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Abstract

Neuroimaging studies of autism spectrum disorder (ASD) have been predominantly unimodal. 

While many fMRI studies have reported atypical activity patterns for diverse tasks, the MEG 

literature in ASD remains comparatively small. Our group recently reported atypically increased 

event-related theta power in individuals with ASD during lexicosemantic processing. The current 

multimodal study examined the relationship between fMRI BOLD signal and anatomically-

constrained MEG (aMEG) theta power. Thirty-three adolescents with ASD and 23 typically 

developing (TD) peers took part in both fMRI and MEG scans, during which they distinguished 

between standard words (SW), animal words (AW), and pseudowords (PW). Regions-of-interest 

(ROIs) were derived based on task effects detected in BOLD signal and aMEG theta power. 

BOLD signal and theta power were extracted for each ROI and word condition. Compared to TD 

participants, increased theta power in the ASD group was found across several time windows and 

regions including left fusiform and inferior frontal, as well as right angular and anterior cingulate 

gyri, whereas BOLD signal was significantly increased in the ASD group only in right anterior 

cingulate gyrus. No significant correlations were observed between BOLD signal and theta power. 

Findings suggest that the common interpretation of increases in BOLD signal and theta power 

as ‘activation’ require careful differentiation, as these reflect largely distinct aspects of regional 

brain activity. Some group differences in dynamic neural processing detected with aMEG that are 
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likely relevant for lexical processing may be obscured by the hemodynamic signal source and low 

temporal resolution of fMRI.

Keywords

Functional magnetic resonance imaging (fMRI); Magnetoencephalography (MEG); Multimodal 
integration; Autism spectrum disorder (ASD); Lexicosemantic processing; Executive function

1. Introduction

Autism spectrum disorder (ASD) is a neurodevelopmental disorder characterized by socio-

communicative impairments and restricted, repetitive behaviors (American Psychiatric 

Association, 2013). Many individuals with ASD show delays, impairment, or complete lack 

of language (Boucher, 2003). A language domain often impacted in ASD is lexicosemantic 

processing (Bavin et al., 2016; Boucher, 2012; Groen et al., 2008; Kamio et al., 2007; 

McGregor et al., 2012; Naigles and Tek, 2017). Some previous functional magnetic 

resonance imaging (fMRI) studies examining lexicosemantic processing reported greater 

temporo-occipital activation but reduced frontal activity in ASD compared to typically 

developing (TD) groups (Gaffrey et al., 2007; Harris et al., 2006; Just et al., 2004; Knaus et 

al., 2017; Lo et al., 2013).

fMRI detects neural activity through changes in blood oxygenation at good spatial, but 

low temporal, resolution (due primarily to a lag in the hemodynamic response), which 

has resulted in a predominant neglect of brain dynamics in the fMRI literature and a 

movement toward multimodal integration (Bolton et al., 2020; Liu et al., 2015; Mash 

et al., 2018; Padmanabhan et al., 2017). Multimodal studies capturing both temporal 

dynamics and spatial localization are indispensable for comprehensive models of cognitive 

and language processing. Some studies attempting to link localized task-related neural 

activity detected with fMRI with measures derived from neuroimaging modalities with high 

temporal resolution, such as electroencephalography (EEG) and magnetoencephalography 

(MEG), have yielded strong associations (including both positive and negative correlations; 

Ekstrom et al., 2009; Meltzer et al., 2007; Scheeringa et al., 2009; Scheeringa and Fries, 

2019; Winterer et al., 2007). Methods that detect postsynaptic currents, such as EEG and 

MEG, have exquisite temporal resolution suitable for the study of brain dynamics. Event-

related theta power (4–7 Hz) detected with these techniques is considered the standard 

for detecting neural activity changes related to cognitive control, working memory, and 

language processing (Audrain et al., 2020; Bakker-Marshall et al., 2018; Bastiaansen et al., 

2005; Begus and Bonawitz, 2020; Halgren et al., 2015; Kovacevic et al., 2012; Marinkovic 

et al., 2012, 2019; Pu et al., 2020), as well as the transfer of information between brain 

regions (Begus and Bonawitz, 2020; Marinkovic et al., 2019).

Studies relating BOLD signal to theta power have remained primarily limited to 

neurotypical adults and the use of EEG (rather than MEG). One resting-state EEG study 

in children revealed decreased theta power in ASD compared to TD children, which 

was associated with greater ASD symptomatology (Hornung et al., 2019). Another EEG 

study reported that a neurotypical increase in theta power associated with increasing 
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working memory load was absent in adults with ASD (Larrain-Valenzuela et al., 2017), 

and furthermore, that this lack of theta power increase was associated with greater ASD 

symptomatology. Research using MEG to examine theta power in ASD has been minimal. 

In one of the few MEG studies on lexicosemantic processing in ASD, members of our group 

recently reported atypically increased event-related theta power in adolescents with ASD 

in multiple fronto-temporal brain regions (You et al., 2020). This appears to be in partial 

contrast to BOLD fMRI findings of atypically reduced frontal activity in ASD (Gaffrey et 

al., 2007; Harris et al., 2006; Just et al., 2004; Knaus et al., 2017), which raises the question 

whether MEG and fMRI, when implemented in isolation (as has been standard practice), 

can provide comprehensive assays of neurofunctional differences between ASD and TD 

samples.

Following up on our unimodal (anatomically-constrained MEG [aMEG]) report (You 

et al., 2020), the current study, which included an expanded, but partially overlapping 

sample, investigated the relation between BOLD signal and event-related theta power during 

lexicosemantic decision in two sets of regions that were (1) reported to show aMEG activity 

by You et al. (2020), and (2) identified based on increases in task-driven fMRI BOLD signal.

2. Methods

2.1. Participants

Thirty-three ASD and 23 TD participants (aged 12–21 years) were selected from an 

initially screened sample of 156 ASD and 120 TD adolescents (see supplement for details 

on exclusions and data loss). ASD diagnoses were based on DSM-5 criteria (American 

Psychiatric Association, 2013), the Autism Diagnostic Observation Schedule, 2nd Edition 

(ADOS-2; Lord et al., 2012), and the Autism Diagnostic Interview-Revised (ADI-R; Rutter 

et al., 2003), as well as expert clinical judgment. Twelve ASD participants were currently 

taking psychotropic medications (Supplemental Table S1). Fourteen ASD individuals 

reported comorbidities: 4 with attention-deficit/hyperactivity, 7 with anxiety, and 4 with 

depression; 2 of these adolescents reported multiple comorbidities (Supplemental Table 

S1). Presence of comorbidities and use of psychotropic medications were not considered 

exclusionary as they are common in adolescents with ASD and their exclusion would have 

rendered the sample less representative of the broader ASD population (Gurney et al., 2006). 

There was some overlap between this study and You et al. (2020). Fourteen ASD and 16 

TD participants were included in both You et al. (2020) and the current study. Five ASD 

and 4 TD participants were included in You et al. (2020), but not in the current study. 

Nineteen ASD and 7 TD participants were new to the current study. Informed assent and 

consent were obtained from all participants and their parents/guardians in accordance with 

the San Diego State University (SDSU) and the University of California San Diego (UCSD) 

Institutional Review Boards. Groups did not differ on age, gender, IQ, or handedness (Table 

1). As expected, groups differed on task accuracy. Only participants with usable data in both 
fMRI and aMEG modalities were included in analyses.
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2.2. Experimental design

Participants completed the Word Reading subtest of the Wechsler Individual Achievement 

Test, 3rd Edition (WIAT-III; Wechsler, 2009) to assess reading level. Those who received 

a standard score below 80, which is the average based on 12-year-old reading norms (i.e., 

a 6th grade reading level), were excluded. Participants were administered the Edinburgh 

Handedness Inventory (Oldfield, 1971), the Wechsler Abbreviated Scale of Intelligence, 

2nd Edition (WASI-II; Wechsler, 2011), the Beery-Buktenica Developmental Test of Visual-

Motor Integration, 6th Edition (Beery VMI-6; Beery et al., 2010), and the Clinical 

Evaluation of Language Fundamentals, 5th Edition (CELF-5; Semel et al., 2013). MEG 

and MRI scans were completed in subsequent sessions with a counterbalanced order of 

scans. MEG and MRI data were collected within 150 days of one another, except for 2 ASD 

participants (174 and 184 days) and 1 TD participant (252 days). To address any potential 

sensory sensitivities and overall anxiety, participants underwent a mock scan prior to the 

actual MRI scan to familiarize themselves with the environment. During the mock and MRI 

scans participants were given ear plugs to reduce noise, had cushions surrounding their ears 

and under their legs for sound reduction and comfort, and were offered a blanket for warmth. 

MRI operators were in frequent contact with participants throughout the scan and assessed 

the participants’ wellbeing. Similar steps were taken to ensure comfort during the MEG 

scan. Refer to supplement for additional scan environment information.

During the task, participants were asked to respond differentially to three conditions: real 

non-animal standard words (SW), animal words (AW), and pseudowords (PW). The task 

was adapted from an aMEG study in neurotypical adults by Marinkovic and colleagues 

(2012; 2014). PW trials were designed to be orthographically and phonologically legal letter 

strings with no meaning (e.g., “blont”). Participants used their left hand to respond on a 

2-button fORP 904 response pad (Cambridge Research Systems Ltd., Rochester, UK, https://

www.crsltd.com), and were instructed to press the button under their index finger for SW, 

the button under their middle finger for AW, and to withhold pressing any button for PW. 

Conditions did not significantly differ on word length or number of syllables; SW and AW 

conditions did not differ on the frequency of occurrence based on the Zipf scale (Brysbaert 

and New, 2009; Van Heuven et al., 2014) or age of acquisition (Supplemental Table S2; 

Kuperman et al., 2012). A practice test was administered while participants lay supine in 

a mock MRI scanner to simulate the actual MRI scan. Words used during practice differed 

from those presented during the fMRI and MEG scans.

In the fMRI task, each word was visually presented for 500 ms, followed by a fixation string 

(“xxxxxx”) for 1500 ms (given insertion of additional null trials in fMRI, see below). For 

the MEG trials, stimuli were also presented for 500 ms in a randomized order, followed 

by a fixation string for 2000 ms, with no jitter. Stimuli were presented using Presentation® 

software (Version 22.1, Neurobehavioral Systems, Inc., Berkeley, CA, www.neurobs.com) in 

white lower-case letters on a black background. Trials were presented in the same order to 

all participants except 2 ASD and 2 TD adolescents who were scanned a second time due 

to technical issues and were presented with a different sequence to avoid practice effects. 

Different stimulus sets were used during MEG and fMRI scans. During MEG scans, task 

stimuli were presented in a randomized order during an approximately 25-min run, with 
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short breaks every 4 min; 100 words were presented and analyzed for each word condition. 

An additional 180 SW words were presented as fillers to establish a prepotent response 

tendency. For fMRI scans, the task was split into two 7-min runs with a 3-min break 

between runs. Each fMRI run consisted of 90 SW trials, and 30 trials each for AW and PW 

conditions.

2.3. Experimental stimulus trial structure

RSFgen, a random stimulus function generator in Analysis of Functional NeuroImages 

(AFNI; Cox, 1996; https://afni.nimh.nih.gov), was used to create the trial sequence in the 

event-related design. During null trials (in fMRI only), a fixation string (“xxxxxx”) was 

shown. There were 124 1-s null trials (“xxxxxx”) per run. Refer to supplement for additional 

information.

2.4. MEG acquisition and processing

MEG scans were acquired at the UCSD Radiology Imaging Laboratory. Data were acquired 

from 204 planar gradiometers (102 pairs) using a whole-head Neuromag Vectorview system 

(Elekta AB, Stockholm, Sweden). To co-register MEG with structural MRI scans, a 3Space 

Isotrak II (Polhemus Inc., Colchester, VT) was used to digitize fiduciary points (nasion and 

periauricular points), head position indicator coils, and many other random points on the 

scalp. A 1000 Hz sampling rate and minimal filtering (0.1–300 Hz) were used to record 

signals continuously. Matlab scripts (Mathworks Inc., Natick, MA, USA), utilizing Fieldtrip 

(Oostenveld et al., 2011), EEGLab (Delorme and Makeig, 2004), and MNE (Gramfort et al., 

2014), were used for processing and analyzing MEG data as previously described (Beaton 

et al., 2018; Correas et al., 2019; Kovacevic et al., 2012; Marinkovic et al., 2012, 2019; 

Rosen et al., 2016). Data were downsampled to 250 Hz, bandpass filtered (0.1–100 HZ), 

epoched from −300 to 1100 ms for stimulus-locked analysis, and baseline-corrected using 

the prestimulus period (−300 to 0 ms). Artifacts, such as eyeblinks and heartbeat, were 

removed using ICA (Delorme and Makeig, 2004), with additional artifacts identified by 

visual inspection and removed using threshold rejection (Oostenveld et al., 2011). Analyses 

were conducted on artifact-free trials with correct task response.

Complex wavelet power spectra were calculated across all epochs by convolving them with 

Morlet wavelets (Lachaux et al., 1999) for the theta band (4–7 Hz, in 1 Hz increments), 

with a frequency resolution of 2 Hz and time resolution of 80 ms. To remove edge artifacts, 

padding of 300 ms was added to the two ends of each epoch and subsequently removed after 

wavelet analysis. Source power estimates were calculated with an aMEG approach (Dale et 

al., 2000; Marinkovic, 2004), by applying cortically constrained minimum norm estimation 

to the complex wavelet power spectrum (Kovacevic et al., 2012; Marinkovic et al., 2012, 

2019). Noise covariance matrix was estimated by pooling empty room data across sessions, 

which were band-pass filtered (3–50 Hz). For each participant, total theta source power was 

estimated at each location on the cortical surface, averaging across theta frequency (4–7 

Hz) and artifact-free, correct trials for each condition. Finally, event-related theta power 

estimates were calculated as percent signal change from the prestimulus baseline (−300 to 

0 ms). Structural MRI scans obtained for all participants were analyzed with Freesurfer 

(Dale et al., 1999; Fischl et al., 1999a). Each participant’s reconstructed cortical surface 
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served to constrain inverse solutions (Dale et al., 2000; Marinkovic et al., 2003). Inner skull 

surface derived from segmented MRI data was used for a boundary element model of the 

volume conductor. To conduct the group analysis, the reconstructed individual surfaces were 

morphed into an average representation by aligning their sulcal-gyral patterns (Fischl et al., 

1999b) and decimated, defining the solution space with 5124 free-rotating dipoles spaced ~7 

mm apart. Group average maps were then computed by averaging individual source power 

estimates for each group and word condition.

2.5. MRI acquisition and processing

MRI scans were acquired at the UCSD Center for fMRI with a General Electric Discovery 

MR750 3.0 T scanner (GE Healthcare, Milwaukee, WI) and a Nova Medical 32-channel 

head coil. Structural scans were acquired using a Fast Spoiled Gradient Recalled T1-

weighted sequence (TR: 8.136 ms; TE: 3.172 ms; flip angle: 8°; FOV: 25.6 cm; acquisition 

matrix: 256x256; slices: 172; voxel size: 1 mm3; duration: 5min). Functional scans were 

acquired using a multi-echo simultaneous multi-slice (MESMS) T2*-weighted echo planar 

imaging (EPI) sequence (volumes: 340; TR:1250 ms; TEs: 13.2, 30.3, 47.4 ms; flip angle: 

60°; FOV: 21.6 cm; acquisition matrix: 72x36; acceleration factor [R]: 2; slices: 54; voxel 

size: 3 mm3). Data from ten participants (9 TD, 1 ASD) were collected using a slightly 

different protocol due to a technical error at early stages of the study (all parameters 

identical except volumes: 386; TR: 1100; slices: 45). The first 9 volumes were discarded to 

allow for magnetization to reach equilibrium. The MESMS protocol includes simultaneous 

acquisition of multiple slices at multiple echo times, with increased signal-to-noise ratio 

(Kundu et al., 2012, 2013; Olafsson et al., 2015).

fMRI data were preprocessed and analyzed using AFNI (Version 19.0.00), FSL (Version 

5.0), and Matlab (2013b). Echo-planar images (EPI) for each echo time were corrected for 

susceptibility-induced distortions with FSL’s TOPUP tool, using two spin-echo acquisitions 

with opposite phase encoding directions (Smith et al., 2004). Rigid-body realignment of 

each functional volume to the middle volume was performed using AFNI and head motion 

quantified as the root mean square difference (RMSD) from the six motion parameters of 

the 30.3 ms echo time data. EPIs from the three echoes were optimally combined (Kundu 

et al., 2013). Data were denoised with multi-echo ICA (ME-ICA; Olafsson et al., 2015) 

using meica.py (openly available on Github, https://github.com/ME-ICA/me-ica). ME-ICA 

has been shown to be superior to standard denoising processes (Lynch et al., 2020), allowing 

for removal of artifacts (non-BOLD components) from the BOLD signal (Kundu et al., 

2013). FSL FLIRT was used to co-register functional and structural scans, and FNIRT to 

reorient images to MNI-152 space. Data were spatially smoothed using a Gaussian kernel of 

6 mm FWHM in AFNI’s 3dBlurToFWHM and scaled to percent signal change. Functional 

data of the two runs were concatenated for each participant and analyzed in AFNI using 

3dBandPass for temporal filtering (f > .008 Hz).

2.6. General linear model

3dDeconvolve was used to perform an ordinary least squares (OLS) regression on the 

functional data. Regressors included the three word conditions of interest (SW, AW, and 

PW). A two-parameter statistical parametric mapping (SPM) gamma variate basis function 
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approximated the canonical hemodynamic response function. 3dREMLfit was used to 

conduct a residual maximum likelihood estimation, which takes into consideration the 

residuals of the time series and uses an autoregressive moving average (ARMA[1,1]) model, 

for each participant on a voxel-wise basis through a generalized least squares time series fit. 

The estimates of effect size (beta coefficients) were output and used for subsequent group 

comparisons.

2.7. ROI identification

FMRI-derived and MEG-derived ROIs were two separate sets in largely different brain 

regions. Regions of activation were identified from MEG scans that were based on cortical 

surfaces reconstructed with FreeSurfer, serving to constrain inverse estimates. These MEG-

derived ROIs were then transformed into volumetric space to be used with fMRI data. 

Regions of activation were also identified from fMRI scans, and these fMRI-derived ROIs 

were then transformed into surface space for use with MEG data. Refer to the aMEG and 

fMRI sections below, as well as the supplement, for further details on ROI identification and 

transformation.

2.7.1. aMEG—aMEG-derived ROIs were adopted from You et al. (2020) and consisted 

of regions with significant source power based on an average of all participants and word 

conditions. aMEG-derived ROIs were transformed into volumetric space using FreeSurfer 

(Dale et al., 1999) to test if prominent group differences in event-related theta power 

between ASD and TD adolescents in the previous unimodal analysis correspond to BOLD 

differences within the same regions. Given the uncertain spatial precision associated with 

aMEG findings (Lütkenhöner, 2003) and with transformation from surface to volumetric 

space, ROIs from the Schaefer-400 atlas (Schaefer et al., 2018) that most closely aligned 

with the aMEG-derived ROIs were identified as volumetric aMEG-derived ROIs (Fig. 1).

2.7.2. fMRI—A one-sample linear contrast (SW + AW + PW > Null) across all ASD and 

TD participants was used to identify ROIs from fMRI data. Four additional participants 

with usable fMRI but no MEG data were included in the ROI identification sample 

(Supplemental Table S3). ASD and TD participants were combined in this step. Note that 

ROIs determined for ASD and TD separately by group were largely similar. 3dMEMA was 

used to perform a mixed-effects multilevel analysis (MEMA; Chen et al., 2012) for selection 

of ROIs, while controlling for age, RMSD, and task accuracy. As the current version of 

3dMEMA does not support permutation testing for cluster-correction, randomization and 

permutation simulation were performed using 3dttest++ to obtain cluster sizes with alpha 

≤.05 on the same contrast (SW + AW + PW > Null). Clusters of increased activity in ≥ 56 

contiguous voxels at p ≤ .001, with most from more stringent thresholds, resulted in eleven 

fMRI-derived ROIs. These fMRI-derived ROIs were then transformed into surface-space 

ROIs using FreeSurfer (Version 7.1.1). For three ROIs, (Rolandic operculum, post-central 

gyrus, and temporal pole), aMEG data could not be extracted after transformation to surface 

space due to ROI fragmentation caused by the transformation process, or an insufficient 

number of vertices required for the extraction of theta power. This resulted in eight fMRI-

derived ROIs with ≥ 524 vertices (Fig. 1, Supplemental Table S4). ROIs were dilated to a 
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minimum degree to permit aMEG data extraction from non-fragmented ROIs. For details, 

see Supplemental Table S5.

2.8. Data extraction and analysis

The goal of ROI identification was to derive ROIs from areas with the strongest activation 

effects related to the lexical decision task for: (1) event-related theta power from MEG 

scans, and (2) BOLD response from fMRI scans.

For MEG, the signal sequence was segmented based on stimulus-presentation triggers 

denoting zero time point for each trial. Trials were epoched from −300 to 1100 ms and 

baseline-corrected. Artifact-free trials with correct responses were analyzed with Morlet 

waves to estimate event-related theta total power averaged across 4–7 Hz at each location 

on the cortical surface, and presented as percent change from the baseline. MEG theta 

activity progressed in the posterior-to-anterior direction from sensory-specific to supramodal 

regions in accordance with the expected spatio-temporal processing stages. Time windows 

of interest were determined based on the largest theta activity across all participants for 

each processing stage. For each ROI, the time window of maximal event-related increase 

in theta power (compared with baseline) was analyzed, as previously reported by You et al. 

(2020). More specifically, the time windows and the corresponding regions were as follows: 

150–200 ms (fusiform cortex), 250–350 ms (lateral temporal cortex), 450–650 ms (inferior 

frontal gyrus, lateral temporal cortex), and 700–1000 ms (anterior cingulate cortex, inferior 

frontal gyrus, motor cortex). For determination of MEG-derived ROIs and extraction of theta 

power age, sex, and handedness were not included in the model. An identical process was 

used to identify the MEG time windows to be analyzed for the fMRI-derived ROIs.

BOLD beta coefficients were extracted for each participant, ROI, and word condition 

(compared with baseline). Two (Group: ASD vs. TD) x 3 (Word Condition: SW vs. AW vs. 

PW) ANOVAs were used to test for the effects of group, word condition, and the interaction 

on event-related theta power and BOLD signal in the two sets of ROIs. Significant results 

from the ANOVAs were followed up with Tukey post hoc analyses to examine pairwise 

comparisons. Pearson partial correlations, controlling for age and fMRI RMSD, were used 

to examine the relationship between BOLD beta coefficients and event-related theta power 

in aMEG- and fMRI-derived ROIs by group.

3. Results

3.1. Event-related theta power

For aMEG-derived ROIs, a 2 x 3 ANOVA revealed a significant main effect of group with 

increased event-related theta power in the ASD group compared to the TD group in the 

following ROIs (Fig. 2A): L fusiform for the 150–200 ms time window (F(1, 162) = 5.57, p 
= .02), R ACC for the 700–1000 ms time window (F(1, 162) = 5.11, p = .03), L IFGop for 

the 700–1000 ms time window (F(1, 162) = 10.00, p = .002), and L IFGtri for the 700–1000 

ms time window (F(1, 162) = 7.05, p = .009). The ANOVA also revealed a significant main 

effect of word condition for event-related theta power in L IFGop for the 450–650 ms time 

window (F(2, 162) = 7.39, p = .0009), L IFGtri for the 450–650 ms time window (F(2, 162) 
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= 9.64, p = .0001), and L LTC for the 450–650 ms time window (F(2, 162) = 5.00, p = 

.008). Tukey post hoc tests revealed significantly increased theta power for SW compared 

to AW [L IFGtri for the 450–650 ms time window (p = .01)], and for AW compared to PW 

[L IFGop for the 450–650 ms time window (p = .001), L IFGtri for the 450–650 ms time 

window (p = .001), and L LTC for the 450–650 ms time window (p = .007)] conditions. No 

significant interaction between group and word condition was identified for theta power in 

the aMEG-derived ROIs (Table 2; Supplemental Figure S1).

In fMRI-derived ROIs, a significant main effect of group (ASD > TD) for theta power 

was detected (Fig. 2B) in R AG for the 110–170 ms time window (F(1, 162) = 7.16, p 
= .008) and in L IFG for the 450–650 ms (F(1, 162) = 5.01, p = .03) and 700–1000 ms 

time windows (F(1, 162) = 14.15, p = .0002). An inverse effect of significantly greater theta 

power in the TD compared to the ASD group was observed in L MTG for the 250–350 

ms time window (F(1, 162) = 4.69, p = .03). Significant main effects of word condition 

included: L IFS for the 450–650 ms time window (F(2, 162) = 10.66, p < .0001), L 

SMA/MCC for the 450–650 ms time window (F(2, 162) = 4.65, p = .01), L IFG for the 

450–650 ms time window (F(2, 162) = 4.75, p = .009), L Motor for the 450–650 ms time 

window (F(2, 162) = 5.93, p = .003), L IFG for the 700–1000 ms time window (F(2, 162) 

= 4.57, p = .01), and R motor for the 700–1000 ms time window (F(2, 162) = 20.95, p < 

.0001). Tukey post hoc tests showed theta power was significantly increased for SW [L IFG 

for the 700–1000 ms time window (p = .02) and R motor for the 700–1000 ms time window 

(p = .001)] and AW [L IFS for the 450–650 ms time window (p = .001), L SMA/MCC 

for the 450–650 ms time window (p = .008), L IFG for the 450–650 ms time window (p = 

.01), L motor for the 450–650 ms time window (p = .004), and R motor for the 700–1000 

ms time window (p = .001)] conditions when compared to PW condition. Theta power was 

significantly increased for AW when compared to SW in L IFS for the 450–650 ms time 

window (p = .05) and L motor for the 450–650 ms time window (p = .02). A significant 

interaction was found between group and word condition for L IFG for the 700–1000 ms 

time window (F(2,162) = 3.08, p = .05). Tukey post hoc analyses showed that theta power 

was significantly increased in the ASD group compared to the TD group for both SW (p 
= .03) and AW (p = .02) conditions in L IFG for the 700–1000 ms time window (Table 2; 

Supplemental Figure S1).

3.2. BOLD signal

For aMEG-derived ROIs, a 2 x 3 ANOVA showed a significant main effect of group, with 

increased BOLD signal for the ASD group compared to the TD group for BOLD signal in 

R ACC (F(1, 162) = 4.80, p = .03; Fig. 2C). There were significant main effects of word 

condition in L fusiform (F(2, 162) = 25.19, p < .0001), L LTC (F(2, 162) = 10.61, p < 

.0001), L IFGop (F(2, 162) = 8.35, p = .0004), L IFGtri (F(2, 162) = 4.04, p = .02), and 

L Motor (F(2, 162) = 7.92, p = .0005). Tukey post hoc tests showed significantly increased 

BOLD signal for SW compared to AW [L fusiform (p = .001), L LTC (p = .001), L IFGop 

(p = .001), and L IFGtri (p = .01)] and compared to PW [L fusiform (p = .001), L LTC 

(p = .008), and L IFGop (p = .005)]. The BOLD signal was also increased for the PW 

condition compared to AW for L motor (p = .001). No significant interaction between group 
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and word condition was identified for BOLD signal in the aMEG-derived ROIs (Table 2; 

Supplemental Figure S2).

For fMRI-derived ROIs, there was no significant main effect of group for BOLD signal. 

There was a significant main effect of word condition for L SPL/IPL/MOG (F(2, 162) = 

10.65, p < .0001), R AG (F(2, 162) = 4.49, p = .01), L IFG (F(2, 162) = 6.89, p = .001), 

L MTG (F(2, 162) = 12.16, p < .0001), L IFS (F(2, 162) = 8.17, p = .0400), L SMA/MCC 

(F(2, 162) = 24.00, p < .0001), L motor (F(2, 162) = 10.76, p < .0001), and R motor (F(2, 

162) = 69.48, p < .0001). Results of Tukey post hoc analyses showed significantly increased 

BOLD signal for SW compared to AW [L SPL/IPL/MOG (p = .001), R AG (p = .01), L 

IFG (p = .001), L MTG (p = .001), L IFS (p = .001), L SMA/MCC (p = .001), L motor (p 
= .001), and R motor (p = .001)] and SW compared to PW [L SPL/IPL/MOG (p = .005), 

L IFG (p = .03), L MTG (p = .001), L SMA/MCC (p = .001), and R motor (p = .001)]. 

BOLD signal was significantly greater for PW compared to AW in L motor (p = .002) and 

for AW compared to PW in R motor (p = .001). A significant interaction was found between 

group and word condition for L IFS (F(2,162) = 3.18, p = .04). Tukey post hoc analyses for 

L IFS did not show significant group differences for any of the word conditions (Table 2; 

Supplemental Figure S2).

3.3. MEG-fMRI correlations

None of the partial correlations (controlling for fMRI RMSD and age) between theta 

power and BOLD signal survived FDR-adjustment (alpha = .05; Benjamini and Hochberg, 

1995), with only a few reaching an uncorrected threshold p ≤ .05. For MEG-derived ROIs 

(Supplemental Table S6; Figure S3), correlations were found in the TD group in L LTC for 

the 250–350 ms time window for AW (r(19) = −.46, p = .05), and in the ASD group in R 

ACC for the 700–1000 ms time window for PW (r(27) = 0.46, p = .02). For fMRI-derived 

ROIs, a correlation was found in the TD group in L MTG for the 250–350 ms time window 

for the AW condition (r(27) = −.62, p = .004; Supplemental Table S7; Figure S3). To 

account for any effect of time between scans on the relationship, partial correlations were 

also examined with the addition of the number of days between scans as a covariate. The 

length of time between fMRI and MEG scans did not have a significant impact on the results 

of the partial correlation.

3.4. Supplementary analyses

Three sets of supplementary analyses were conducted to account for outliers, participants 

with high motion, and those with >150 days between fMRI and MEG scans. See supplement 

for additional analyses (Supplemental Tables S8-S18; Figures S4-S9).

4. Discussion

In this study, we examined the relation between event-related theta power measured with 

aMEG and fMRI BOLD signal during lexicosemantic processing in adolescents with ASD 

and TD peers. We found that correspondence between task related changes in BOLD signal 

and theta power was generally weak. Atypically increased theta power in ASD across 

several ROIs was mostly not reflected in corresponding BOLD group differences, suggesting 
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that the two imaging methods are differentially sensitive to at least some ASD-specific 

alterations and capturing different aspects of the neural signal.

4.1. Task-induced signal changes in MEG and fMRI

Marinkovic et al. (2012) previously tested this lexicosemantic task in neurotypical adults 

using aMEG data. ROIs from that study included the occipital cortex, left lateral and inferior 

frontal regions, anterior cingulate, and motor cortex. Most of the ROIs in the present study 

overlap with these previous findings. Refer to the supplement for additional details on the 

background literature on identified ROIs and their relation to the different processing stages 

involved in the task.

Multiple frontal and temporal ROIs (both aMEG and fMRI-derived) showed greater increase 

in event-related theta power in the ASD than the TD group. This is consistent with the 

overall pattern of increased theta power reported in You et al. (2020), which included 

a smaller, partially overlapping sample. However, only one region (R ACC) showed a 

concordant group difference for the BOLD signal, whereas no group differences in BOLD 

signal were detected for any other of the 14 ROIs.

It is interesting that both theta power and BOLD signal in the ACC were significantly 

greater in the ASD group compared to the TD group. The ACC is known to play a role 

in decision making, as described above (Kovacevic et al., 2012; Marinkovic et al., 2012; 

Posner et al., 2007; Ruff et al., 2008). Atypically increased activation in the ASD group 

in this region may be due to greater attentional engagement in adolescents with ASD 

during the final stage of task processing. Participants needed to decide what word category 

the presented word falls in, recall what finger to press for that word category, and then 

execute the button press or inhibit a response in case of a pseudoword. The planning and 

organization required during this step calls on the individual’s executive functioning skills. 

It has been widely found that individuals with ASD have deficits in this domain, with many 

studies pointing to the relationship between executive functioning and the ACC in ASD 

(Braconnier and Siper, 2021; Demetriou et al., 2019; Hill, 2004; May and Kana, 2020; 

Zhang et al., 2020).

The lack of group differences in BOLD signal for a majority of the ROIs appears to be 

in contrast to previous reports of atypical BOLD signal in ASD during lexicosemantic 

processing (Gaffrey et al., 2007; Harris et al., 2006; Just et al., 2004; Knaus et al., 2017; 

Lo et al., 2013; Moseley et al., 2013; Sahyoun et al., 2010; Shen et al., 2012). Several 

reasons may account for this finding in our study. fMRI-derived ROIs were based on data 

pooled from both ASD and TD groups. Given our study’s focus on the relation between 

BOLD signal and theta power, fMRI-derived ROIs were limited to those showing the 

greatest task-induced increases across the entire sample. However, as suggested by some 

previous lexicosemantic studies, atypical activity patterns may occur in regions outside 
the neurotypical language network (Gaffrey et al., 2007; Gao et al., 2019; Kana et al., 

2006; Knaus et al., 2008; Shen et al., 2012). Therefore, heterogeneity and ASD variants 

with diverging patterns of atypical language networks may obscure differences from TD 

comparison groups (Gao et al., 2019; Lombardo et al., 2019). Notably, within some of 
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these regions of shared activation, group differences in event-related theta power could 

nonetheless be detected.

4.2. Relation between BOLD signal and theta power

The results of this study show a significant correlation in the positive direction between theta 

power and BOLD signal in the ACC for the ASD group. As described above, the ACC plays 

an important role in cognitive control, decision making, and attention (Carter and van Veen, 

2007; Heilbronner and Hayden, 2016; Posner et al., 2007; Ruff et al., 2008). Theta power 

is also linked to these domains (Klimesch, 1999; Kovacevic et al., 2012; Marinkovic et al., 

2012). Previous studies suggest that the ACC may be a a major generator of theta oscillation 

(Holroyd and Umemoto, 2016; Kouijzer et al., 2010; Luu and Tucker, 2001; Rajan et al., 

2019; Tsujimoto et al., 2006).

Aside from the ACC, no other distinct pattern was detected in the relationship between 

event-related BOLD and theta signal changes. One might expect to see some correspondence 

between BOLD signal and theta power, since each measure is considered an index of choice 

in studies testing for task- or stimulus-related regional ‘activation’ (Audrain et al., 2020; 

Bakker-Marshall et al., 2018; Bastiaansen et al., 2005; Begus and Bonawitz, 2020; Gaffrey 

et al., 2007; Halgren et al., 2015; Harris et al., 2006; Just et al., 2004; Knaus et al., 2017; 

Kovacevic et al., 2012; Lo et al., 2013; Marinkovic et al., 2012, 2019; Moseley et al., 

2013; Pu et al., 2020; Sahyoun et al., 2010; Shen et al., 2012). Indeed, event-related theta 

oscillations are particularly relevant to the double-duty lexical decision task employed in 

the current study that combined demands on both lexicosemantic processing and cognitive 

control. It has been well established that event-related theta power is sensitive to the 

retrieval of lexicosemantic information (Bastiaansen et al., 2008; Halgren et al., 2015), 

cognitive control (Cavanagh and Frank, 2014; Correas et al., 2019; Kovacevic et al., 2012), 

and the integration of task-relevant representations across long-range functional networks 

(Bastiaansen and Hagoort, 2006; Halgren et al., 2015; Marinkovic et al., 2012).

To critically evaluate the relationship between fMRI and MEG, it is important to understand 

neurovascular coupling, that is, how local neuronal activity relates to increases in blood 

flow. For fMRI, the BOLD effect – conventionally considered the sole available (though 

indirect) assay of neuronal activity changes – measures changes in blood oxygenation that 

begin within 500 ms of stimulus onset and peak with a c.5 s delay (Hillman, 2014). When a 

stimulus is presented, there is an increase in oxygenation in activated brain regions, resulting 

in a local BOLD signal increase (Buxton, 2009; Hillman, 2014). The relationship between 

hemodynamics and brain activation has allowed the field to use vascular changes as an 

index of neural activity. Other metabolic and physiological processes that may impact the 

spatiotemporal processes of the BOLD signal include differences in the timing of blood 

vessel dilation and constriction, residual neurochemical changes post stimulus, and changes 

in the amount of neurotransmitters (Hillman, 2014). The relationship between neurovascular 

coupling and BOLD signal changes also depends on region and cortical depth (Devonshire 

et al., 2012; Goense et al., 2012). Neurovascular coupling differences may exist in ASD due 

to neurophysiological changes such as decreased inhibition that can increase blood flow and 
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nitric oxide activity, which can in turn lead to an increased hemodynamic response (Reynell 

and Harris, 2013).

Unlike the reliance on hemodynamics in fMRI, the MEG signal is directly sensitive to 

neuronal activity, with a temporal resolution at the millisecond level (Ahlfors and Mody, 

2019; Baillet, 2017). Previous work in monkeys has shown a strong relationship between 

MEG and local field potentials (LFP), providing support that MEG activity measures 

postsynaptic events (Hall et al., 2014). Neural oscillations can be analyzed in time domain 

by averaging event-related fields per time unit, or in time-frequency domain by decomposing 

oscillatory signals into different frequency bands in a time-sensitive manner. These 

analyses provide different insights into the underlying spatio-temporal signal characteristics 

(Marinkovic et al., 2012, 2014). Despite the obvious benefits of MEG, such as its direct 

sensitivity to neural activity with excellent temporal resolution, its spatial estimates depend 

on the source modeling used to solve the inverse problem (Dale and Halgren, 2001). In the 

present study, we employed an aMEG method that combines distributed source modeling 

of the MEG signal with structural MRI. It constrains inverse solutions to each participant’s 

cortical mantle based on real-shape head models.

The lack of relation between the two measures in the current study is not surprising given 

inconsistent findings in previous multimodal task-based neuroimaging studies reporting both 

positive and negative correlations (Ekstrom et al., 2009; Meltzer et al., 2007; Scheeringa 

et al., 2009; Scheeringa and Fries, 2019; Singh et al., 2002; Winterer et al., 2007). Singh 

et al. (2002) reported an inverse relationship between fMRI response and event-related 

desynchronizations in the 5–15 Hz band, which includes theta power. However, this study 

included a small sample, with participants differing between the two modalities, and did not 

specifically focus on the 4–7 Hz range. A negative correlation between BOLD signal and 

theta power (measured with EEG) was also found within the default mode network in two 

studies of neurotypical adults (Meltzer et al., 2007; Scheeringa et al., 2009). By contrast, the 

relationship between BOLD signal and event-related theta power during a visual decision 

task was found to be positive in motor cortex, but negative in ACC (Winterer et al., 2007). 

Although some of the seemingly inconsistent results may be attributed to differences in task 

and regions tested, the relation between BOLD signal and theta power is clearly complex 

and incompletely understood, and findings in ASD from the current study are therefore not 

unexpected. Such a complex and seemingly intransparent relationship can be viewed in a 

positive light, according to Hari and Salmelin (2012) who argue that differences in findings 

may be more informative than similarities. Indeed, as fMRI and MEG detect neural activity 

in fundamentally different ways, differential findings may be considered complementary 

rather than inconsistent.

4.3. Limitations

fMRI analyses are conventionally volume-based, whereas they are surface-based in MEG. 

Due to some inherent limitations of volume to surface transformation, a few fMRI-derived 

ROIs could not be transformed into usable surface ROIs. Additionally, although MEG 

analyses focused on theta power in the present study given the established sensitivity of this 

frequency band to language processing and cognitive control, the MEG signal is inherently 
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oscillatory and multiplexed, and future investigations of changes in other frequency bands 

may be useful. Slight differences in task presentation between MEG and fMRI scans were 

unavoidable due to differences in neuroimaging techniques, such as the need for null trials 

and jittering in fMRI.

While there are potential confounds that can lead to differences between scans over time, 

such as seasonal changes, menstrual cycles, or circadian rhythms, efforts were taken to 

reduce the possible impact of external circumstances. The number of days between MEG 

and fMRI scans was kept at a minimum to limit effects of maturational changes in 

adolescents. A large majority of the participants (85% ASD, 78% TD) in the analysis 

completed scans within a 3-month time frame. Although the results presented here are from 

a group of participants with a scan interval range of 1–252 days, supplemental analyses 

conducted in participants who completed the scans within 150 days did not alter the overall 

findings. In this supplemental analysis most participants (90% ASD, 82% TD) were in the 

3-month timeframe. There was no significant difference in scan intervals between ASD and 

TD groups. (t(53) = −1.31, p = .19). When days between scans was added as a covariate, 

there was no impact on the correlation between BOLD signal and event-related theta power. 

Additionally, most of the participants were above 15 years of age, rather than in a younger 

range when the brain is more rapidly developing and changing. Finally, due to lengthy fMRI 

and MEG scans and the moderately challenging lexicosemantic task, our ASD sample was 

limited to relatively high-functioning adolescents and findings may therefore not represent 

the broader autism spectrum, including minimally verbal and nonverbal individuals.

5. Conclusion

Comparing two metrics of choice for the detection of brain regional activity changes 

during lexicosemantic decision in adolescents with ASD and TD peers, we found no 

clear relationship between event-related fMRI BOLD signal and aMEG theta power. This 

indicates that reports of atypical “activation” patterns in ASD can only be interpreted with 

respect to the specific neuroimaging modality used. Group differences detected with aMEG, 

but not fMRI, further suggest that some neurofunctional differences in ASD may occur at 

the level of dynamic processing that is not detected at the limited temporal resolution of the 

hemo-dynamic response in fMRI. More generally, differential findings emphasize the need 

for integration between imaging modalities that have thus far been implemented largely in 

isolation in ASD research and beyond.
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Fig. 1. 
aMEG-derived and fMRI-derived ROIs in surface and volumetric space. Note: aMEG-

derived surface space ROIs depicted in top row and volumetric ROIs in second row. 

Volumetric ROIs that closely aligned with aMEG-derived surface space ROIs were selected 

from the Schaefer-400 atlas. aMEG-derived ROIs: left inferior frontal gyrus pars opercularis 

(L IFGop), left inferior frontal gyrus pars triangularis (L IFGtri), right anterior cingulate 

cortex (R ACC), left precentral gyrus (L Motor), left lateral temporal cortex (L LTC), and 

left fusiform gyrus. fMRI-derived surface space ROIs depicted in third row and volumetric 

ROIs in fourth row. fMRI-derived ROIs: left inferior frontal sulcus (L IFS); left SMA and 

middle cingulate cortices (L SMA/MCC); left inferior frontal gyri (L IFG); left precentral 

gyrus (L Motor); right precentral gyrus (R Motor); left middle temporal gyrus (L MTG); 

left superior parietal, inferior parietal, and middle occipital cortices (L SPL/IPL/MOG); right 

angular gyrus (R AG).
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Fig. 2. 
Significant differences in theta power and BOLD signal in aMEG- and fMRI-derived ROIs 

Note. Mean percent change from baseline in event-related theta power (top; A and B) and 

BOLD signal (bottom; C) by group for ROIs with significant group differences. Fig. 2A 

– Theta power was significantly increased in ASD group compared to TD group for aMEG-

derived ROIs: L fusiform for the 150–200 ms time window, R ACC for the 700–1000 ms 

time window, L IFGop for the 700–1000 ms time window, and L IFGtri for the 700–1000 

ms time window. Fig. 2B – Theta power was significantly increased in ASD group compared 

to TD group for fMRI-derived ROIs: R AG for the 110–170 ms time window, L IFG for the 

450–650 ms time window, and L IFG for the 700–1000 ms time window. Fig. 2C – Theta 

power was significantly increased in TD group compared to ASD group for fMRI-derived 

ROI L MTG for the 250–350 ms time window. BOLD signal was significantly increased in 

aMEG-derived ROI, R ACC, for ASD group compared to TD group. There were no group 

differences for BOLD signal in fMRI-derived ROIs. ASD = autism spectrum disorder. L IFG 

= left inferior frontal gyri. L IFGop = left inferior frontal gyrus pars opercularis. L IFGtri 

= left inferior frontal gyrus pars triangularis. L MTG = left middle temporal gyrus, ms = 

millisecond. R ACC = right anterior cingulate cortex. R AG = right angular gyrus. ROI = 

region-of-interest. TD = typically developing.
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