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Abstract Acid-sensing ion channels (ASICs) are proton-gated cation channels that are involved in

diverse neuronal processes including pain sensing. The peptide toxin Mambalgin1 (Mamba1) from

black mamba snake venom can reversibly inhibit the conductance of ASICs, causing an analgesic

effect. However, the detailed mechanism by which Mamba1 inhibits ASIC1s, especially how

Mamba1 binding to the extracellular domain affects the conformational changes of the

transmembrane domain of ASICs remains elusive. Here, we present single-particle cryo-EM

structures of human ASIC1a (hASIC1a) and the hASIC1a-Mamba1 complex at resolutions of 3.56

and 3.90 Å, respectively. The structures revealed the inhibited conformation of hASIC1a upon

Mamba1 binding. The combination of the structural and physiological data indicates that Mamba1

preferentially binds hASIC1a in a closed state and reduces the proton sensitivity of the channel,

representing a closed-state trapping mechanism.

Introduction
Acid-sensing ion channels (ASICs) are a group of voltage-independent proton-gated cation channels

belonging to the degenerin/epithelial sodium channel (DEG/ENaC) superfamily (Kellenberger and

Schild, 2002; Krishtal and Pidoplichko, 1981; Waldmann et al., 1997). These channels are involved

in diverse physiological processes, including learning and memory (Kreple et al., 2014;

Wemmie et al., 2002; Yu et al., 2018), neurodegeneration after ischemic stroke (Gao et al., 2005;

Lee and Chen, 2018; Qiang et al., 2018; Xiong et al., 2004), and pain sensation (Callejo et al.,

2015; Deval et al., 2010; Deval et al., 2011; Wemmie et al., 2013). Therefore, ASICs have

emerged as potential therapeutic targets in the management of psychiatric disorders, neurodegen-

erative diseases and pain (Baron and Lingueglia, 2015; Rash, 2017; Wemmie et al., 2006;

Wemmie et al., 2013).

Peptide toxins from venom are the most potent and subtype-selective ASIC modulators and thus

have been very powerful tools for studying the gating and modulation mechanisms of ASICs

(Baron et al., 2013; Kalia et al., 2015). In the past decade, structures of chicken ASIC1 (cASIC1) in

different states have been reported. These include structures of the apo-form cASIC1 in the inactive

(Jasti et al., 2007), desensitized (Gonzales et al., 2009) and resting (Yoder and Gouaux, 2020;

Yoder et al., 2018) states and of venom-bound states: the MitTx-bound open state
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(Baconguis et al., 2014), and the PcTx1-bound ion-selective, nonselective (Baconguis and Gouaux,

2012), and inactive states (Dawson et al., 2012). Structural studies of cASIC1-toxin complexes, com-

bined with the structure of cASIC1 alone, have revealed a comprehensive molecular mechanism for

proton-dependent gating in ASICs. In the resting state, the position of the thumb domain lies farther

away from the threefold molecular axis, thereby expanding the ‘acidic pocket’ (Yoder et al., 2018).

In the open and desensitized states, the ‘closure’ of the thumb domain into the acidic pocket

expands the lower palm domain (Baconguis et al., 2014; Gonzales et al., 2009), leading to an iris-

like opening of the channel gate.

Mambalgin1 (Mamba1), a 57-residue three-finger toxin isolated from the venom of the black

mamba snake (Dendroaspis polylepis polylepis), has been proven to be a potent, rapid and revers-

ible inhibitor of ASIC1a- or ASIC1b-containing channels in both central and peripheral neurons

(Diochot et al., 2012). Mamba1 has an analgesic effect that is as strong as that of morphine but

does not involve opioid receptors, highlighting its potential utility for the management of pain. A

detailed investigation of the binding of Mamba1 to human ASICs and its resulting modulatory effect

could provide insights into the mechanism of interaction between toxins and ASICs and could offer

crucial clues for the development of new drugs targeting ASICs.

It should be pointed out that, to date, all ASIC structures solved and gating mechanism reported

have been of chicken ASIC1, which can be pharmacologically quite different when compared to

human ASIC1a despite ~89% sequence identity. Functional studies have shown that human ASIC1a

(hASIC1a) and cASIC1 exhibit different responses to the channel activity modulation toxins Mamba1

(Sun et al., 2018). In our own experiments, synthetic Mamba1 was observed to inhibit the channel

currents of both recombinant hASIC1a and cASIC1 in CHO cells (Figure 1a). The inhibitory effects of

Mamba1 on both full-length hASIC1a and cASIC1 are concentration dependent, with IC50 values of

197.3 ± 37.4 and 123.6 ± 28.5 nM, respectively (Figure 1b). Interestingly, in the presence of 500 nM

Mamba1, hASIC1a and cASIC1 showed decreases of 60.4 ± 12.9% and 19.6 ± 6.1% respectively, in

the measured sodium currents (Figure 1a). At saturation (10 mM Mamba1), hASIC1a and cASIC1

showed decreases in the measured sodium currents of 78.9 ± 6.2% and 31.9 ± 4.7% (Figure 1b).

These data indicated that Mamba1 acts as an inhibitor targeting both hASIC1a and cASIC1, with

comparable affinities but different efficacies. These observations suggested that functional and phar-

macological differences exist between chicken ASIC1 and human ASIC1a, thus leading to the ques-

tion of whether the structures of cASIC1 can fully recapitulate the functional states of hASIC1a.

Therefore, structural studies on human ASICs are necessary to define functional states and provide

comprehensive insights into the gating and toxin peptide modulation mechanisms of human ASICs.

In this study, we resolved the cryo-EM structures of hASIC1a in the apo-form and in complex with

the Mamba1 toxin at 3.56 Å and 3.90 Å resolution representing the first structure of human

ASICs, respectively. The structure of apo-hASIC1a was shown to be highly similar to that of cASIC1

in the resting state. Comparison of the structures of hASIC1a in the apo-form and the Mamba1-

bound state revealed minor structural deviations. Electrophysiological studies revealed that Mamba1

prefers to bind hASIC1a in a closed state. Direct interactions between residues in Mamba1 and acid-

sensing residues in the ‘acidic pocket’ of hASIC1a were observed to reduce the apparent proton

sensitivity of the hASIC1a channel, leading to channel inhibition. These data indicate that the mecha-

nism by which Mamba1 inhibits hASIC1a channel is closed-state trapping.

Results

Functional characterization and structure determinations
To facilitate the expression and purification of hASIC1a, a series of truncations of full-length hASIC1a

was performed. Finally, truncated hASIC1a with the 60 carboxyl terminal residues removed (named

hASIC1aDC) was determined to be functional by whole-cell patch-clamp electrophysiology. The hASI-

C1aDC channel exhibits electrophysiological properties very similar to those of the full-length channel

(Figure 1c–d). Mamba1 inhibits hASIC1aDC channels with an IC50 of 106.6 ± 23.6 nM, which is com-

parable to the reported IC50 of full-length hASIC1a in CHO cells (148.6 ± 33.2 nM) (Figure 1b). To

better understand the structure and toxin modulation of human ASICs, we set out to purify hASI-

C1aDC, construct the hASIC1aDC-Mamba1 complex in vitro and subject the protein and protein com-

plex to single-particle cryo-EM studies.
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The hASIC1aDC protein was overexpressed and purified from sf9 insect cells. Mamba1 was

obtained through total chemical synthesis (Fang et al., 2011; Fang et al., 2012; Pan et al., 2014;

Schroeder et al., 2014). The details of protein purification, complex construction, cryo-sample prep-

aration, image acquisition, data processing, model building, and structure refinement can be found

in the Materials and methods section. Briefly, recombinant hASIC1aDC protein was purified from sf9

cells in the presence of 0.05% (w/v) n-dodecyl-b-D-maltoside (DDM) and subjected to cryo-EM stud-

ies (Figure 1—figure supplement 1). Micrographs were collected on a Titan Krios electron micro-

scope equipped with a Gatan K2 Summit detector. A 3D EM map of apo-form hASIC1aDC was

reconstructed to an overall resolution of 3.56 Å (Figure 2—figure supplements 1–2). Following a

similar protocol, the EM map of hASIC1aDC in complex with Mamba1 was obtained at 3.90 Å (Fig-

ure 3—figure supplements 1–2).

Cryo-EM structure of apo-hASIC1aDC

The trimeric hASIC1aDC shows a canonical chalice-like architecture (Figure 2a–b). Each subunit of

hASIC1aDC harbors a cysteine-rich extracellular domain (ECD). The ECD resembles a hand-like archi-

tecture with the palm, knuckle, finger and thumb domains clenching a ‘ball’ of b strands (Figure 2—
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Figure 1. Functional analysis of hASIC1a and hASIC1aDC. (a) Typical current traces representing the inhibition of recombinant hASIC1a (left), cASIC1

(middle) and hASIC1aDC (right) by Mamba1 toxin in CHO cells. (b) Concentration-response curve showing the inhibition of hASIC1a, hASIC1aDC and

cASIC1 expressed in CHO cells by Mamba1. Imamba1 and I represent the currents elicited by the pH 6.0 solution in the presence and absence of

Mamba1 toxin respectively. (c) Representative whole-cell patch-clamp recordings from wild-type hASIC1a and hASIC1aDC activated by pH 6.0 solution.

(d) pH-dependent activation and inactivation curves of hASIC1a (solid lines) and hASIC1aDC (dash lines). Data were collected from CHO cells

transfected with hASIC1a or hASIC1aDC DNA. Data are presented as the mean ± SD.

The online version of this article includes the following source data and figure supplement(s) for figure 1:

Source data 1. Source data for Figure 1b and d.

Figure supplement 1. Purification of hASIC1aDC for cryo-EM study.
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figure supplement 2b). In the transmembrane domain (TMD) of hASIC1aDC, two transmembrane

helices, TM1 and TM2, are observed to connect to the b1 and b12 strands of the palm domain at a

juncture called the ‘wrist’ (Figure 2—figure supplement 2b). The density map of TM2 provides con-

vincing evidence that the helix is not a continuous a-helix but rather has a break in the helical struc-

ture (Figure 2—figure supplement 2a). The helical structure of TM2 ends at Ile443 and resumes at

Ile447. Residues Gly444, Ala445, and Ser446 adopt a nonhelical conformation, dividing TM2 into
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Figure 2. Cryo-EM structure of apo-hASIC1aDC. (a) Cryo-EM density map of apo-hASIC1aDC. The three hASIC1aDC subunits are colored orange, cyan

and pink. (b) Overall structure of trimeric hASIC1aDC, with different colors representing each subunit. (c) Ribbon representation of the hASIC1aDC TMD.

Two subunits are colored red and grey, respectively. The Ca atoms of the ‘GAS belt’ (G444-A445-S446) are shown as spheres. (d) View of the TMD from

the intracellular side. Residues in the GAS belt are shown in stick representations. Distances between the Gly444 carbonyl oxygen atoms are indicated.

(e) Close-up view of the pore domain. Map of solvent-accessible pathway is shown (red <1.4 Å<green < 2.3 Å<blue). Residues in TM2 lining the pore

are shown as sticks. (f) Plot of radius as a function of longitudinal distance along the pore for hASIC1aDC (black), cASIC1 in a resting state (red, PDB

6AVE) and cASIC1 in an open state (blue, PDB 4NTW). (g) Single subunit superposition of the apo-hASIC1aDC and apo-cASIC1 channels in the resting

state (PDB 6AVE) indicates the high similarity of the two structures. The hASIC1aDC is represented with each domain in different colors, and cASIC1 is

colored gray. The inserts show the close-up view of the acidic pocket (upper panel) and the TMD (lower panel) from the superposed hASIC1aDC and

cASIC1. For clarity, the TM1 of the TMD is shown in cartoon representation, and the TM2 is in ribbon.

The online version of this article includes the following figure supplement(s) for figure 2:

Figure supplement 1. Cryo-EM structure determination of hASIC1aDC.

Figure supplement 2. Structure model building of hASIC1aDC.
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segments TM2a and TM2b. The TM2b helical element interacts with the cytoplasmic portion of TM1

of the adjacent subunit (Figure 2c), resulting in a swap of the TM2 helices. Overall, the three copies

of TM1, TM2a and TM2b define a cavernous, threefold symmetric pore of the hASIC1a channel, in

which TM2 resides on the periphery of the pore (Figure 2d). Electrostatic mapping of the solvent-

accessible surface reveals that the ion channel pore of hASIC1aDC harbors a modest negative poten-

tial conferred by the presence of Asp434 and Gln438, by the carbonyl oxygen atoms of Gly437,

Gly440, and Gly444 (Figure 2e). The pore profile of hASIC1aDC also shows a closed gate along the

threefold axis as a result of primary constrictions at Asp434 and Gly437 (Figure 2e–f).

The resting-state conformation of hASIC1aDC at pH 8.0
The apo-hASIC1aDC structure at pH 8.0 is observed to have high similarity with the resting-state

structure of cASIC1 at pH 8.0 (Yoder et al., 2018). The two structures can be well superimposed

with a root-mean-square deviation (RMSD) of 0.88 Å over 1124 aligned Ca atoms (Figure 2g). Espe-

cially, the structure of the acidic pockets of hASIC1aDC and cASIC1 is almost identical, giving an

RMSD of 0.41 Å. In the acidic pocket, the distances between the Ca atoms of Asp347-Glu238 and

Asp351-Asp237 in hASIC1aDC are measured to be 13.9 and 15.6 Å, respectively, which are
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Figure 3. Structural basis of Mamba1 binding to hASIC1aDC. (a) Cryo-EM density map of the hASIC1aDC-Mamba1 complex. The three hASIC1aDC

subunits are colored orange, cyan and slate. Mamba1 is colored red. (b) Overall structure of the hASIC1aDC-Mamba1 complex. A single subunit of

hASIC1aDC is shown in cartoon representation, with each domain in a different color. Mamba1 is shown as a slate-colored ribbon. (c, d) Close-up views

of the interactions of the Finger-I (c) and Finger-II (d) regions of Mamba1 with the thumb domain of hASIC1aDC. (e, f) Bar graph representing the

inhibition of wild-type hASIC1a currents by Mamba1 mutants (e) and hASIC1a mutants by wild-type Mamba1 (f). Imamba1 and I represent the currents

elicited by the pH 6.0 solution in the presence and absence of Mamba1 toxin, respectively. Data are presented as the means ± SD. Comparison wild-

type Mamba1 (e) or hASIC1a (f) unless specified, ***p<0.001; **p<0.01; *p<0.05 (t-test).

The online version of this article includes the following source data and figure supplement(s) for figure 3:

Source data 1. Source data for Figure 3e and f.

Figure supplement 1. Cryo-EM structure determination of hASIC1aDC-Mamba1 complex.

Figure supplement 2. Structure model building of hASIC1aDC-Mamba1 complex.

Figure supplement 3. The overlapping of the binding site of toxins on ASIC.

Figure supplement 4. pH-dependent activation of the hASIC1a mutants currents.

Figure supplement 5. One-dimensional 19F-NMR measurements of Mamba1.
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comparable to the distances measured in the cASIC1 channel (13.0 Å for Asp346-Glu239 and 15.0 Å

for Asp350-Asp238) (Figure 2g). Moreover, the structures of the TMDs of hASIC1aDC and cASIC1

are superimposed well, with an RMSD value of 0.34 Å. The pore profiles of hASIC1aDC and cASIC1

are almost the same (Figure 2f). Our structure shows that hASIC1aDC has all the hallmarks of resting-

state cASIC1, including the expanded acidic pocket, the extended GAS belt and a closed gate.

Combining this information with the electrophysiology data, we conclude that the structure of hASI-

C1aDC reported here represents the resting state of hASIC1a.

Interaction between Mamba1 and hASIC1a
The overall architecture of the hASIC1aDC-Mamba1 complex shows a triskelion-like shape viewed

down the threefold symmetry axis, with one Mamba1 molecule radiating from each hASIC1aDC sub-

unit (Figure 3a). Each of the three Mamba1 molecules binds to the ECD of a subunit of hASIC1aDC,

interacting with the outside of the ECD of hASIC1aDC (Figure 3b). Different with the PcTx1 and

MitTx toxins, Mambal1 was observed to interact with the thumb domain of hASIC1a channel.

Although the interaction between PcTx1 and cASIC1 involves the thumb, palm and b-ball domains

(Figure 3—figure supplement 3a). The interaction between MitTx and cASIC1 involves the palm

domain besides the thumb domain (Figure 3—figure supplement 3b).

Previously, we determined the cryo-EM structure of the cASIC1-Mamba1 complex, which

revealed the binding locations of the toxin to the ECD of cASIC1 (Sun et al., 2018). However, the

relatively low resolution (5.7 Å) could not show a reliable binding interface analysis between

Mamba1 and cASIC1. Herein, the cryo-EM structure of the hASIC1aDC-Mamba1 complex at 3.9 Å

resolution illuminates a more detailed binding interface between Mamba1 and hASIC1aDC. The bind-

ing of Mamba1 to hASIC1aDC induces a conformational change in Finger-II of Mamba1. The tip

region of Finger-II flips to the thumb domain of hASIC1aDC to facilitate the interaction between the

toxin and the channel (Figure 3—figure supplement 2c). In the tip region of Finger-II, Arg28 is ori-

ented toward the a5 helix of the thumb domain, thus becoming closer to Asp347 and Asp351. The

measured distances between the Ca atoms of Arg28-Asp347 and Arg28-Asp351 are 10.5 and 10.2

Å, respectively. Although the side chains of Arg28, Asp347 and Asp351 cannot be clearly assigned,

it seems there could be salt bridges between Arg28 and Asp347 or Asp351 (Figure 3c). Phe352, a

residue that is conserved in ASIC1 orthologues, is nestled within a hydrophobic cluster composed of

Met25, Phe27, Leu32 and Leu33 in Finger-II of Mamba1, mediating a hydrophobic interaction

between Mamba1 and hASIC1aDC (Figure 3c). Moreover, Mamba1 could form multiple polar con-

tacts with hASIC1aDC through its Finger-I region. Mamba1-Gln5 and His6 could form hydrogen

bonds with the side chain of Tyr360 of hASIC1aDC. Mamba1-Lys8 could form salt bridges with

Asp300 (Figure 3d). Notably, Finger-III of Mamba1 is located farther from the thumb domain of

hASIC1aDC, pointing in the opposite direction from the threefold axis of the channel core. Finger-III

thus has no contact with hASIC1aDC (Figure 3b). The upper scaffold region of Mamba1 likewise

does not contact hASIC1aDC.

To verify the toxin-channel interactions, individual mutations were introduced into Mamba1 and

the possible counterpart interaction regions on hASIC1a. The inhibition of hASIC1a activity by

Mamba1 is greatly reduced when residue Mamba1-Gln5, His6, Lys8, Phe27 or Arg28 is mutated to

Ala (Figure 3e). Mamba1 is significantly less effective in inhibiting the hASIC1a mutants Asp347Ala,

Asp351Gly, Phe352Leu and Tyr360Ala (Figure 3f and Figure 3—figure supplement 4). These data

are consistent with previous electrophysiological studies on chicken or rat ASIC1 channels

(Mourier et al., 2016; Salinas et al., 2014; Sun et al., 2018).

Furthermore, the interaction of hASIC1aDC and Mamba1 was validated using 19F-labeled Mamba1

and 19F-NMR spectroscopy in the solution state at ambient temperature. 19F labeling was intro-

duced into Mamba1 by replacing the residue sites Phe18, Phe27, Leu30 or Leu32 in Mamba1 with
19F-labeled L-4-trifluoromethyl-phenylalanine (19F-tfmF) through chemical synthesis. One-dimen-

sional 19F-NMR spectra indicate a significant change in chemical shift for residues Mamba1-Phe27

(within Finger-II) upon hASIC1aDC protein titration, and slight changes for Leu30 and Leu32, whereas

no change is observed for residue Phe18 (as a negative control) (Figure 3—figure supplement 5).

These data represent that Phe27 in Mamba1 has a significant conformational change when binds to

hASIC1a channel, while the conformation of Leu30, Leu32 and Phe18 are not altered. These data

indicate that Phe27 plays a key role in Mamba1 binding to hASIC1a channel.
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Collectively, both mutation-based patch-clamp electrophysiology analysis and 19F-NMR measure-

ments support the interaction between Mamba1 and hASIC1a mediated by the Finger-I/II regions of

Mamba1 and the thumb domain of hASIC1a.

The inhibited conformation of hASIC1a upon Mamba1 binding
The structure of apo-hASIC1aDC and hASIC1aDC-Mamba1 made it possible to illustrate the detailed

conformation changes in both the ECD and TMD of hASIC1aDC upon Mamba1 binding. Structure

alignment of the hASIC1aDC-Mamba1 complex and apo-hASIC1aDC gives an RMSD of 0.44 Å2, indi-

cating the globally high similarity of the two structures (Figure 4a and Figure 4—figure supplement

1a–b). However, minor structural differences between the two structures can still be observed.

The snake toxin peptide Mamba1 contacts Asp347, Asp351, and Phe352 located in the a5 helix

of the thumb domain, causing these residues to flip outward from the acidic pocket. The a5 helix

thus deviates by ~5˚ around the central axis, whereas the a4 helix and the finger domain adopt the

same conformation as in the apo-hASIC1aDC structure (Figure 4b). In the hASIC1aDC-Mamba1 com-

plex structure, the distances between the Ca atoms of Asp347-Glu238 and Asp351-Asp237 (13.3

and 12.0 Å, respectively) (Figure 4b) are slightly closer than those in the apo-hASIC1aDC structure

(13.9 and 15.6 Å, respectively).

In the TMD, TM1 undergoes a lateral pivot of ~6˚ around its carboxyl terminus upon Mamba1

binding. Meanwhile, TM2a have a shift of approximately 2.5 Å away from the channel pore, and

TM2b shifts approximately 4 Å at its amino terminus and 8 Å at its carboxyl terminus away from the

pore (Figure 4c). Comparison of the ion channel pore architectures of apo-hASIC1aDC and the hASI-

C1aDC-Mamba1 complex shows that the extracellular vestibule undergoes a slight expansion upon

Mamba1 binding (Figure 4d and Figure 4—figure supplement 1c). However, the overall pore pro-

file of the hASIC1aDC-Mamba1 complex is similar to that of apo-hASIC1aDC. The transmembrane

pore of the hASIC1aDC-Mamba1 complex has a diameter less than 2.0 Å in the gate, indicating a

closed channel. (Figure 4e). The slight shifts of the thumb domain and transmembrane helices of

hASIC1a in complex with Mamba1 cause it to adopt a less compact conformation than that of apo-

form hASIC1a in the resting state, but the expanded conformation of the acid pocket and the closed

pore are not altered.

Mamba1 reduces the proton sensitivity of hASIC1a
Interestingly, we found that the inhibition of hASIC1a by Mamba1 depended on the pH of the toxin

perfusion. When 500 nM Mamba1 was applied at conditioning pH 8.0, before the pH dropped to

6.0 (Figure 5a), the hASIC1a current showed decreases of 50.2 ± 8.8% at the peak (Figure 5b). In

contrast, the coapplication of 500 nM Mamba1 as the pH dropped to 6.0 from pH 8.0 did not pro-

duce as much suppression as preapplication did (peak current showed decreases of 10.6 ± 7.2%)

(Figure 5a and b). We also measured the current amplitudes at the end of such applications. As

shown in Figure 5b, the currents showed decreases of 49.9 ± 19.4% when Mamba1 application was

administered in the absence of the stimulating pH 6.0 application, while showed decreases of 9.3 ±

8.6% in the presence of the stimulating pH 6.0 application. These data suggest that Mamba1 bind-

ing favors a resting closed state of hASIC1a at neutral pH rather than an open or desensitized state

at acidic pH.

Moreover, similar to a previous report (Diochot et al., 2012), in the absence of Mamba1,

hASIC1a showed half-maximal activation at a pH (pH50) of 6.46 ± 0.02. In contrast, in the presence of

Mamba1 (500 nM), the pH50 of activation was 5.89 ± 0.07 (Figure 5c–d). Mamba1 drastically shifts

the activation curve of hASIC1a by 0.57 pH units to a more acidic pH, demonstrating that Mamba1

decreases the apparent H+ affinity of hASIC1a, thus inhibiting channel activation at pH 6.0. These

observations indicate that Mamba1 acts as an inhibitor targeting ASIC by modifying the proton sen-

sitivity of the channel, consistent with previous conclusions (Diochot et al., 2016; Salinas et al.,

2014).

In fact, multiple acidic residues located around the acidic pocket have been found to contribute

to modulation of the proton sensitivity of ASICs, including Asp237, Glu238, Asp347 and Asp351

(Jasti et al., 2007). It has been reported previously that the neutralization of Asp346 and Asp350 in

cASIC1 (corresponding to Asp347 and Asp351 in hASIC1a) has profound effects on either pH50 or

the apparent Hill coefficient, or both (Jasti et al., 2007). The Asp346Asn mutation shifts the pH
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dependence of cASIC1 activation to more acidic values (6.35 ± 0.04 to 5.58 ± 0.02) and reduces the

Hill coefficient from approximately 9 to 5, and the Asp350Asn mutation diminishes the Hill coeffi-

cient to approximately three and has little effect on pH50 (Jasti et al., 2007). Our data show that

hASIC1a-Asp347Ala and hASIC1a-Asp351Gly both shift the pH-dependent activation curves to more

acidic pHs (Figure 5c–d). The Asp347Ala and Asp351Gly mutations shift the activation curve of
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Figure 4. The structure of hASIC1aDC inhibited by Mamba1. (a) Single-subunit superposition of apo form and Mamba1-bound hASIC1aDC shows global

conformational changes. The domains of apo-hASIC1aDC are shown in different colors, and Mamba1-bound hASIC1aDC is colored grey. (b, c)

Conformational changes in the acidic pocket and TMD of hASIC1aDC upon Mamba1 binding. (b) View of the acidic pocket from superposed apo- and

Mamba1-bound hASIC1aDC. hASIC1aDC is shown in cartoon representation and colored as in (a). Ca atoms of Glu238 and Asp347, Asp239 and Asp351

are shown as spheres. (c) View of the TMD from superposed apo- and Mamba1-bound hASIC1aDC. The TMDs of hASIC1aDC and the hASIC1aDC-

Mamba1 complex are shown as ribbons in red and grey, respectively. (d) Pore profiles of hASIC1aDC (left) and the hASIC1aDC-Mamba1 complex (right)

calculated with HOLE software (red <1.4 Å<green < 2.3 Å<blue). (e) Plot of pore radius for the apo-form hASIC1aDC (black, solid line), hASIC1aDC-

Mamba1 complex (red, solid line), cASIC1 in resting state (grey, dash line, PDB 6AVE), and cASIC1 in open state (blue, dash line, PDB 4NTW) along the

threefold molecular axis.

The online version of this article includes the following figure supplement(s) for figure 4:

Figure supplement 1. Structure comparison of apo-hASIC1aDC and hASIC1aDC-Mamba1 complex.
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Figure 5. The ‘closed-state trapping’ model for Mamba1 inhibition of hASIC1a activity. (a) Typical traces of hASIC1a currents recorded in CHO cells

with administrations of Mamba1 (500 nM). The Mamba1 toxin applications were administered either in the absence (upper panel) or presence (middle

and lower panels) of the stimulating pH 6.0 application. (b) Bar graph representing the inhibition of the peak currents of hASIC1a statistics with

administrations of Mamba1 at pH 6.0 and pH 8.0 (left panel). The inhibition of current amplitudes at the end of such applications are also measured

and statistically compared (right panel). (c) pH-dependent activation curves of wild-type hASIC1a (WT) and hASIC1aDmutants obtained in the absence

or presence of Mamba1. (d) The measured pH50 and Hill coefficient values of wild-type hASIC1a (hASIC1a-WT) and hASIC1a mutants in the conditions

with or without Mamba1. Data are presented as the mean ± SEM. (e) The closed-state trapping inhibition mechanism of hASIC1a by Mamba1. Mamba1

binding leads to deformation of the proton-sensitive site, then stabilizes the expanded conformation of the acidic pocket and traps the channel in a

Figure 5 continued on next page
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hASIC1a by 0.59 and 0.42 pH units, respectively, with pH50 values of 5.88 ± 0.03 and 6.04 ± 0.05.

The mutations reduce the Hill coefficient from approximately 4 to 2. Meanwhile, Mamba1 is able to

shift the activation curves of the hASIC1a-Asp347Ala and hASIC1a-Asp351Gly mutants further, with

pH50 values of 5.72 ± 0.01 and 5.79 ± 0.02, respectively (Figure 5c–d). We suggest that probable

interactions between Asp347 and/or Asp351 of hASIC1a and Mamba1 shield the protonation of the

two residues, thus reducing the proton sensitivity of hASIC1a. On the other hand, the interaction

between Asp351 and Mamba1 could hinder the interaction between Asp351 and Arg190 (located at

the b-ball), which is critical for the collapse of the acidic pocket in active or desensitized channels.

Therefore, we suspect that Mamba1 inhibits the hASIC1a channel by hindering proton-induced tran-

sitions from the resting closed states to the active and/or desensitized states in a model of closed-

state trapping (Figure 5e).

Notably, Asp347 and Asp351 are not the only proton-sensing residues in hASIC1a (Vullo et al.,

2017). Glu79, Glu219, Glu409 and Glu418, which are located in the palm domain, which have no

direct contact with Mamba1, were also found to participate either in proton binding or in subse-

quent conformational changes (Jasti et al., 2007; Krauson et al., 2013; Ramaswamy et al., 2013).

This observation may explain why Mamba1 can inhibit only approximately 80% of the hASIC1a cur-

rent and loses its inhibitory effect on hASIC1a at a lower pH, such as pH 4.0.

The intradomain interaction affects the Mamba1 inhibition of ASIC
As shown in Figure 1, although Mamba1 has similar affinity to hASIC1a and cASIC1

(IC50 = 197.3 ± 37.4 and 123.6 ± 28.5 nM, respectively), the toxin shows a stronger inhibitory effect

on hASIC1a than on cASIC1 channels. In fact, the amino acid sequences of hASIC1a and cASIC1 are

highly similar (89% identity), and the sequences of the thumb domain of the two orthologues are

identical (Figure 6—figure supplement 1). This similarity may explain the similar affinity of Mamba1

in targeting hASIC1a and cASIC1. Comparison of the apo-form structure of hASIC1a with the rest-

ing-state structure of the cASIC1 channel, together with the structure of the hASIC1a-Mamba1 com-

plex, showed comparable expansion of the acid pocket between chicken and human ASIC1a

channels (Figures 2g and 4b). The key residues (such as Asp346 and Phe351) on the a5 helix in the

thumb domain of chicken ASIC1 channels that participate in Mamba1 binding are also critical in

human ASIC1a channels. These observations suggest that the different inhibitory efficacies of

Mamba1 on cASIC1 and hASIC1a channels could not be due to the toxin-channel interaction.

Through sequence alignment analysis and structure comparison, several key residues that do not

contribute to Mamba1 binding were found to contribute to the different inhibitory effects of

Mamba1 on hASIC1a and cASIC1. These residues include Gln102, Arg155 (both located in the finger

domain of hASIC1a) and Asp167 (located in the palm domain), which are mapped to Arg103,

Leu156 and Glu168 of cASIC1, respectively (Figure 6a and b). In cASIC1, Leu156 is observed to

interact with the hydrophobic pocket composed of Phe189, Val327 and Tyr334 in the thumb domain

(Figure 6c, Figure 6—figure supplement 2). The hydrophobic contact could participate in the inter-

action between the finger and thumb domains. Meanwhile, Arg103 and Glu168 could form electro-

static interaction pairs with each other (the distance between the Ca atom of the two residues was

measured to be 13.3 Å), mediating the contact between the finger and palm domains (Figure 6d,

Figure 6—figure supplement 2). It was reported that the movement of the finger domain plays a

critical role in the activation of ASICs (Bonifacio et al., 2014; Gwiazda et al., 2015; Krauson and

Carattino, 2016; Ramaswamy et al., 2013; Vullo et al., 2017). The replacement of Leu156 by

Arg155 and of Arg103-Glu168 by Gln102-Asp167 in hASIC1a result in disruption of intradomain

interactions, thus leading to enhanced inhibition of the channel by Mamba1.

To elucidate the contributions of these residues to the inhibition of ASIC1 activity by Mamba1,

mutations were introduced at these sites in hASIC1a channels, and whole-cell patch-clamp

Figure 5 continued

closed state. The structure of a single subunit of hASIC1aDC is shown as a cartoon in gray, representing the resting state of the channel (left). The

structure of hASIC1aDC-Mamba1 is shown as a cartoon, with each domain colored differently. Mamba1 is colored blue (right).

The online version of this article includes the following source data for figure 5:

Source data 1. Source date for Figure 5b, c and d.
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electrophysiology analysis were performed. As expected, replacing Arg155 of hASIC1a with Leu or

Phe decreased the inhibition of the channel activity by Mamba1 but did not affect the proton sensi-

tivity of the channel. The same was true for the Arg and Glu substitutions at hASIC1a-Gln102 and

Asp167, respectively (Figure 6e–f). These observations support the hypothesis that intrasubunit

interactions play critical roles in the activity modulation of ASICs from different species by toxins.

Discussion
To date, many electrophysiological studies of ASIC1 channels have been based on mice, rats and

chickens. Crystal or cryo-EM structures of chicken ASIC1 in different states were reported as
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Figure 6. Structural basis for the differing activities of hASIC1a versus cASIC1. (a) Sequence alignment of hASIC1a and cASIC1 indicates key residues

that may contribute to the inhibitory effect of Mamba1 on ASIC. (b) An individual subunit of resting-state hASIC1aDC. (c, d) Local alignments of

hASIC1aDC (green) with resting-state cASIC1 (grey, PDB 5WKV) demonstrate the possible interactions of residues in two handles. (e) pH-dependence

curves of hASIC1a and its mutants. (f) Bar graph representing the inhibitory effect of wild-type Mamba1 (500 nM) on hASIC1a mutants. Data are

presented as means ± SD. Comparison with wild-type hASIC1a, **p<0.01; *p<0.05 (t-test).

The online version of this article includes the following source data and figure supplement(s) for figure 6:

Source data 1. Source data for Figure 6e and f.

Figure supplement 1. Sequence alignment of chicken ASIC1 and human ASIC1a channels.

Figure supplement 2. The density maps of the key residues that possibly mediate domain interactions in hASIC1a.
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illustrating the gating mechanism of the channel (Baconguis et al., 2014; Baconguis and Gouaux,

2012; Gonzales et al., 2009; Jasti et al., 2007; Sun et al., 2018; Yoder and Gouaux, 2020;

Yoder et al., 2018). Here, we report the first structure of the human ASIC1a channel determined

using single-particle cryo-EM with a resolution of 3.56 Å.

The structure of hASIC1a in the apo-form at pH 8.0 reflects the resting state of the channel.

hASIC1a in the resting state has an identical structure to that of the cASIC1 channel, especially the

expanded acidic pocket and the extended ‘GAS’ motif. In fact, the human ASIC1a channel and

chicken ASIC1 channel have high-sequence homology (89% identity). These indicate that hASIC1a

and cASIC1 channels may share a similar gating mechanism. That is, the resting-state hASIC1a chan-

nel has an expanded acidic pocket, with the thumb domain far away from the central b-ball and the

finger and palm domains. Activation and desensitization of the channel both involve the collapse of

the acidic pocket, which allows the thumb and finger domains to approach and interact with each

other (Gonzales et al., 2009; Baconguis et al., 2014; Yoder et al., 2018). However, the structures

of human ASIC in the active or desensitized state remain unknown. Resolving the structures of the

active or desensitized hASIC1a will help to address this supposition.

In recent decades, venom toxin peptides have been observed to bind ASICs with high affinity

and specificity, providing an excellent resource for the definition of different functional states of the

channel (Bohlen et al., 2011; Diochot et al., 2004; Diochot et al., 2012; Escoubas et al., 2000;

Reimers et al., 2017). We also report here the structure of the human ASIC1a channel in complex

with the snake peptide toxin Mamba1 with resolution 3.90 Å, reflecting the toxin-inhibited state of

the channel. A first important conclusion is that, the structure of the hASIC1a-Mamba1 complex con-

firms that the Mamba1 binding site is located in the thumb domain of the hASIC1a channel. Com-

pared with the previously reported structures of the cASIC1 channel in complex with toxins PcTx1,

MitTx or Mamba1, these toxins interact with the ASIC channel through overlapping, but not identical

surfaces. The thumb domain is a hot spot that mediates toxin-channel interactions. However, the

Mamba1-binding site is totally located in the thumb domain of the hASIC1a channel, and does not

involve other sub-domains. In contrast, the toxin-binding surfaces for MitTx and PcTx1 involve the b-

ball and the palm domain in addition to the thumb domain. These observations could explain the

fact that MitTx and PcTx1 have much higher affinity than Mamba1 targeting ASIC channels.

Moreover, structure comparison of hASIC1a in the apo-form and in complex with Mamba1 reveals

that Mamba1 binding does not alter the closed structure of hASIC1a in a resting state. Therefore,

we conclude that Mamba1 inhibits hASIC1a through a closed-state trapping mechanism, precluding

the previously proposed allosteric-based channel modulation mode. Furthermore, the binding of

Mamba1 to hASIC1a is state-dependent. The toxin preferentially binds to the closed state but not

the active or desensitized state of ASICs. Mamba1 inhibits ASICs by shifting the pH-dependence of

activation to a more acidic pH, decreasing their apparent affinity for protons. In fact, the state-

dependent trapping mechanism has been found in the modulation of voltage-gated ion channel

activity by peptide toxins. It is proposed that voltage sensor trapping is the fundamental mechanism

of action of polypeptide toxins that alter the voltage-dependent gating of sodium, calcium, and

potassium channels (Cestèle et al., 1998). For the ASIC channel, the two Asp residues in the a5

helix of the thumb domain contribute to proton sensing during channel activation (Jasti et al.,

2007). Therefore, the thumb domain could act as the ‘proton sensor’ of the channel. Accordingly,

we conclude that Mamba1 toxin inhibits ASIC channel activity through a closed-state dependent

‘proton sensor trapping’ mechanism, sharing a common mechanism of polypeptide toxins modulat-

ing ion channel activity.

Mamba1 showed a stronger effect on hASIC1a than on cASIC1. Previous reported key residues

(such as Asp346 and Phe351) on the a5 helix in the thumb domain of the chicken ASIC1 channel

that participated in Mamba1 binding were also critical in the human ASIC1a channel. The structural

analysis and mutation experiments suggested that the different inhibitory effects of Mamba1 target-

ing cASIC1 and hASIC1a channels might be due to the mechanism of channel activation rather than

the difference in toxin-channel interactions. Several key amino acid differences between hASIC1a

and cASIC1, including Arg155 and the Glu102-Asp165 pair in hASIC1a (corresponding to Leu156

and Arg103-Glu168 in cASIC1, respectively), are found to contribute to the different responses of

hASIC1a and cASIC1 to Mamba1. Due to the relatively low resolution, our structures reported here

could not provide detailed structural evidence sufficient to support this finding. It is important to
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address how the coupling among the extracellular subdomains of ASIC, including the thumb, finger,

palm and b-ball, affects channel activity and toxin action on the channel.

ASIC channels are of fundamental importance and are also considered potential drug targets in

therapeutic interventions against pain and ischemic stroke. There is no doubt that analysis of interac-

tions between venom toxin and hASIC1a or peptide toxin-based drug development should follow

structure and function studies on human source target proteins, as data on homologous target pro-

teins from other species might not precisely reflect the modulatory effects of the peptide or of other

ligands on the target proteins, which will strongly influence the process of drug development for

human target proteins. Our studies on the human ASIC1a channel could obviously be very valuable

for drug development targeting ASIC.

Materials and methods

Key resources table

Reagent type
(species) or
resource Designation

Source or
reference Identifiers

Additional
information

Gene
(Homo sapiens)

hASIC1a GeneBank NCBI Reference
Sequence: NP_001086.2

All hASIC1a mutants
transfected in the
paper were obtained
starting from this
wild-type cDNA

Strain, strain
background
(Escherichia coli)

Top10 Thermo Fisher
Scientific

Cat# 18258012

Strain, strain
background
(Escherichia coli)

DH10Bac Thermo Fisher
Scientific

Cat# 10361012

Cell line
(Spodoptera
frugiperda)

Sf9 Thermo Fisher
Scientific

Cat# 11496015;
RRID:CVCL_0549

Cell line
(Homo sapiens)

HEK-293T ATCC Cat#: CRL-3216;
RRID:CVCL_0063

Cell line
(Cricetulus griseus)

CHO-K1 ATCC Cat# 03480/
p693_CHO-K1;
RRID:CVCL_0214

Recombinant
DNA reagent

pFastBac1 Invitrogen

Recombinant
DNA reagent

pcDNA3.1 Invitrogen

Chemical
compound,
drug

n-Dodecyl-b-D-
Maltoside (DDM)

Anatrace Cat#: D310

Chemical
compound,
drug

Cholesterol
Hemisuccinate
tris Salt (CHS)

Sigma-Aldrich Cat#: C6013

Peptide,
recombinant
protein

Mamba1 This paper UniProtKB: P0DKR6 Mamab1 and
mutants were
obtained by
chemical synthesis

Software,
algorithm

Gctf Zhang, 2016 https://www2.mrc-
lmb.cam.ac.uk/
research/locally-
developed-software/
zhang-software/#gctf

Software,
algorithm

RELION 3.1 Zivanov et al., 2018 http://www2.mrclmb.
cam.ac.uk/relion;
RRID:SCR_016274

Continued on next page
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Continued

Reagent type
(species) or
resource Designation

Source or
reference Identifiers

Additional
information

Software,
algorithm

SerialEM Mastronarde, 2005 RRID:SCR_017293

Software,
algorithm

PHENIX Liebschner et al., 2019 https://www.
phenixonline.org;
RRID:SCR_014224

Software,
algorithm

Coot Emsley et al., 2010 https://www2.mrc-
lmb.cam.ac.uk/
personal/pemsley/coot;
RRID:SCR_014222

Software,
algorithm

UCSF Chimera Pettersen et al., 2004 https://www.cgl.
ucsf.edu/chimera;
RRID:SCR_004097

Software,
algorithm

PyMol Schrödinger https://pymol.org/2;
RRID:SCR_000305

Software,
algorithm

GraphPad Prism 7 GraphPad
Software

https://www.
graphpad.com/
scientific-software/
prism

Software,
algorithm

HOLE Smart et al., 1996 http://www.
holeprogram.org

Others QUANTIFOIL R1.2/1.3
holey carbon grids

Quantifoil

Others Cellfectin Invitrogen Cat# 10362100

Others Superose 200
Increase 10/300 GL

GE Healthcare Cat# 28990944

Cell lines
All cell lines used were obtained from commercial sources (see the Key Resources Table). Sf9 cells

were cultured at 27˚C in serum-free SIM SF medium (Sino Biological Inc). HEK293T cells were cul-

tured as adherent cells in DMEM (with L-glutamine, glucose and sodium pyruvate), supplemented

with 10% FBS and 1% Gibco antibiotic-antimycotic; at 37˚C in 5% CO2. CHO-K1 cells were cultured

in DMEM/F12 medium (Gibco) supplemented with 10% fetal bovine serum (FBS), 100 U/mL penicil-

lin, and 100 U/mL streptomycin at 37˚C in a 5% CO2 incubator. No additional authentication was

performed by the authors of this study. Cell line was negative for mycoplasma. No commonly misi-

dentified lines were used in this study. All cell lines were kept at low passages in order to maintain

their health and identity.

Protein expression, purification and complex construction
The mambalgin1 (Mamba1) toxin was obtained using a hydrazide-based chemical synthesis method

as previously reported (Pan et al., 2014). The polypeptide chain of Mamba1 (57 amino acids) was

divided into three segments at two ligation sites (Cys19 and Cys41). All the segments (Mamba1[1-

18]-NHNH2, Mamba1[19–40]–NHNH2 and Mamba1[41–57]) were synthesized using a standard solid-

phase peptide synthesis method. The three segments were then ligated through the standard hydra-

zide-based native chemical ligation (NCL) to synthesize the full-length Mamba1. This synthesis of

Mamba1 is convenient and produced high yields following the final HPLC purification (35% isolated

yield, multi-milligram scale and good homogeneity). For the synthesis of Mamba1 mutants, the Ala-

nine or 19F-labeled L-4-trifluoromethyl-phenylalanine (19F-tfmF) were incorporated directly during

the peptide segments synthesis.

The optimized coding DNAs for human hASIC1a (Uniprot: P78348) was synthesized by Gene-

Script. The truncated hASIC1a (with the carboxyl terminal 60 residues removed, named as hASI-

C1aDC) was cloned into the pFastBac1 vector (Invitrogen) with 8-His tag at the amino terminus.

Baculovirus-infected sf9 cells (Thermo Fisher) were used for overexpression and were grown at 27˚C

in serum-free SIM SF medium (Sino Biological Inc). Cells were harvested 2 days after infection by
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centrifugation at 1000 g and resuspended in lysis buffer containing 20 mM Tris (pH 8.0), 200 mM

NaCl for each batch of protein purification. The suspension was supplemented with 1% (w/v)

n-dodecyl-b-D-maltopyranoside (DDM, Anatrace), 0.2% (w/v) cholesteryl hemisuccinate Tris salt

(CHS, Anatrace) and protease inhibitor cocktail (Sigma). After incubation at 4˚C for 2 hr, the solution

was ultracentrifuged at 200,000 g for 45 min, and the supernatant was applied to Ni-NTA (GE

HealthCare) by gravity at 4˚C. The resin was rinsed four times with the buffer containing 20 mM Tris

(pH 8.0), 200 mM NaCl, 40 mM imidazole, 0.1% DDM, 0.02% CHS and the protease inhibitor cock-

tail. The target proteins were eluted with buffer containing 20 mM Tris (pH 8.0), 200 mM NaCl, 250

mM imidazole, 0.1% DDM, 0.02% CHS. The eluted protein was further purified by size-exclusion

chromatography in 20 mM Tris (pH 8.0), 200 mM NaCl, 0.05% DDM, 0.01% CHS using a Super-

dex200 10/300 GL column (GE HealthCare). The presence of hASIC1aDC in the peak fractions of size

exclusion chromatography purification was confirmed by SDS-PAGE and mass spectrometry (MS).

To construct the hASIC1aDC-Mamba1 complex, hASIC1aDC was purified as described above in pH

8.0 buffer and concentrated to about 5 mg/ml based on A280 measurement, using a 100 kDa cutoff

Centricon (Millipore). The chemical synthesized, lyophilized Mamba1 was dissolved in buffer contain-

ing 20 mM Tris (pH 8.0), 200 mM NaCl, 0.05% DDM, 0.01% CHS at a final concentration of 10 mg/

ml based on A280 measurement, and added in a 6:1 molar ratio of toxin to channel with incubation

for 1 hr at 4˚C.

Single-particle cryo-EM data acquisition
Purified hASIC1aDC (3 ml) at a concentration of 2.7 mg/ml was added to the freshly plasma-cleaned

holey carbon grid (Quantifol, R1.2/1.3, 300 mesh, Cu), blotted for 5 s at 100% humidity with a Vitro-

bot Mark IV (ThermoFisher Scientific) and plunge frozen into liquid ethane cooled by liquid nitrogen.

Cryo-EM sample of hASIC1aDC-Mamba1 complex was prepared similarly with the concentration of

3.1 mg/ml. Grids were transferred to a Titan Krios electron microscope (FEI) operated at 300 kV

equipped with a Gatan K2 Summit direct detection camera. Images of hASIC1aDC and hASIC1aDC-

toxin complexes were collected using the automated image acquisition software SerialEM in count-

ing mode with 29,000 � magnification yielding a pixel size of 1.014 Å. The total dose of 50 e-/Å2

was fractionated to 40 frames with 0.2 s per frame. Nominal defocus values ranged from �1.8 to

�2.5 mm. The datasets of hASIC1aDC and hASIC1aDC-Mamba1 complex included 3235 and 3364

micrographs, respectively.

Image processing
Dose-fractionated image stacks were subjected to beam-induced motion correction and dose-

weighting using UCSF MotionCor2 (Zheng et al., 2017). Contrast transfer function parameters were

estimated with Gctf (Zhang, 2016). For particle picking, 2000 particles were picked manually to gen-

erate references for autopicking. The atuopicked particles were extracted by four-times downscaling

resulting in the pixel size of 4.056 Å and then subjected to reference-free 2D classification in Relion-

2 (Kimanius et al., 2016). For the dataset of hASIC1aDC, 213,605 particles from well-defined 2D

averages were selected for 3D classification with a pixel size of 2.028 Å. A 3D initial model de novo

from the 2D average particles was generated using stochastic gradient descent (SGD) algorithm in

Relion-2. The 50 Å low-pass filtered initial model was used as a template for 3D classification into

four classes. A selected subset of 122,890 particles were used to obtain the final map with a pixel

size of 1.014 Å and C3 symmetry imposed in the last round of 3D refinement in Relion-2. The global

resolution of this map was estimated to be 3.56 Å based on the gold-standard Fourier shell correla-

tion (FSC) using the 0.143 criterion. The dataset of hASIC1aDC-Mamba1 complex was similarly proc-

essed in Relion, with a subset of 119,901 particles producing a final map with global resolution of

3.90 Å. Local resolution was determined using ResMap (Kucukelbir et al., 2014) with unfiltered half-

reconstructions as input maps.

Model building
The coordinate of chicken ASIC1 (PDB code 6AVE) (Yoder et al., 2018) was fitted into the 3D EM

maps of hASIC1aDC using UCSF Chimera (Pettersen et al., 2004). The sequence of cASIC1 were

mutated with corresponding residues in human ASIC1a in Coot (Emsley et al., 2010). Every residue

was manually examined. The chemical properties of amino acids were considered during model
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building. The N-terminal residues 1–39 and C-terminal residues 466–468 were not built due to the

lack of corresponding densities. Structure refinement and model validation were performed using

phenix.real_space_refine module in PHENIX (Adams et al., 2010; Afonine et al., 2018). The refined

model of hASIC1aDC and the coordinate of Mamba1 (PDB code 5DU1) (Mourier et al., 2016) were

fitted into the 3D map of hASIC1aDC-Mamba1 complex in Chimera. All the residues were manually

adjusted in Coot. The final model was subjected to refinement and validation in PHENIX.

Plasmid construction, cell culture and transient transfection of CHO
cells
The coding sequence for wild-type hASIC1a was sub-cloned into the pcDNA3.1/Zeo(+) vector. All

site-directed mutations were generated with overlap PCR and inserted into pcDNA3.1/Zeo(+). The

mutants were sequenced to verify that no unwanted mutations had been introduced. Chinese ham-

ster ovary (CHO) cells were cultured in DMEM/F12 medium (Gibco) supplemented with 10% fetal

bovine serum (FBS), 100 U/mL penicillin, and 100 U/mL streptomycin at 37˚C in a 5% CO2 incubator.

The CHO cells were transferred to 24-well plates for transfection. When the CHO cells reached 90%

confluence, they were transfected with 0.6 mg of plasmid encoding EGFP and 0.8 mg of plasmid

encoding wild-type or mutant hASIC1a using Lipofectamine 2000 (Invitrogen, USA). After incubation

for 5 hr, the cells were transferred to poly-L-lysine (Sigma)-coated slides for culture for another 24–

48 hr in fresh medium. They were then used for the electrophysiological analysis.

Electrophysiological analysis of CHO cells
For the whole-cell recordings, the bath solution contained 150 mM NaCl, 4 mM KCl, 2 mM CaCl2, 1

mM MgCl2, and 10 mM HEPES (pH 8.0,~308 mOsm). The electrodes were pulled from thick-walled

borosilicate glass capillaries with filaments (1.5 mm diameter; Sutter Instruments) on a four-stage

puller (P-1000; Sutter, USA) and had resistances of 2–5 MW when filled with intracellular solution con-

taining 140 mM KCl, 10 mM NaCl, 5 mM EGTA, 10 mM HEPES, (pH 8.0,~297 mOsm). All chemicals

were obtained from Sigma. The experiments were performed at room temperature with an EPC-10

amplifier (HEKA Electronic) with the data acquisition software PatchMaster. Membrane potential was

held at �70 mV in all experiments. Acid-induced currents were recorded by rapidly exchanging local

solution from pH 8.0 to acidic pH through a Y-tube perfusion system. Toxins were applied 30 s

before the pH decreased and persisted during low pH application. Channels were activated by acid

perfusion at least every 2 min to allow for a complete recovery of the channels from desensitization.

Recordings in which access resistance or capacitance changed by 10% during the experiment were

excluded from data analysis. Mamba1 was added when the currents were stable.

Patch-clamp electrophysiological data analysis
The data were analyzed with Clampfit and SigmaPlot. The dose–response curves used to determine

the IC50 values were fitted using the Hill equation: y = 1 + (Imax – 1)/(1 + (IC50/x)h), where x is the

toxin concentration, h is the Hill coefficient, and IC50 is the half-maximal effect. The results are pre-

sented as the means ± standard errors (SE), and n is the number of experiments.

19F NMR spectra measurements
All one-dimensional 19F NMR spectra measurements were performed at 298 K on a Bruker 600MHz

spectrometer equipped with a triple inverse TCI cryo-probehead, H and F-C/N-D-05-Z probe and

the observation channel was tuned to 19F (564.7 MHz), with 10240 free induction decay (FID) accu-

mulations in every 1 s recycling delay, 4096 scans per experiment. One-dimensional 19F spectra

were acquired with one pulse program with 90˚ pulse width of 11 ms and power at 7.09 w. The 19F

chemical shifts were calibrated using the internal standard TFA. The data were processed and plot-

ted with an exponential window function (line broadening = 20 Hz) using TopSpin 4.0.5. The concen-

tration of tfmF site-specific-labeled Mambalgin-1 was 0.1 mM containing 10% D2O. Finally, 0.1 mM

19F-labeled Mambalgin-1 was added into 0.1 mM hASIC1a containing 10% D2O in 400 ml.
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