LOOCV, the

parameters of the elastic net were selected with a nested 3-fold cross-
validation loop; the folds were stratified in percentiles to include
samples covering the whole age range in each of the folds. Permutation
testing was used for the statistical validation of the model performance:
the null distribution was built by running the age prediction analysis on
1000 random permutation of the PMA.

2.5.4. Classification model
A Support Vector Machine (SVM) classifier with linear kernel was

trained to discriminate between preterm and term infants. As per the
regression model, the input for each subject consisted of inter-regional
connections taken from the upper triangular connectivity matrix and
the performances were evaluated with LOOCV. Age at the time of
scanning, gender and motion were included as additional covariates.
While in the case of regression the elastic net regularisation performs
automatically a variable selection step, recursive feature elimination
(RFE) was applied in combination with SVM to select the best subset of
connections. Model selection was implemented using nested cross va-
lidation: an outer 3-fold cross-validation loop was used to select the
SVM parameters and an inner 4-fold cross-validation loop was used for
RFE. Folds were stratified to include the same proportion of term and
preterm subjects. The accuracy of the model was computed as the
number of correctly classified subjects across the leave-one-out folds
over the total number of subjects in the test set. The null distribution
was built by repeating the exact same analysis 1000 times after ran-
domly assigning subjects to the term and the preterm group.

2.5.5. Feature selection
After the preprocessing phase, twelve different metrics were avail-

able for each ROI. To study which combination of features produced
better performance in the prediction tasks, we implemented a sequen-
tial backward-forward feature selection scheme. Starting from the full
set of features, at each iteration we compare the performances of dif-
ferent models built by removing in turn each of the features from the
current set of candidate features. We then exclude from the next
iteration the feature whose subtraction caused the least increase in
prediction error (down to three features, for a total of 73 combinations).

Fig. 3. a) Individual MSN construction.
Different metrics are extracted from dMRI and
sMRI data. The same parcellation is applied to
all image types and the average metric values
are computed for each ROI. A MSN (re-
presented here as a connectivity matrix) is
built by computing the Pearson correlation
between the vectors of metrics of each pair of
ROIs. b) Training of a predictive model (here
for PMA at scan) from individual MSNs. The
inter-regional correlations are used as pre-
dictor variables in a machine learning model.
The performance of the model is evaluated on
an independent test set.
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The rationale behind this scheme is to explore the space of possible
models without enumerating all possible solutions, thus reducing the
computational demands compared to an exhaustive search. The pro-
cedure was performed separately for the regression and the classifica-
tion models.

2.5.6. Cross-validation strategy
We adopted LOOCV to select the best performing model in both the

age prediction and the classification tasks as this scheme enabled
maximum size of the training set and therefore best use of available
data, but this strategy might induce high variance in the estimation of
prediction accuracy (Efron, 1983; Kohavi, 1995). In the context of brain
decoding (i.e. predictions from brain images or signals), LOOCV was
shown to produce overly optimistic estimates of prediction accuracy in
the within-subject setting (i.e. when all samples are highly correlated
because they come from the same subject). In the between-subject
setting (as in this work), the performance of LOOCV is similar to
schemes involving random splits and mostly determined by sample size
(Varoquaux, 2018; Varoquaux et al., 2017). To assess the stability of
our results with respect to the chosen cross-validation scheme, we re-
port the prediction accuracy computed with a 10 repeated stratified 5-
fold scheme (10-5-fold) for all the models selected with LOOCV.

2.5.7. Comparison with individual metrics and single data modalities
models

We compared the performances of the best performing models
based on MSNs with three classes of baseline models: a) Models based
on single global brain metrics (total brain volume and median FA in the
WM); b) models based on individual metrics, where instead of simila-
rities, predictors are the concatenation of all regional values for each of
the individual metrics used to build MSNs; c) single data modality
MSNs, i.e. models built on structural features only (Volume and T1/T2),
on DKI features only, and on NODDI features only.

2.6. Data and code availability

Source code implementing the methods described in this paper is
available upon request to the corresponding author. The preprocessed
and anonymised data used in the analyses can be requested through the
Brains Image Bank (https://www.brainsimagebank.ac.uk/) (Job et al.,
2017).

3. Results

3.1. Feature selection

In Fig. 4 we report two histograms summarising the LOOCV

performance of the 73 different models compared per each task in the
backward feature selection scheme. In both cases, we can observe that
the models based on all three data modalities achieved better results in
terms of prediction accuracy. The performances of each of the com-
pared model are reported in Supplementary Figs. S1 and S3 for the age
prediction and for the classification models, respectively.

The best performing model for age prediction, which was adopted
for all subsequent analyses, was based on seven features (Volume, FA,
MD, AD, MK, υiso, ODIP). Fig. 5a shows the average MSN matrix com-
puted across all subjects for the selected set of features and the matrix of
correlation between inter-regional similarities and PMA at scan across
subjects. The average MSN matrix shows four main blocks that corre-
spond roughly to positive correlations between ROIs within GM and
between ROIs within WM, and to negative correlation between WM
ROIs and GM ROIs, indicating that ROIs within GM (and within WM)
share similar structural properties, while GM and WM regional de-
scriptors tend to be anti-correlated. The four-block structure is re-
cognisable also in the matrix reporting correlations with chronological
age: with increasing age regions within GM or within WM become more
similar with each other, while the dissimilarities between GM and WM
ROIs increases.

The best classifier model was based on eleven out of the twelve
features (all except ODIS), so compared to the age prediction model,
four additional features were included: T1/T2, RD, υic and ODITOT. The
average MSN computed with the selected features and the matrix of
correlation with PMA at birth is shown in Fig. 5 (panels b and c).
Comparing panel b and d of Fig. 5, it is apparent that while the patterns
of correlation with PMA at scan and at birth are similar within GM and
WM, subcortical ROIs show an opposite trend: with increasing PMA at
scan subcortical ROIs tend to become more similar to WM ROIs and
more dissimilar to GM ROIs, but the similarity between subcortical
ROIs and cortical GM is positively correlated to age at birth.

3.2. Prediction results

The best regression model selected with LOOCV predicted chron-
ological age (PMA at scan) with a MAE of 0.70 ± 0.56 weeks on the
test data, and a correlation between the predicted and the actual age
equal to = = ×

−r p0.78 ( 1.71 10 )22 (Supplementary Fig. S5). The results
of the permutation test are shown in Fig. 6 and Supplementary Fig. S6.
The confounding variables (gender and age at birth) were not selected
by the internal feature selection procedure, hence the predictions were
based on network features alone. To test whether there was any sys-
tematic difference in the predicted age between the term and the pre-
term group, we compared the error distributions with a Wilcoxon rank-
sum test, but the result was not significant ( = =W p1108, .1085). For
comparison, we evaluated the predictive performance of a linear

Fig. 4. Histograms of the performance of the 73 models compared in the backward feature selection scheme for the age prediction task (a) and for the classification
task (b). Bars are grouped by the number of modalities included in the models.
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regression model using only gender and PMA at birth as independent
variables, that achieved a MAE of 1.03 ± 0.88 weeks. A Wilcoxon
signed-rank test confirmed that the latter model achieved a significantly
greater error ( = =W p1633, 0.0001). Also models based on single
global metrics and single-modality MSNs models provided poorer pre-
dictive performance than the selected multi-modality MSNs model
(brain volume: MAE= ±0.93 0.68, =R 0.58; median FA:
MAE= ±0.88 0.63, =R 0.58; structural: MAE= ±1.08 0.79, =R 0.32;

DKI: MAE= ±0.94 0.70, =R 0.57; NODDI: MAE= ±0.88 0.69, =R 0.61)
and this was confirmed by a Wilcoxon signed-rank test (brain volume:

= =W p1813, 0.0019; median FA: = =W p2045, 0.0184; structural:
= = ×

−W p1361, 2.76 10 06; DKI: = =W p1734, 0.0004; NODDI:
= =W p1811, 0.0009). Conversely, the baseline model based on the

ensemble on individual metrics used to build the best performing MSN
model achieved similar performances (MAE: 0.72 ± 0.56, =R 0.77). A
scatter plot of the residuals of the two models (Supplementary Fig. S11)

Fig. 5. a) Average MSN computed across all subjects using the combination of features selected through the backward feature selection scheme for the age prediction
task (Volume, FA, MD, AD, MK, υiso, ODIP). b) Correlation between each connection weight (inter-regional similarity) shown in (a) and PMA at scan across subjects.
c) Average MSN computed across all subjects using the combination of features selected through the backward feature selection scheme for the classification task
(Volume, T1/T2, FA, MD, AD, RD, MK, υic, υiso, ODIP, ODITOT). d) Correlation between each connection weight (inter-regional similarity) shown in (c) and PMA at
birth across subjects. Connections that were identified as predictive features by the models are highlighted in black. ROIs are ordered as in Supplementary Table S1.

Fig. 6. Null distributions computed over 1000
random permutations of the target variable for
the age prediction (a) and the classification
tasks (b). The red dotted lines indicate the
performances of our models. (For interpreta-
tion of the references to colour in this figure
legend, the reader is referred to the web ver-
sion of this article.)
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showed a linear trend, indicating that the two models share a similar
information content.

Supplementary Fig. S2 shows the results computed with 10-5-fold
cross-validation in. All compared models performed similarly under the
10-5-fold scheme, and in general worse than with the LOOCV scheme,
with the selected model achieving a MAE of 1 ± 0.2 weeks
(Supplementary Fig. S7).

To study which connections contributed the most to chronological
age prediction, we selected only edges which were assigned a non-zero
coefficient in at least 99% of cross-validation folds. These edges are
shown in the chord diagram in Fig. 7 (realised with Circos,
Krzywinski et al. (2009)), and are colour coded to distinguish between
inter-regional similarities that increase or decrease with age, to high-
light networks of regions whose morphological properties are conver-
ging (gray) or that tend to differentiate with increasing age (red). In-
tuitively, these edges connect ROIs whose anatomical and micro-
structural properties are changing more than others between 38 and 45
weeks PMA, making the ROIs more or less similar. In other words, it is
the relative timing of maturation of different brain tissues to determine

the relevance of a connection in the age prediction task. The selected
connections are located in both cortical (frontal, temporal, parietal and
occipital lobes; insular and posterior cingulate cortex) and subcortical
regions (thalamus, subthalamic and lentiform nuclei), in the brain stem
and in the cerebellum. These areas have been previously associated
with age-related changes and preterm birth (Ball et al., 2013a; Batalle
et al., 2017; Boardman et al., 2006). For comparison, we report in
Supplementary Table S2 the regional metrics selected as most pre-
dictive of age in the baseline model based on individual metrics.

The best classifier discriminated between term and preterm infants
with a 92% LOOCV accuracy (Fig. 6). None of the confounders were
included among the selected features. A logistic regression model built
on age at scan and gender did not achieve significant accuracy
( =p56%, 0.091), while adding motion to the predictors produced a 61%
accuracy, slightly above chance level ( =p 0.03), but it should be noted
that a model based on motion only was 59% accurate ( =p 0.02).
Models based on global features achieved 55% accuracy for total brain
volume and 56% accuracy for median FA. Models built on single data
modalities attained 65% accuracy for structural features only, 89%

Fig. 7. Chord diagram showing MSN edges used for age prediction in at least 99% of regression models in the cross-validation folds. Connections shown in gray are
inter-regional similarities that increase with chronological age, while connections in red are inter-regional similarities that decrease with chronological age. The edge
width is proportional to the correlation between inter-regional similarities and PMA. The left side of the diagram corresponds to the left side of the brain.
Abbreviations for ROI names are explained in Supplementary Table S1. (For interpretation of the references to colour in this figure legend, the reader is referred to
the web version of this article.)
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accuracy for DKI features only, and 88% accuracy for NODDI features
only. Results computed with 10-5-fold cross-validation are shown in
Supplementary Fig. S4. The best classifier selected with LOOCV also
achieved top accuracy with 10-5-fold (accuracy 90%, Supplementary
Fig. S7).

The network of regions that showed the most divergent pattern of
structural brain properties in preterm versus term infants comprised the
brain stem, the thalamus and the subthalamic nucleus; WM regions in
the frontal and insular lobes; GM regions in the occipital lobe; both WM
and GM regions in the temporal and parietal lobes and in the posterior
cingulate cortex. The chord diagram of edges selected by 99% of the
models is shown in Fig. 8, in red where inter-regional similarities are
greater in the term group and in gray where they are greater in the
preterm group. For comparison, Supplementary Table S3 lists the re-
gional metrics selected by the baseline model based on individual me-
trics, that obtained a 94% accuracy.

3.3. Testing for asymmetry

In both chord diagrams (Figs. 7 and 8) we observed more edges in
the right hemisphere than in the left one. Both elastic net and SVM
models perform a feature selection step to exclude features that are
correlated and that carry redundant information in order to improve
prediction performance, hence it might be the case that the models
selected the right connections and discarded the left ones precisely
because they had a similar information content. Additionally, in the
leave-one-out cross-validation scheme the training sets only differ by
two samples in each fold, hence models might be similar across folds.

To test the hypothesis that the two hemispheres carry a different
information content, we performed two experiments. First, we repeated
the same analyses extracting inter-regional similarities from either the
right or the left hemisphere. We compared the performance obtained
with the regression and classification models on the different subsets of
features used in the backward feature selection scheme in the main
analyses. We found that for the age prediction model a Wilcoxon
signed-rank test testing the hypothesis that the prediction error was

Fig. 8. MSN edges showing a divergent pattern of morphological properties in term and preterm infants in at least 99% of classification models in the cross-validation
folds. Gray connections indicate inter-regional similarities that are greater in the preterm group, while red connections are greater in the term group. The edge width
is proportional to the correlation between inter-regional similarities and prematurity. The left side of the diagram corresponds to the left side of the brain.
Abbreviations for ROI names are explained in Supplementary Table S1. (For interpretation of the references to colour in this figure legend, the reader is referred to
the web version of this article.)
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higher using only connections from the left hemisphere was significant
( = = ×

−W p156, 2.57 10 11), while there was no statistically significant
difference in the case of the classification model. These results re-
plicated also when using 10-5-fold cross-validation (age prediction:

= = ×
−W p160, 2.98 10 11; no significant difference in classification).

We also compared the residuals obtained using either the right or the
left hemisphere for age prediction with the set of features selected with
backward feature selection (Supplementary Fig. S11) and found that
the residuals of the fitted models are linearly correlated, suggesting that
the two hemispheres do carry a similar information content, but one
presents clearer signal than the other. We then used permutation testing
to test the “interchangeability” of right and left regions: starting from
the subsets of imaging metrics selected in the main analyses for the age
prediction and classification models, we generated two null distribu-
tions by randomly swapping a subset of homotopic brain regions be-
tween the right and left hemisphere, and then repeating the exact same
analyses 1000 times. We then counted how many times in the random
models there was a disproportion of inter-regional similarities selected
in the right hemisphere equal or greater than the one we observed with
our models. If the right and left are “interchangeable”, the number of
inter-regional similarities selected should remain the same on average.
We found that in the age prediction task, under the null distribution,
the disproportion of predictive connections in the right hemisphere was
associated with a =p 0.036, while in the classification task the dis-
proportion was not significant ( =p 0.166). This implies that at least for
age prediction the two hemispheres are not interchangeable, suggesting
again that the right hemispheres has a stronger signal. A similar trend
was observed under the 10-5-fold cross-validation scheme, but in this
case we could not reject the null hypothesis that inter-regional simila-
rities are selected with the same frequency from both hemispheres
( =p 0.098).

4. Discussion

These results show that the information encoded in MSNs is pre-
dictive of chronological brain age in the neonatal period and that MSNs
provide a novel data-driven method for investigating neuroanatomic
variation associated with preterm birth. MSNs were built by combining
features from different imaging sequences that describe complementary
aspects of brain structure that have been previously studied in isolation
(Batalle et al., 2017; Makropoulos et al., 2016) and the resulting pre-
dictive models achieved a high accuracy for age prediction and classi-
fication. By comparing the performance of MSNs features with basic
demographic information (age at birth and gender) and simple metrics
such as total brain volume and median white matter FA, we also
showed that integrating imaging data provides relevant additional in-
formation to characterise brain age. Although we cannot exclude the
possibility that some of the variability shared with age at birth, gender
or brain volume is encoded in the imaging variables, the comparative
analysis and the permutation testing results showed that the observed
variance cannot be completely explained by demographic variables or
simpler metrics alone. However, a high accuracy is not the only goal of
the proposed method: once we have determined that the model is able
to learn a relationship between the MSN features and age or pre-
maturity, we can interrogate it to find out which features, regions and
structures are involved in the predictions, thus allowing for further
inferences.

We anticipate that the main clinical and research utilities of MSNs
will be to investigate divergent maturational patterns in the context of
perinatal environmental, genetic and clinical exposures, leading to
improved understanding of antecedents to, and consequences of, aty-
pical brain development. For these purposes a prediction tool with
average 5 days error is highly precise compared with other methods for
assessing brain maturation, which usually rely upon simple linear re-
gression, use single image features, or broad classifications of pre-
maturity (Batalle et al., 2018; Bouyssi-Kobar et al., 2018; Brown et al.,

2017; Deprez et al., 2018; Ouyang et al., 2018; Toews et al., 2012).
The regions identified as most predictive have been previously as-

sociated with age-related changes and preterm birth (Ball et al., 2013a;
Batalle et al., 2017; Boardman et al., 2006; Bouyssi-Kobar et al., 2018).
These data suggest that to fully describe morphological variation in the
developing brain it may be advantageous to adopt a holistic approach,
leveraging the additional information that can be derived from in-
tegrating multi-contrast MRI data. The main motivation for using a
network-based approach is to obtain a whole-brain description of a
developmental pattern. By using topologically integrated features in-
stead of single metrics it is possible to access an additional layer of
information that is not explicitly encoded in the individual metrics, i.e.
how the relationships between metrics vary in different parts of the
brain. Working with correlations instead of an ensemble of hetero-
geneous metrics also aids interpretation, as the focus is shifted from the
values of single metrics across the brain, each influenced by disparate
factors, to similarities between brain regions, which is a more relatable
concept. Additionally, the adoption of a network model has proven to
be a useful abstraction to capture the modular organisation of the brain:
in the original work introducing MSNs to study microscale cortical
organization in adults, the authors demonstrated that regions that were
similar in MSNs were more likely to belong to the same cytoarchitec-
tonic class, to be axonally connected and to have high levels of co-
expressions of genes specialised for neural functions (Seidlitz et al.,
2018). Another reason for working with similarities instead of single
regional metrics is methodological: computing edge weights as inter-
regional similarities enables an integrated representation of several
metrics in a single network; to work with the original features directly
would mean either working with several networks (thus requiring a
further step to integrate them and aggravating the problems related
with the “curse of dimensionality”) or concatenating all the features in
a single predictive model (thus excluding the interactions between
metrics from the model).

Our data are consistent with previous studies of perinatal brain age
prediction based on a single type of data or a single metric. For ex-
ample, Brown et al. (2017) used dMRI tractography to predict brain
dysmaturation in preterm infants with brain injury and abnormal de-
velopmental outcome and found that altered connectivity in the pos-
terior cingulate gyrus and the inferior orbitofrontal cortex were asso-
ciated with a delayed maturation; both of these regions are included in
the networks identified by our model. Regional FA, MD, MK, and υic are
each predictive of age (Genc et al., 2017; Karmacharya et al., 2018;
Ouyang et al., 2019), and the first three measures were selected in our
age predicition model. Growth of the thalami and brainstem, defined in
terms of myelin-like signals from T2-weighted images, successfully
predicted age between 29 and 44 weeks (Deprez et al., 2018) and these
regions are included in the networks most predictive of age in the
current study. In Toews et al. (2012), scale-invariant image features
were extracted from T1-weighted MRI data of 92 subjects over an age
range of 8–590 days to build a developmental model that was used to
predict age of new subjects; and Ceschin et al. (2018) proposed a deep
learning approach to detect subcortical brain dysmaturation from T2-
weighted fast spin echo images in infants with congenital hearth dis-
ease. Wu et al. (2019) used cortical features extracted from structural
images to predict age of 50 healthy subjects with 251 longitudinal MRI
scans from 14 to 797 days; in accordance with our results, the regions
reported to be important for age prediction were bilateral medial or-
bitofrontal, parahippocampal, temporal pole, right superior parietal
and posterior cingulate cortex. Although our results are not directly
comparable with the above works because of the heterogeneity of
employed models, validation techniques and population variation
(different age ranges), our prediction error is among the lowest re-
ported (see Table 2 for a summary of previous results), but it should be
noted that there is a strong positive correlation between the reported
MAEs and the age range of the samples. In addition, many works have
identified imaging biomarkers associated with preterm birth, such as
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brain tissue volume (Alexander et al., 2018; Gui et al., 2019), myelin
content (Melbourne et al., 2016), and diffusion tensor metrics (Anjari
et al., 2007; Bouyssi-Kobar et al., 2018).

The connections most predictive of age revealed that brain ma-
turation is characterised by morphological convergence of some net-
works and divergence of others (Fig. 7). These connections mostly in-
volve fronto-temporal and subcortical ROIs, which suggests that the
micro- and macro-structural properties of these regions are highly dy-
namic between 38–45 weeks. Among these, inter-regional similarities
within GM and WM increase with age, similarities between cortical GM
and WM decrease, while subcortical ROIs become more similar to WM
and more dissimilar to cortical GM. This is consistent with previous
findings on the different trends in development of the thalamus and the
cortex (Eaton-Rosen et al., 2015). Additionally, in a study of early de-
velopment of structural networks (Batalle et al., 2017), connections to
and from deep grey matter are reported to show the most rapid de-
velopmental changes between 25–45 weeks, while intra-frontal, frontal
to cingulate, frontal to caudate and inter-hemispheric connections are
reported to mature more slowly.

Conversely, the inter-regional similarities selected by the SVM
classifier to discriminate between term and preterm (Fig. 5) are more
distributed across cortical GM and WM and are for the most part greater
in the preterm group. The fact that in the term group these cortical ROIs
are less homogeneous in terms of structural properties could be inter-
preted as a sign that in term infants these regions are at a different stage
of maturation where their morphological profile is consolidating along
specialised developmental trajectories. It has been previously suggested
that the rapid maturation of cortical structures occurring in the peri-
natal period is vulnerable to the effects of preterm birth (Ball et al.,
2011; 2013b; Kostović and Jovanov-Milošević, 2006; Smyser et al.,
2016b).

The differences between networks identified for age prediction and
for preterm classification indicate that atypical brain development after
preterm birth is not solely a problem of delayed maturation, but it is
characterised by a specific signature. Indeed, while the age prediction
networks capture changes occurring in both the preterm and the term
group, the classification networks highlight where there are group-wise
differences, and they do not match: In the case of a delayed maturation
we would have observed differences in the same regions undergoing
age-related changes. MSN variations associated with preterm birth af-
fected brain stem, thalami, sub-thalamic nuclei, WM regions in the
frontal and insular lobes, GM regions in the occipital lobe, and WM and
GM regions in the temporal and parietal lobes and in the posterior
cingulate cortex. This distribution of structural variation is consistent
with previous reports of regional alteration in brain volume and dMRI
parameters based on single contrasts (Alexander et al., 2018; Ball et al.,
2013a; Batalle et al., 2017; Boardman et al., 2006; Bonifacio et al.,
2010; Bouyssi-Kobar et al., 2018; Brown et al., 2017; Thompson et al.,
2018b). Furthermore, compared to the age prediction model, the MSNs
used for preterm classification are based on four additional metrics: T1/
T2, related to myelination; RD, measuring water dispersion; υic de-
scribing neurite density; and ODITOT, associated with the fanning of
WM tracts. All these metrics contribute to characterise the micro-
structural alterations associated with preterm birth (Batalle et al., 2018;

Bouyssi-Kobar et al., 2018; Eaton-Rosen et al., 2015; Melbourne et al.,
2016; Thompson et al., 2018b).

We observed a disproportion in the distribution of the connections
selected by our models, with a preference for the right hemisphere,
hinting at the existence of lateralization in the maturational process. An
asymmetry in the development of the right hemisphere in neonates was
previously reported in Dubois et al. (2010); Wu et al. (2019);
Yap et al. (2011), and our experiments (Section 3.3) partially supported
the hypothesis that the right hemisphere plays a relevant role in the
context of age prediction.

4.1. Limitations

This work has some limitations. First, compared with the original
work on MSNs (Seidlitz et al., 2018), we did not have a multi-para-
metric mapping sequence (Weiskopf et al., 2013); however, because the
model is extensible, information from other contrasts could be added
and evaluated for their effect on prediction. The MSN model could also
be applied to study the properties of cortical gray matter (such as
thickness, sulcal depth or curvature), that have been previously re-
ported to be predictive of age in children (Brown et al., 2012) and could
contribute significantly in characterising the newborn brain. However,
metrics that only apply to selected structures (e.g. the cortex) cannot be
used in a whole brain analysis, as to compute inter-regional similarities
each region needs to be described by the same set of metrics. This
particular study was designed based on prior knowledge that typical
development and atypical development associated with preterm birth
are characterised by global changes (Anderson, 2014; Ball et al., 2013a;
Eaton-Rosen et al., 2015; Melbourne et al., 2014), and MSNs integrating
dMRI and sMRI data were chosen to study generalised processes across
the whole brain.

Second, we used a motion correction technique that attenuates the
impact of head motion on structural connectivity (Andersson and
Sotiropoulos, 2016; Baum et al., 2018), and we found that scanner
motion was not contributing significantly to prediction accuracy;
however we cannot rule out a possible confounding effect of motion on
the estimation of regional metrics.

Third, the preterm study population was representative of survivors
of modern neonatal intensive care in terms of gestational age range and
prevalence of co-morbidities of preterm birth that may influence brain
maturation, but it is still possible that the results were influenced by
biological variability specific to the cohort. A replication study will be
required to determine whether the patterns of dysmaturation we found
are generalisable.

Finally, we assessed the performance of our models with both
LOOCV and 10-5-fold schemes in order to investigate the stability of our
findings with respect to the chosen cross-validation scheme and we
observed some variability in the general trends of the results. The dis-
agreement we found might derive from the limited size of the training
set in the case of the repeated-5-fold scheme (all models tended to
perform worse, suggesting there were not enough samples for learning),
and this was indeed the reason why our first choice was the leave-one-
out scheme. As it is always the case when working with machine
learning, increasing the sample size would increase the power of the

Table 2
Results from previous works in the age prediction task.

Age span Model Error/Accuracy

Brown et al. 2017 27–45 weeks PMA FA-weighted structural connectivity MAE = 1.6 weeks
Ouyang et al. 2019 31.5–41.7 weeks PMA cortical FA and MK (mean kurtosis) FA: r = 0.92; MK: r = 0.63

spatio-temporal growth models for myelin-like Thalami: MAE = 1.41 weeks
Deprez et al. 2018 29–44 weeks PMA signals in the thalami and brainstem Brainstem: MAE = 2.56 weeks
Toews et al. 2012 8–590 days from birth scale-invariant T1w features MAE = 72 days
Wu et al. 2019 14–48 days from birth cortical measures MAE = 11.1 ± 0.3 days

PMA = postmenstrual age, MAE = mean absolute error, r = Pearson’s coefficient between actual and predicted age.
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models, thereby reducing the margin of error and the risk of overfitting,
with the result that both schemes should converge to similar findings.

4.2. Conclusions

Combining multiple imaging features in a single model enabled a
detailed description of the morphological properties of the developing
brain that was used inside a predictive framework to identify two
networks of regions: The first, predominantly located in subcortical and
fronto-temporal areas, that contributed most to age prediction: the
second, comprising mostly frontal, parietal, temporal and insular re-
gions, that discriminated between preterm and term born infant brains.
Both predictive models performed best when structural, diffusion
tensor-derived and NODDI metrics were combined, which demonstrates
the importance of integrating different biomarkers to generate a global
picture of the developing human brain. The achieved accuracy supports
the hypothesis that studying the interaction between regional metrics
can shed light on the mechanics of development.

Morphology, structural connectivity and maturation are all influ-
enced by genetics, co-morbidities of preterm birth, and nutrition
(Alexander et al., 2018; Anblagan et al., 2016; Ball et al., 2017; Blesa
et al., 2019; Boardman et al., 2014; Krishnan et al., 2016; Sparrow
et al., 2016). In future work MSNs could offer new understanding of the
impact of these factors on integrated measures of brain development,
and the relationship between neonatal MSNs and functional outcome
could bring novel insights into the neural bases of cognition and be-
haviour, by identifying networks of regions associated with later de-
velopment. MSNs could also enable a direct comparison with functional
networks extracted from fMRI, to explore how structure and function
interplay in the neonatal period, and study how well the two network
models together explain individual variability in developmental out-
come.
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