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Abstract
Huntington’s disease is a neurodegenerative disorder characterised primarily by motor

abnormalities, and is caused by an expanded polyglutamine repeat in the huntingtin protein.

Huntingtin dynamically shuttles between subcellular compartments, and the mutant hun-

tingtin protein is mislocalised to cell nuclei, where it may interfere with nuclear functions,

such as transcription. However, the mechanism by which mislocalisation of mutant hunting-

tin occurs is currently unknown. An immortalised embryonic striatal cell model of HD

(StHdhQ111) was stimulated with epidermal growth factor in order to determine whether the

subcellular localisation of huntingtin is dependent on kinase signalling pathway activation.

Aberrant phosphorylation of AKT and MEK signalling pathways was identified in cells carry-

ing mutant huntingtin. Activity within these pathways was found to contribute to the regula-

tion of huntingtin and mutant huntingtin localisation, as well as to the expression of

immediate-early genes. We propose that altered kinase signalling is a phenotype of Hun-

tington’s disease that occurs prior to cell death; specifically, that altered kinase signalling

may influence huntingtin localisation, which in turn may impact upon nuclear processes

such as transcriptional regulation. Aiming to restore the balance of activity between kinase

signalling networks may therefore prove to be an effective approach to delaying Hunting-

ton’s disease symptom development and progression.

Introduction
Huntington’s disease (HD) is an autosomal dominant neurodegenerative disorder caused by a
CAG expansion within the first exon of theHTT gene, which gives rise to an expanded polyglu-
tamine tract in the huntingtin protein. HD is primarily characterised by progressive motor
abnormalities that manifest in the third to fourth decades of life, but is also commonly
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associated with cognitive impairments and psychiatric disturbances [1–3]. The caudate and
putamen exhibit the most prominent cell loss [4]; GABAergic medium spiny neurons (MSNs)
are the first to be affected, and is later accompanied by widespread atrophy of cortical struc-
tures [5]. Neuronal dysfunction occurs prior to both striatal atrophy and overt motor symptom
onset [6,7], and therefore cell death and degeneration in HD-affected neuronal cells are likely
to develop following an initial period of dysregulation of numerous cellular processes [8].

Patients with HD have been reported as having a low incidence of tumour formation, as
well as a lower glucose metabolism [9,10]. As the activity of kinase signalling cascades are well
characterised in the development of tumorigenesis [11] and the regulation of glucose metabo-
lism [12], these peripheral characteristics of HD could be a result of huntingtin-mediated alter-
ations in growth factor-responsive kinase pathways. Anti-apoptotic kinase signalling pathways
in particular have been found to be important for prolonging neuronal survival in HDmodels
by inhibiting cellular changes elicited by mutant huntingtin [13].

The most thoroughly characterised survival pathway in HD is the protein kinase B (AKT)
pathway; enhanced activation of AKT in models of HD has been attributed to the reduced
expression of its inhibitor, PH domain leucine-rich repeat protein phosphatase 1 (PHLPP1),
which is suppressed in HdhQ111, R6/1, R6/2 and HD94 striata, as well as in human putamen
[14]. Aberrant interactions between mutant huntingtin and growth factor receptor bound pro-
tein 2 (GRB2) may also directly activate growth factor signalling cascades that are upstream of
AKT activation, thus enhancing AKT phosphorylation [15]. Mitogen activated protein kinase
kinase (MEK) has been less thoroughly investigated in the context of HD, and the neuroprotec-
tive effects of its activation remain under debate [16,17]. However, MEK1 activation has been
found to enhance the phosphorylation of huntingtin [18], which can reduce mutant huntingtin
toxicity [19–24].

Huntingtin has numerous potential cellular functions in both the cytoplasm and the
nucleus; dynamic shuttling between these compartments is likely to be a mechanism by which
a complex variety of huntingtin-associated activities can be regulated [25,26]. Within cell
nuclei, huntingtin has been found to localise to nuclear structures such as promyelocytic leu-
kaemia (PML) bodies and the nucleolus [27–29], associates with a variety of transcription fac-
tors, and is able to bind to DNA directly. These mechanisms can all be modified by the
presence of an expanded polyglutamine repeat within mutant huntingtin [29–38]. These inter-
actions implicate huntingtin as having a necessary role in transcription and RNA processing
within the nucleus, as well as in the assembly of nuclear matrix bound protein complexes
[29,39]. These observations support transcriptional dysregulation as an important mechanism
contributing to HD pathogenesis. Subcellular mislocalisation of mutant huntingtin to cell
nuclei may directly affect transcription: however, as AKT and MEK pathways are known to
play a role in gene expression, either by direct regulation or through the phosphorylation of
other proteins [16,40–43], disruption of these upstream kinase signalling pathways by mutant
huntingtin may also be a mechanism by which transcriptional regulation is altered in HD.

By stimulating cells from the StHdhQ111 immortalised embryonic striatal cell model of HD,
which carries 111 CAG repeats [44], with epidermal growth factor (EGF), we have created a
dynamic model that demonstrates that both AKT and MEK signalling pathways may contrib-
ute to the regulation of huntingtin subcellular localisation, as well as to the control of gene
expression. We find that both AKT and MEK pathways are aberrantly regulated in cells carry-
ing an expanded polyglutamine repeat, and inhibition of these pathways corrected mutant
huntingtin mislocalisation and gene expression to a phenotype more closely resembling that of
wild type cells. We suggest that aberrant control of kinase signalling may be a mechanism influ-
encing mutant huntingtin mislocalisation, which in turn may alter transcriptional dysregula-
tion, thus contributing to HD pathogenesis.

Kinase Signalling and Huntingtin Localisation
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Materials & Methods

Immortalised Cell culture
The StHdhQ111 immortalised embryonic striatal cell model used in this project was originally
derived from primary striatal neurons cultured from the HdhQ111 knock-in mouse model of
HD [44]; as such, wild type cells (StHdhQ7/7) carry two alleles each containing 7 CAG repeats,
and heterozygote (StHdhQ7/111) and homozygote (StHdhQ111/111) cells carry either one or two
mutant alleles carrying 111 CAG repeats, respectively. The StHdhQ7/7, StHdhQ7/111 and
StHdhQ111/111 cell lines utilised here were a kind gift fromMarcy MacDonald (Molecular Neu-
rogenetics Unit, Massachusetts General Hospital, Massachusetts, USA). Cells were grown and
maintained in high glucose Dulbecco’s Modified Eagle Medium (DMEM) (Life Technologies)
containing 1% Penicillin-Streptomycin solution (Sigma Aldrich), 1% 40mg/ml Geneticin (Life
Technologies) and 10% fetal bovine serum (FBS) (PAA) in a humid environment at 33°C with
5% C02.

Primary Cell Culture
HdhQ111 mice were bred in house from a colony established from a stock supplied by Jackson
laboratories for the specific purpose of this experiment. All experiments were conducted under
the UK Animals (Scientific procedures) Act of 2015 and approved by local ethical review by
Cardiff University Biological Standards Committee. Staged pregnant mice were sacrificed by
cervical dislocation at embryonic day 14 (E14) in the absence of analgesics; an approved Sched-
ule 1 method under the UK Animals (Scientific Procedures) Act 2015 at Cardiff University,
School of Biosciences, within the JBIOS unit. Embryos were removed, the brains removed, and
microdissection of the ganglionic eminence was carried out as previously described [45]. The
resulting dissections were digested in 0.1% Trypsin (Lorne Laboratories) and cultured in
DMEM/F12 containing 1% antibiotic-antimycotic solution, 2% B-27 supplement (all Life
Technologies) and 10% FBS (Sigma-Aldrich). Cells were grown in a humid environment at
37°C with 5% C02

Antibodies
Ab109115 (Abcam) was used at a dilution of 1:100, and Mab2166 (Merck Millipore) was used
at 1:1000 for immunofluorescence. S421 was a kind gift from Dr. Sandrine Humbert, (Institut
Curie, Paris, France), and was used at 1:1000 for immunofluorescence. Anti-EGFR (New
England Biolabs) was used at 1:50 for immunofluorescence and 1:1000 for western blots. Calre-
ticulin (Abcam) was used at 1:500 for immunofluorescence, and α-tubulin was used at 1:5000
for western blots. Anti-CTIP2 (Abcam) was used at 1:500, and Anti-DARPP32 (Santa Cruz
Biotechnology Inc.) was used at 1:200; both for immunofluorescence. Secondary antibodies;
Goat-anti-Rabbit AlexaFluor 568 and Donkey-anti-Mouse AlexaFluor 488 (Life Technologies)
were both used at 1:100 for immunofluorescence. Goat-anti-Rabbit AlexaFluor 680 (Life Tech-
nologies) and Goat-anti-mouse DyLight 800 were used for Western blots at 1:10,000 and
1:20,000, respectively.

Immunofluorescence
Cells were fixed by incubation with 10% formalin solution (containing 4% paraformaldehyde;
Sigma-Aldrich) for 15 min. at room temperature. Cells were permeabilised with 0.1% Triton x-
100 (Life Technologies) and blocked with 1% (w/v) bovine serum albumin (BSA) (Life Tech-
nologies) before undergoing incubation with the appropriate antibodies. Cells were imaged
using either a Leica SP5 confocal microscope, or a Leica DM6000B fluorescent microscope.

Kinase Signalling and Huntingtin Localisation
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Western blotting
Proteins were denatured and resolved on a 4–12% Bis-Tris gel, then electroblotted onto a
PVDF membrane. Blots were blocked in 5% milk powder in PBS with 0.1% Tween (PBS-T)
before incubation with the appropriate antibodies. Protein bands were visualised and quanti-
fied on a Licor1 Odyssey1 quantitative fluorescent imaging system.

ELISA
Phospho-AKT1 (Ser473) and phospho-MEK1 (Ser217/221) PathScan1 Sandwich ELISA kits
(Cell Signalling Technology) were utilised to assay kinase activation and inhibition, and were
carried out according to manufacturer’s instructions.

Kinase activation and inhibition and huntingtin localisation
EGF (Life Technologies) was reconstituted and diluted to a stock solution of 100μg/ml in PBS
and stored at -20°C. Cells were serum starved for 24 hours prior to EGF treatment, then incu-
bated with 100ng/ml EGF in fresh serum free media for the appropriate length of time.

AKT inhibitor VIII (Merck Millipore) was reconstituted in dimethyl sulfoxide (DMSO)
(Sigma Aldrich) to a stock solution of 0.1mM, and MEK 1/2 inhibitor (Merck Millipore) was
initially reconstituted in DMSO, before being diluted to a 0.05mM stock solution in serum free
media and stored at -20°C. Cells were serum starved for 24 hours prior to treatment with either
kinase inhibitor. Each inhibitor was diluted to the appropriate concentration in serum free
media, and was incubated with the cells for 2h prior to EGF stimulation. Serum free media con-
taining the equivalent volume of DMSO alone was used as a control. EGF was diluted to
100ng/ml in fresh serum free media that also contained the appropriate concentration of each
kinase inhibitor or DMSO before addition to the cells.

RNA extraction
RNA was extracted from cells using phenol/chloroform, precipated in ethanol, and purified by
silica membrane spin columns (RNeasy MinElute Cleanup kit (Qiagen)) according to manu-
facturer’s instructions. DNA contaminants were treated with TURBO™DNase (Life Technolo-
gies) according to manufacturer’s instructions.

Quantitative RTPCR
1μg RNA was reverse transcribed using the High Capacity RNA-to-cDNA™ kit (Life Technolo-
gies), and the resulting cDNA was amplified using Sybr1Green mastermix (Life Technologies)
containing the relevant oligonucleotide primer pair. The oligonucleotides used were as follows;
Egr1 forward: 5’- CCTATGAGCACCTGACCACA-3’ reverse: 5’- GGGATAACTCGTCTCCA
CCA-3’, Arc forward: 5’- GAGAGCTGAAAGGGTTGCAC-3’ reverse: 5’-ACGTAGCCGTCC
AAGTTGTT-3’, Ngfib forward: 5’- CAATGCTTCGTGTCAGCACT-3’ reverse: 5’ TGGCGCT
TTTCTGTACTGTG-3’. The thermal cycler protocol was as follows: Stage 1–95°C for 10 min.
Stage 2 (x40 cycles) - 95°C for 15 s, 55°C for 1 s. Stage 3 (dissociation curve) - 95°C following a
gradual ramp. All qRTPCR protocols were controlled and analysed by the Sequence Detection
Systems (SDS) Version 2.3 programme by Life Technologies.

Statistical analysis
Microscopy images were analysed blind to genotype, EGF stimulation and kinase inhibition by
renaming image files to randomised numbers by individuals who were not involved in the proj-
ect. Mean pixel intensities from nuclear, cytoplasmic and perinuclear regions of interest were
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measured from grayscale images using the GNU Image Manipulation Program 2.6.11, copy-
right 1995–2008 (S1 Fig). Every cell within each image was analysed; higher antibody binding
elicited a higher signal. Nuclear/cytoplasmic (N/C) and nuclear/perinuclear (N/P) ratios were
calculated for each cell individually in order to account for variation in background noise and
to determine the presence of any alterations in huntingtin localisation between subcellular
regions. All data was subject to analysis by the appropriate ANOVA, followed by post-hoc
Tukey HSD tests.

Results

Epidermal growth factor receptor localisation in StHdhQ111 cell lines
To affirm the ability of the StHdhQ111 cell lines to respond to EGF stimulation, the presence
and localisation of the EGF receptor (EGFR) was investigated by immunofluorescence and
western blotting (Fig 1). The EGFR was present in all three cell lines, and exhibited no signifi-
cant differences in its expression or subcellular localisation between genotypes, which is consis-
tent with previous observations in the same model [46].

Differential kinase pathway activation in StHdhQ111/111 cells
To determine whether kinase signalling pathways downstream of EGF stimulation show differ-
ential effects in the StHdhQ111 cell model, we examined the phosphorylation of kinases AKT
and MEK in StHdhQ7/7 and StHdhQ111/111 cells in response to EGF stimulation by ELISA assay
(Fig 2).

There was a significant effect of both genotype (F1, 8 = 1044, p<0.001) and EGF stimulation
(F3, 8 = 2504.74, p<0.001) on the level of AKT1 phosphorylated on serine 473 (S473) and
MEK1 phosphorylated on serines 217/221 (S217/221). Post-hoc Tukey HSD analyses indicated
that although StHdhQ111/111 cells exhibited suppressed AKT1 phosphorylation compared to
StHdhQ7/7 cells at baseline (p<0.01), AKT1 phosphorylation was significantly increased in
both genotypes following EGF stimulation (both p<0.001). However, when comparing the
magnitude of phosphorylation following EGF stimulation, StHdhQ111/111 cells showed an aug-
mented response (p<0.05), thus resulting in a significantly increased level of phosphorylated
AKT1 in StHdhQ111/111 in comparison to StHdhQ7/7 cells (p<0.01) (Fig 2).

Fig 1. A. The EGFR is present in StHdhQ7/7, StHdhQ7/111 and StHdhQ111/111, cells and has a similar
subcellular localisation Scale bar = 20μm. B. Western Blot indicating similar expression of the EGFR
protein in all three cell lines, α-tubulin was used as a loading control. C. Quantification of
fluorescence intensity of protein bands in B normalised to loading control and expressed as a
proportion of StHdhQ7/7 (FI/StHdhQ7/7); there are no significant differences in the levels of EGFR
between StHdhQ7/7, StHdhQ7/111 and StHdhQ111/111 cells. Error bars = ± SEM. Images are representative of
multiple experiments. N = 3 replications.

doi:10.1371/journal.pone.0144864.g001
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While there was no difference in the level of phosphorylated MEK1 between genotypes at
baseline, there was a strong phosphorylation response in both StHdhQ7/7 (p<0.001) and
StHdhQ111/111 cells (p<0.001) following EGF stimulation. However, a suppressed response in
StHdhQ111/111 cells resulted in a significantly lower level of phosphorylated MEK1 in
StHdhQ111/111 cells following EGF stimulation than in StHdhQ7/7 cells (p<0.001) (Fig 2).

Inhibition of AKT and MEK phosphorylation
The efficacy and specificity of selective kinase inhibitors against AKT1 and MEK1 phosphory-
lation were tested in both StHdhQ7/7 and StHdhQ111/111 cells by ELISA assay (Fig 2). Treatment
with AKT inhibitor VIII suppressed EGF-stimulated AKT1 phosphorylation in both cell lines,
while having no significant effect on the phosphorylation of MEK1. Following AKT1 inhibi-
tion, there was no longer a significant difference in AKT1 phosphorylation between genotypes
in response to EGF stimulation.

Treatment with MEK 1/2 inhibitor prior to EGF stimulation significantly suppressed the
MEK1 phosphorylation response in both genotypes, but did not alter AKT1 phosphorylation.
Despite significant inhibition of phosphorylation compared to EGF stimulation alone, MEK1
phosphorylation remained significantly higher than at baseline for both StHdhQ7/7 cells
(p<0.001) and StHdhQ111/111 cells (p<0.05), and remained higher in StHdhQ7/7 cells compared
with StHdhQ111/111 cells (p<0.01) (Fig 2).

Fig 2. Mean absorbance (Abs) read at 450nm following a sandwich ELISA protocol for the detection of
phosphorylated A. AKT1 and B. MEK1 in StHdhQ7/7 and StHdhQ111/111 cells at 0 mins and 10 mins of
100ng/ml EGF stimulation, either with or without a prior 2 hour incubation with 500nMAKT inhibitor
VIII or 1μMMEK 1/2 inhibitor. In cases where inhibitors were not used, cells were incubated with the
equivalent volume of DMSO for the same amount of time prior to treatment and processing. Error bars =
±SEM. Black asterisks denote a significant difference from 0 mins + DMSO. Grey asterisks indicate genotypic
differences. N = 3 replications *p<0.05, ** p<0.01, *** p<0.001.

doi:10.1371/journal.pone.0144864.g002
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Alterations in huntingtin subcellular localisation in response to EGF
stimulation

Amino-terminal huntingtin co-localises with endoplasmic reticulum. As kinase activa-
tion occurs upstream of huntingtin phosphorylation [47] and has been identified as a modulator
of huntingtin nuclear localisation [21,22], we investigated whether EGF stimulation would alter
the subcellular localisation of non-phosphorylated amino-terminal huntingtin epitopes. Prior
experience with amino-terminal huntingtin antibodies within this lab has identified that they
detect an isoform of huntingtin that localises in a region surrounding the nucleus. In order to bet-
ter define this region for accurate quantification of immunofluorescence images, we looked at the
co-localisation of amino-terminal huntingtin with the ER marker, calreticulin (S2 Fig). Calreticu-
lin is present in all three cell lines in a region immediately surrounding the nucleus, and is not
altered by the presence of mutant huntingtin. Furthermore, it co-localises with amino-terminal
huntingtin and mutant huntingtin detected by Mab2166 (S2 Fig). We therefore defined the area
in which HTT co-localises with calreticulin as the ‘perinuclear’ region for forthcoming experi-
ments and image analyses (for further details of the analyses, refer toMethods).

EGF stimulation alters the localisation of amino-terminal huntingtin epitopes. Statistical
analyses were focussed on the nuclear/cytoplasmic (N/C) and nuclear/perinuclear (N/P) ratios
(refer toMethods for details), as these proved to be most informative and representative of the
immunofluorescence images. There was a significant effect of genotype on the localisation of
huntingtin as measured by the N/C ratio, when visualised using both Mab2166 (F2, 847 = 46.93,
p<0.001) and Ab109115 (F2, 856 = 132.21, p<0.001; (Fig 3, S3 Fig), which was a result of an
increase in the detection of nuclear huntingtin epitopes in StHdhQ7/111 and StHdhQ111/111 cells
compared to StHdhQ7/7 cells. A significant effect of genotype was also present in the analysis of
the N/P ratio for both antibodies (Mab2166: F2, 847 = 134.48, p<0.001; Ab109115: F2, 856 = 228.6,
p<0.001). Additionally, there was also a significant effect of EGF stimulation in both N/C and
N/P ratios when using Mab2166 (N/C: F3, 847 = 26.43, p<0.001, N/P: F3, 847 = 49.2, p<0.001) and
Ab109115 (N/C: F3, 856 = 6.08, p<0.001, N/P: F3, 856 = 18.64, P<0.001; Fig 3, S3 Fig). Post-hoc
analyses indicate that this is due to a modest reduction in nuclear huntingtin in the N/P ratio
for StHdhQ7/7 cells following 15 mins of EGF stimulation (p<0.05) when detected by Ab109115,
and after 5 mins when detected by Mab2166 in both N/C and N/P ratios (both p<0.05).

Fig 3. A. Subcellular localisation of an N-terminal epitope of huntingtin andmutant huntingtin in
StHdhQ7/7, StHdhQ7/111 and StHdhQ111/111 cell lines. Cells were fixed following 0, 5, 15 and 30 min. of
stimulation with 100ng/ml EGF, labelled with Mab2166 against amino acids 181–810, then analysed by
confocal microscopy. Scale bar = 20μm. B. Quantitative analysis of immunofluorescence images in A.
Nuclear/Cytoplasmic (N/C) and Nuclear/Perinuclear (N/P) mean pixel intensity ratios (MPI) for
StHdhQ7/7, StHdhQ7/111 and StHdhQ111/111 cells following 0, 5, 15 and 30min. of stimulation with 100ng/
ml EGF.Mean pixel intensities were calculated from confocal microscopy images using GNU Image
Manipulator. All images were randomised and analysed blind to genotype and length of time stimulated with
EGF. Each condition consisted of 9 confocal microscopy images taken from 3 separate coverslips. n = 66–
91. Error bars = ± SEM. Data representative of 3 experiments; * Denotes a significant difference from 0min.;
# Denotes a significant difference from 5mins; */# p<0.05, **/## p<0.01, ***/### p<0.001.

doi:10.1371/journal.pone.0144864.g003
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Similarly, StHdhQ7/111 cells exhibited a similar pattern, with a reduction in nuclear detection as
measured by the N/P ratio from 15mins of EGF stimulation when using Ab109115 (p<0.05)
and in both the N/C and N/P ratios when using Mab2166 at 5 mins (both p<0.001). The reduced
nuclear localisation following EGF stimulation when visualised using Ab109115 was abrogated
in StHdhQ111/111 cells, suggesting an impaired cellular response to EGF stimulation in the pres-
ence of mutant huntingtin. In contrast, there was a reduction in the N/P ratio alone at 5 mins in
these cells when visualised using Mab2166 (p<0.001), indicating that the impairment may be
huntingtin epitope-specific (Fig 3, S3 Fig).

Alterations in the subcellular localisation of amino-terminal huntingtin in response to
EGF is independent of phosphorylation on serine 421. Although the phosphorylation of
huntingtin on S421 has been shown to occur following AKT activation [48], which results in a
neuroprotective reduction of nuclear huntingtin [22,47], we did not recognise any change in
the subcellular localisation of huntingtin phosphorylated on S421 in these cells in response to
EGF stimulation in any genotype (S4 Fig).

Replicating the effect of EGF stimulation on huntingtin localisation in
primary HdhQ111 striatal cells
Primary cells were cultured from microdissected E14 HdhQ111 mouse model striatum, from
which the StHdhQ111 cell model was originally derived [44]. In order to confirm the presence of
striatal cells in primary cell cultures, a typical selection of cells was immunostained with anti-
bodies against striatal cell markers dopamine- and cAMP-regulated neuronal phosphoprotein
(DARPP-32) and CTIP2 (S5 Fig), both of which have been identified as being enriched within
medium spiny neurons [49–51]. The majority of cells present in dissections were labelled with
striatal markers, and therefore were considered to reflect the characterisation of an embryonic
striatal cell population.

Confirming the presence of the EGFR in HdhQ111 cells. Immunofluorescence analysis
revealed that the EGFR was present and had the same subcellular localisation in primary stria-
tal cells from all three genotypes; HdhQ7/7, HdhQ7/111 and HdhQ111/111 (Fig 4). There was a
trend towards reduced levels of the EGFR in HdhQ7/111 and HdhQ111/111 cells as indicated by
western blot, although this difference does not reach significance.

Kinase pathway activation in HdhQ111 primary cells. The phosphorylation of AKT1 and
MEK1 following EGF stimulation was assayed in HdhQ111 primary striatal cell cultures (Fig 5).

Fig 4. A. The EGFR is present in HdhQ7/7, HdhQ7/111 and HdhQ111/111, cells and has a similar subcellular
localisation. Scale bar = 20μmB.Western Blot indicating similar expression of the EGFR protein in all
three genotypes, α-tubulin was used as a loading control. C. Quantification of fluorescence intensity of
protein bands inB normalised to loading control and expressed as a proportion of HdhQ7/7 (FI/HdhQ7/7).
Error bars = ± SEM. Images are representative of multiple experiments. N = 3 replications.

doi:10.1371/journal.pone.0144864.g004
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Treatment of primary cultures with EGF significantly increased AKT1 and MEK1 phosphory-
lation in both HdhQ7/7 and HdhQ111/111 cells (all p<0.001), although in contrast to StHdhQ111

cell lines, there was no observable difference between genotypes.
EGF stimulation alters the localisation of amino-terminal huntingtin epitopes in

HdhQ111 primary cells. The localisation of the huntingtin epitope detected by Mab2166 was
primarily perinuclear in HdhQ7/7, HdhQ7/111 and HdhQ111/111 cells, as observed in immortal-
ised striatal cell lines (Fig 6). Analysis of mean pixel intensity ratios indicated a significant
reduction in the N/C ratio in HdhQ7/7 cells after 5 mins of EGF stimulation (p<0.05), and in the
N/P ratio after both 5 and 15 mins (both p<0.01) of EGF stimulation. In contrast, there was no

Fig 5. Mean absorbance (Abs) read at 450nm following a sandwich ELISA protocol for the detection of
phosphorylated A. AKT1 and B. MEK1 in HdhQ7/7 and HdhQ111/111 primary cells at 0 mins and 10 mins
of 100ng/ml EGF stimulation. Error bars = ±SEM. Black asterisks denote a significant difference from 0
mins + DMSO. N = 5 replications. *** p<0.001.

doi:10.1371/journal.pone.0144864.g005

Fig 6. Subcellular localisation of an N-terminal epitope of huntingtin andmutant huntingtin in HdhQ7/7,
HdhQ7/111 and HdhQ111/111 primary cell lines.Cells were fixed following 0, 5, 15 and 30 min. of stimulation
with 100ng/ml EGF, labelled with Mab2166, then analysed by confocal microscopy. Scale bar = 20μm. B.
Quantitative analysis of immunofluorescence images in A. Nuclear/Cytoplasmic (N/C) and Nuclear/
Perinuclear (N/P) mean pixel intensity ratios (MPI) for HdhQ7/7, HdhQ7/111 and HdhQ111/111 primary cells
following 0, 5, 15 and 30 min. of stimulation with 100ng/ml EGF. Mean pixel intensities were calculated from
confocal microscopy images using GNU Image Manipulator. All images were randomised and analysed blind
to genotype and length of time stimulated with EGF. Each condition consisted of 9 confocal microscopy
images taken from 3 separate coverslips. n = 49–70. Error bars = ± SEM. Data representative of 3
experiments; * Denotes a significant difference from 0min.; *p<0.05, ** p<0.01.

doi:10.1371/journal.pone.0144864.g006
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significant effect of EGF stimulation for either mutant huntingtin-carrying genotypes at any time
point. There was a similar pattern of effect when cells were immunostained with Ab109115,
although this was only mildly significant in the N/P ratio for HdhQ7/7 cells (p<0.05; S6 Fig).

Inhibition of AKT1 phosphorylation alters EGF-regulated huntingtin
localisation in StHdhQ111 cell lines
As EGF stimulation elicited AKT1 phosphorylation and altered the subcellular localisation of
amino-terminal huntingtin in both StHdhQ111 and primary HdhQ111 cell lines, we sought to
investigate whether the phosphorylation of AKT1 may be a mechanism that regulates hunting-
tin subcellular localisation. The subcellular localisation experiment was repeated, with the addi-
tion of a 2 hour incubation period with AKT VIII inhibitor, or the equivalent volume of
DMSO, prior to stimulation with EGF (Fig 7, S7 Fig). Mab2166 and Ab109115 were again used
to detect the localisation of amino-terminal huntingtin, and images were analysed in the same
manner. There was a significant interaction between genotype and treatment condition for
both N/C and N/P ratios (N/C F18, 2785 = 10.34, p<0.001; N/P F18, 2785 = 17.24, p<0.001),
therefore suggesting a differential effect of AKT inhibition between genotypes (Fig 7, S7 Fig).

AKT1 inhibition alters the apparent localisation of huntingtin in StHdhQ7/7 cells in an
epitope-dependent manner. A significant reduction in nuclear huntingtin was not replicated
in StHdhQ7/7 cells following EGF stimulation when detected by Mab2166, which may be due to
the presence of DMSO (Fig 7). However, there was still a trend towards reduced nuclear hun-
tingtin detection at 5 mins of stimulation in both N/C and N/P ratios, and the original observa-
tion was replicated when Ab109115 was used for detection (S7 Fig). AKT1 inhibition had no
significant effect at the 5 minute time point following EGF stimulation in either Ab109115 or
Mab2166 immunostained cells. However, AKT1 inhibition did appear to prevent increased
nuclear Mab2166 detection of huntingtin at 15 and 30 mins, which was likely elicited by
DMSO (Fig 7, both p<0.01). In contrast, there was no effect of AKT1 inhibition on huntingtin
localisation when detected by Ab109115.

AKT1 inhibition reduces the nuclear detection of huntingtin in StHdhQ7/111 and
StHdhQ111/111 cells. Similar to the effect of EGF stimulation on the subcellular localisation of
huntingtin in SthdhQ7/7 cells in the presence of DMSO, a large reduction in nuclear huntingtin
detection by Mab2166 at 5 mins of EGF stimulation was not fully replicated in either StHdhQ7/111

or StHdhQ111/111 cells when DMSO was present, although both lines exhibited a trend towards
this effect. In both cell lines there was an increase in nuclear huntingtin with increased length of
EGF stimulation, which is observable in both N/C and N/P ratios (Fig 7, S7 Fig). This effect
could be visualised using either Mab2166 or Ab109115 antibodies, and may be a result of
DMSO-induced toxicity. Inhibition of AKT1 counteracts this effect; in StHdhQ7/111 cells, there is
a significant reduction in both N/C (p<0.001) and N/P (p<0.001) ratios from 15mins of EGF
stimulation when AKT1 is inhibited. In StHdhQ111/111 cells, the same nuclear reduction is appar-
ent from 5 mins in the N/P ratio (p<0.001) and from 15mins in the N/C ratio (p<0.01; Fig 7).
A similar result is produced when visualised with Ab109115; nuclear detection of huntingtin is
significantly reduced from 5 mins in both StHdhQ7/111 (N/C p<0.05) and StHdhQ111/111 (N/C
p<0.05) cells, although this effect is considerably more marked in StHdhQ111/111 cells, and persists
for the entirety of the experiment (S7 Fig).

MEK inhibition alters huntingtin localisation in a similar manner to AKT
inhibition
Inhibition of MEK1 was carried out in parallel with the AKT1 inhibition experiment, and
therefore shared the same DMSO controls. MEK1 inhibition had a strikingly similar effect on
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the nuclear presence of huntingtin in response to EGF stimulation as AKT1 inhibition did in
all three genotypes (Fig 7, S7 Fig). StHdhQ7/7 cells exhibited increased nuclear huntingtin detec-
tion in the N/C (p<0.001) and N/P (p<0.001) ratios following 5 mins of EGF stimulation
when MEK1 was inhibited, as detected by Mab2166 (Fig 7). This effect was also observed when
detected by Ab109115 (S7 Fig).

Similar to the effect of AKT1 inhibition in StHdhQ7/111 cells, there was a modest effect of
MEK1 inhibition on huntingtin localisation when detected by both Mab2166 and Ab109115;
there was a reduction in the N/P ratio at 15 mins and 30 mins (both p<0.001) when visualised
with Mab2166 (Fig 7), and a modest reduction in the N/C ratio at 15 mins (p<0.05) when visu-
alised with Ab109115 (S7 Fig).

StHdhQ111/111 cells showed a similar pattern of huntingtin localisation change following
MEK1 inhibition as following AKT1 inhibition (Fig 7, S7 Fig). There was a substantial reduc-
tion in the detection of nuclear huntingtin from 5 mins post- EGF stimulation following MEK1
inhibition, which was observed primarily in the N/P ratio (all time points p<0.001) when
using Mab2166 (Fig 7). This effect was particularly strong when Ab109115 immunostaining
was analysed, with both N/C and N/P ratios being significantly lower when MEK1 was inhib-
ited at all time points (all p<0.001; S7 Fig).

Dysregulation of immediate early gene expression is downstream of
AKT and MEK signalling
The regulation of huntingtin localisation has been implicated as a mechanism for transcriptional
control [19,23,25,26,52]. We therefore compared the expression of three immediate early (IE)
genes downstream of the EGF signalling pathway between StHdhQ7/7 and StHdhQ111/111 cells, as
these exhibited the most disparate huntingtin localisation responses to EGF stimulation and
kinase inhibition. The expression of Egr1, Arc and Ngfib were measured by qRTPCR in response
to EGF stimulation alone, and following either AKT1 or MEK1 inhibition. The transcriptional
responses of these genes were typically more reactive in StHdhQ111/111 cells, which elicited larger
gene expression fold changes in response to EGF stimulation than in StHdhQ7/7 cells (Fig 8).
EGF stimulation significantly increased the expression of Egr1 in both genotypes (F3, 24 = 17.95,
p<0.001) although this effect was augmented in StHdhQ111/111 cells (fold change x5.5, p<0.001)
compared to StHdhQ7/7 cells (fold change x2.24, p<0.05). This was an effect that was also
observed in primary HdhQ7/7 and HdhQ111/111 cells (S8 Fig). AKT1 inhibition had no effect on
Egr1 expression in StHdhQ7/7 cells, and although there was a trend towards a reduction in Egr1
expression in StHdhQ111/111 cells, this did not reach significance. In contrast, MEK1 inhibition
suppressed the effect of EGF stimulation on Egr1 expression in both genotypes (StHdhQ7/7

p<0.05, StHdhQ111/111 p<0.001; Fig 8).
The expression of Arc exhibited a similar pattern; while there was a larger effect of EGF in

StHdhQ111/111 cells (fold change x4, p<0.001) compared to StHdhQ7/7 cells (fold change x1.6,
n.s.), AKT1 inhibition had no effect on Arc expression in either genotype. By contrast, MEK1
inhibition prevented the large increase in Arc expression observed in StHdhQ111/111 cells

Fig 7. A. StHdhQ7/7, B. StHdhQ7/111 and C. StHdhQ111/111 cells treated with either AKT inhibitor VIII, MEK
1/2 inhibitor, or the equivalent volume of DMSO for 2 hours prior to 0, 5, 15 and 30 mins stimulation
with 100ng/ml EGF, then probed with amino-terminal huntingtin antibody Mab2166. Scale bar = 20μm.
D-E. Quantification of mean pixel intensity (MPI) from images represented in A-C for the D. Nuclear/
Cytoplasmic (N/C) ratio and E. Nuclear/Perinuclear (N/P) ratio. Error bars = SEM. Light grey bars and
asterisks signify statistically significant differences between DMSO conditions. Black asterisks and hashes
indicate statistically significant differences between DMSO vs AKT inhibitor conditions and DMSO vs MEK
inhibitor conditions, respectively. Data representative of three experiments. n = 85–135. */# p<0.05, **/##
p<0.01, ***/### p<0.001.

doi:10.1371/journal.pone.0144864.g007
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following EGF stimulation (p<0.001). The expression of Ngfib increased to a similar extent in
both genotypes following EGF stimulation (F3, 24 = 8.07, p<0.001. StHdhQ111/111 fold change
x2.5, StHdhQ7/7 fold change x2.59, both p<0.05); this effect was partially suppressed by both
AKT1 and MEK1 inhibition for both StHdhQ7/7 and StHdhQ111/111 cells, but did not reach sig-
nificance (Fig 8).

Discussion
We demonstrate that EGF stimulation elicits differential effects on the activation of the MEK1
and AKT1 kinase signalling pathways downstream of the EGF receptor in StHdhQ7/7 and
StHdhQ111/111 cell lines, despite similar expression levels and localisation of the EGFR. We also
demonstrate that dysregulation of these pathways may alter the subcellular localisation of hun-
tingtin in both StHdhQ111 and HdhQ111 cell lines, which may impact upon downstream tran-
scriptional control (Fig 9).

Baseline levels of AKT are relatively low in adult brain [53], however its activation rises fol-
lowing cellular stress and injury, and it invokes a protective response [54]. AKT exerts its pro-
tective effects by phosphorylating and inactivating components of the cell death machinery,
such as B-cell lymphoma-2 associated death promoter (BAD), caspase-9, forkhead
box proteins (FOXOs) and inhibitor of kappa-β kinase (IKK) [48,55]. Enhanced AKT activity
has previously been identified in the StHdhQ111/111 cell line [13,23,42], as well as in a neural
stem cell model of HD [56], which may reflect a neuroprotective compensatory response in
order to counteract the excitotoxic effects of mutant huntingtin [13,54]. For example, increas-
ing AKT activity in a Drosophilamodel of HD reduced neurotoxicity [57], and reduced the
number of intranuclear inclusions formed in a striatal cell model expressing mutant huntingtin
[48].

Less information is currently available regarding the role of MEK1 signalling in models of
HD, although its activation has previously been found to be reduced in StHdhQ111 cells [46].
Consistent with Ginés et al. [13], we have identified suppressed MEK1 phosphorylation in
StHdhQ111/111 cells following EGF stimulation. There is evidence that huntingtin may be phos-
phorylated by MEK1 activation [18], although the implications of this mechanism are yet to be
elucidated. A constitutively active form of MEK1 was found to be protective against cell death
in a truncated-mutant huntingtin expressing PC12 model of HD [16], although by contrast,
the induction of MEK1 activity provided no protection against polyglutamine induced lethality
in a polyglutamine-overexpressing Drosophilamodel [17]. ERK1/2 activity has been found to
be neuroprotective in models of HD [16,58] and as it lies downstream of MEK1 activation, it
may be inferred that its action is representative of MEK1 activity.

Fig 8. Relative quantitation (RQ) values representing gene expression fold change of Egr1, Arc and
Ngfib in StHdhQ7/7 and StHdhQ111/111 cells following inhibition with either 500nM AKT inhibitor VIII,
1μMMEK 1/2 inhibitor or the equivalent volume of DMSO, followed by 0 or 2 hours of 100ng/ml EGF
stimulation. Statistical analysis was conducted on ΔCt values. Error bars = ± SEM. Asterisks denote a
significant difference from 0 + DMSO, hashes indicate a significant difference from EGF + DMSO. Data
representative of two experiments. N = 6.*/# p<0.05, **/## p<0.01, ***/### p<0.001.

doi:10.1371/journal.pone.0144864.g008
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However, we did not observe differential phosphorylation responses to EGF stimulation in
primary HdhQ111 cell cultures. This could be because mutant huntingtin requires a longer
period of time to accumulate the underlying level of dysregulation responsible for these differ-
ential effects to be observed. Alternatively, the differential phosphorylation response may be
model specific; multiple opposing effects of mutant huntingtin presence on kinase signalling
pathways have previously been reported that vary depending on the model being investigated
[59]. Regardless of the lack of a differential genotype effect on AKT1 and MEK1 phosphoryla-
tion in primary cells, EGF stimulation still altered huntingtin localisation and gene expression
in HdhQ111 cells in a manner similar to that observed in StHdhQ111 cell lines, which could sug-
gest that the extent of kinase phosphorylation may not be the most instructive indicator of
kinase pathway integrity.

As kinase activation and inhibition has previously been associated with the regulation of the
subcellular localisation of huntingtin [21–23], we investigated whether the differential
responses in AKT1 and MEK1 phosphorylation following EGF stimulation could be reflected
in the subcellular localisation of huntingtin. We demonstrate that EGF stimulation elicits dif-
ferential apparent subcellular localisation of huntingtin and mutant huntingtin amino-terminal
epitopes in both StHdhQ111 and primary HdhQ111 cells, and suggest that endogenous kinase sig-
nalling pathways may contribute to the regulation of either huntingtin localisation or confor-
mation (Fig 9).

The neuroprotective effects of AKT activity have been proposed to be exerted through its
phosphorylation of huntingtin on S421 [48,55], which has been found to reduce the toxicity of

Fig 9. Simplified cartoon of the hypothesised relationship between EGF-stimulated kinase activation,
huntingtin localisation and transcriptional regulation. Upon binding to the EGFR, EGF elicits the
phosphorylation of MEK and AKT. In the presence of mutant huntingtin, aberrant interactions with GRB2 and
suppressed PHLPP1 expression serve to alter the phosphorylation response. In turn, active MEK and AKT
regulate the subcellular localisation of huntingtin, possibly by post-translational modification; however this
regulation is impaired due to mutant huntingtin-associated aberrant kinase phosphorylation. Regulation of
huntingtin nuclear localisation may then influence transcriptional control via multiple mechanisms. As such,
altered nuclear localisation of mutant huntingtin could disrupt the control of these mechanisms and would
result in altered transcriptional regulation.

doi:10.1371/journal.pone.0144864.g009
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mutant huntingtin and the nuclear accumulation of toxic mutant huntingtin fragments, as well
as restoring axonal transport [22,57,60–62]. However, we did not identify any changes in the
localisation of huntingtin phosphorylated on S421 in response to EGF stimulation, which
may be a result of the experimental design; other studies have elicited huntingtin S421 phos-
phorylation by the overexpression of constitutively active AKT or by insulin-like growth factor
(IGF-1) stimulation [48,60,63], or have investigated the effects of phospho-mimetic mutations
of huntingtin S421 [22], whereas the phosphorylation of endogenous huntingtin by EGF stim-
ulation has not previously been assessed.

While other post-translational modifications may be contributing to the regulation of hun-
tingtin subcellular localisation, which were not assayed here [21,23,24,64–68], it has not been
established whether an alteration in the absolute localisation of huntingtin is observed follow-
ing EGF stimulation, or whether there has been a change in conformation that would result in
the exposure of alternative epitopes undetectable by the antibodies used in this study. While
our results are consistent between both Mab2166 and Ab109115 antibodies, some variation in
huntingtin detection was observed; this may be due to differences in binding affinity to specific
huntingtin conformations. However, using both Mab2166 and Ab109115 we observe that the
presence of nuclear huntingtin is increased in the context of the expanded polyglutamine; a
phenotype previously described in this cell model [23,25,44,64] and in other models of HD
[27,29,69–74].

Stimulation with EGF reduced the nuclear pool of huntingtin in StHdhQ7/7 and HdhQ7/7

cells, although this effect was apparent primarily between the nucleus and the region of the cell
we defined as ‘perinuclear,’ which is consistent with the observation that huntingtin accumu-
lates in the perinuclear region prior to nuclear translocation [75]. Huntingtin is also known to
localise to the Golgi body and late endosomes [76,77], so increased localisation in the perinuc-
lear region following stimulation may be representative of a role for huntingtin in the recycling
and degradation of the EGFR, as has been established in human fibroblasts [78].

We also demonstrate that the effect of EGF stimulation on the localisation of mutant hun-
tingtin is suppressed in StHdhQ111/111 and HdhQ111/111 cells; this suppression is consistent with
the inhibited kinase phosphorylation and gene expression responses to EGF stimulation in
other cell and Drosophilamodels of HD [79,80], as well as with the delayed EGFR degradation
and altered trafficking that has been observed in human HD fibroblasts [78]. However, as we
observe a trend towards a reduction of the EGFR in HdhQ7/111 and HdhQ111/111 cells, it is possi-
ble that this may also be contributing to the suppressed response in these cells.

The nuclear translocation of huntingtin has been previously proposed as a mechanism for
regulating its function [25,26]. Multiple mechanisms may explain the ability of huntingtin to
shuttle between the nucleus and cytoplasm[24,26,64,66,81,82]. The association of huntingtin
with exogenous chaperones to traverse the nuclear pore, and the availability of nuclear export/
nuclear localisation signals (NES/NLS) on huntingtin itself may change with alterations in its
conformation [26,83–85], and are therefore potential mechanisms by which EGF stimulation
could be altering the localisation of huntingtin. However, the process that may be regulating
huntingtin localisation in our current model requires clarification.

In order to determine whether the dysregulation of AKT1 and MEK1 phosphorylation
observed in StHdhQ111/111 cells could be responsible for altered mutant subcellular localisation,
we repeated the experiment whilst inhibiting either AKT1 or MEK1 activation in response to
EGF stimulation. Inhibition of either kinase elicited an increase in nuclear huntingtin in
StHdhQ7/7 cells, indicating that the subcellular localisation of huntingtin can be regulated by
AKT1 and MEK1 activity. The increase in nuclear huntingtin is not as marked when visualised
with Mab2166 compared to Ab109115, which may be due to detection of an alternate epitope
of huntingtin, or variation in antibody specificity. Alternatively, differences in subcellular
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localisation following EGF stimulation may be due to their ability to detect different huntingtin
cleavage products. While both antibodies detect amino-terminal huntingtin, multiple aspartyl
protease cleavage sites lie between the huntingtin binding sites for each antibody [86]; the
resulting huntingtin fragments would therefore only be detectable by Ab109115, and would be
able to more readily shuttle between cellular compartments by passive diffusion [19]. With
continued EGF stimulation, this initial nuclear accumulation is followed by a slight reduction
in nuclear huntingtin detection with both Ab109115 and Mab2166. Both AKT1 and MEK1
inhibition elicited similar effects on huntingtin localisation, and are therefore likely to be affect-
ing huntingtin in a similar manner. However, whether this may be due to a shared downstream
kinase or to similar, but distinct, mechanisms of action remains unclear and requires additional
investigation.

Compared to the effect observed in StHdhQ111/111 cells, the result of kinase inhibition in
StHdhQ7/7 cells was very modest. AKT1 and MEK1 inhibition in StHdhQ111/111 cells elicited a
dramatic reduction in nuclear mutant huntingtin following treatment with EGF. The expanded
polyglutamine may therefore be modifying the normal interactions between huntingtin and
elements downstream of kinase activation, which consequently has an effect on mutant hun-
tingtin subcellular localisation. A reduction in nuclear huntingtin was observed in StHdhQ7/7

cells following EGF stimulation alone, which may suggest that when aberrant activation of the
MEK1 and AKT1 pathways is prevented, the StHdhQ111/111 cellular phenotype becomes more
similar to that of StHdhQ7/7 cells. Increased nuclear localisation of huntingtin is typically con-
sidered to be pathogenic, and is associated with transcriptional dysregulation [87,88]; therefore
reducing the presence of nuclear mutant huntingtin by inhibiting aberrant kinase signalling
may prove to be beneficial for the appropriate regulation of cellular processes. To our knowl-
edge, the manipulation of specific kinase signalling pathways has not yet been carried out in
murine models of HD in vivo in order to determine any potential effects of kinase phosphoryla-
tion on phenotype and survival.

The shuttling of huntingtin between cellular compartments is associated with the regulation
of its function [25,26], including the control of gene expression [19,23,37], so alterations in
nuclear huntingtin localisation could be a regulatory mechanism for the aberrant transcrip-
tional control that has been identified in StHdhQ111/111 cells and other models of HD [89–91].
We therefore decided to investigate whether EGF stimulation and kinase inhibition altered the
expression of a panel of IE genes downstream of the EGF pathway [40,41]. The extent of IE
gene expression changes following EGF stimulation was typically larger in StHdhQ111/111 cells,
which is consistent with the AKT hyperactivity also observed in StHdhQ111/111 cells. However,
the integrity of the MEK1 signalling pathway appears to be more relevant for the control of the
expression of Egr1, Arc and Ngfib, as its inhibition had a much more substantial effect on IE
gene expression than the inhibition of AKT1.

We propose that kinase signalling is capable of modulating huntingtin localisation in both
immortalised StHdhQ111 and primary HdhQ111 cell models of HD. In particular, MEK1 and
AKT1 signalling are able to regulate huntingtin localisation and transcriptional control in the
StHdhQ111 cell model of HD, although the mechanism by which these processes may be associ-
ated remains unknown (Fig 9). MEK1 activity could be more relevant for transcriptional con-
trol in the StHdhQ111 cell model of HD than AKT1 due to the greater impact of its inhibition
on IE expression. However, as MEK1 phosphorylation was suppressed in StHdhQ111/111 cells,
and both AKT1 and MEK1 inhibition are able to alter huntingtin localisation in a similar man-
ner, it is possible that a synergistic mechanism between multiple dysregulated pathways con-
tributes to aberrant transcriptional control and huntingtin mislocalisation in models of HD.
Alternatively, as similar huntingtin localisation and Egr1 expression was observed in HdhQ111

primary cells in the absence of differential MEK1 phosphorylation, it may be possible the

Kinase Signalling and Huntingtin Localisation

PLOS ONE | DOI:10.1371/journal.pone.0144864 December 14, 2015 16 / 24



extent of MEK1 phosphorylation does not accurately reflect downstream activity that is more
directly impacting huntingtin localisation and transcriptional regulation. It also remains
unclear from our model whether nuclear mutant huntingtin is having a direct effect upon tran-
scriptional regulation, or whether another mechanism downstream of AKT1 and MEK1 signal-
ling pathways is impacting upon transcriptional regulation in parallel with the regulation of
huntingtin localisation.

As there is substantial overlap and shared targets between multiple kinase signalling path-
ways, it may be beneficial to target the restoration of the balance between pro- and anti-apopto-
tic mechanisms in HD rather than any one pathway in isolation. Despite being a
neuroprotective anti-apoptotic pathway, the counter-intuitive inhibition of a hyper-activated
AKT pathway may prove to be beneficial by restoring normal huntingtin localisation and IE
gene expression by redressing the balance between pro- and anti-apoptotic pathways. How-
ever, suppressing AKT alone could ultimately enhance mutant huntingtin toxicity by failing to
counter pro-apoptotic mechanisms. Therefore, a multi-target approach to restore the balance
of compensatory and synergistic signal transduction mechanisms may be an efficacious thera-
peutic approach; this may be achieved by targeting upstream modulators of multiple kinase
pathways, or by manipulating several targets simultaneously.

We demonstrate that the mislocalisation of mutant huntingtin is an early phenotype present
in both an immortalised, and primary, embryonic cell model of HD, which can be modulated
by the stimulation of kinase signalling pathways downstream of the EGFR. In particular, dysre-
gulation of AKT1 and MEK1 kinase signalling pathways may contribute to aberrant huntingtin
subcellular localisation. We hypothesise that the regulation of huntingtin localisation by kinase
signalling could be a mechanism associated with transcriptional control, as the inhibition of
both AKT1 and MEK1 activation was associated with alterations in both huntingtin localisa-
tion and IE gene expression. However, this study does not elucidate a direct functional relation-
ship between huntingtin localisation and gene expression, and it is likely that mutant
huntingtin impacts multiple mechanisms within cell nuclei. While we replicate the effect of
EGF stimulation on the localisation of huntingtin in primary cells derived from the HdhQ111

mouse model of HD, our findings require additional validation in multiple models of HD
before firm conclusions about the relationship between kinase signalling, huntingtin localisa-
tion and IE gene expression can be drawn. We have also not yet clarified the mechanism by
which the alterations in huntingtin subcellular localisation have occurred. However, we suggest
that the presence of an expanded huntingtin polyglutamine repeat may be responsible for alter-
ations in kinase signalling that subsequently leads to the mislocalisation of mutant huntingtin,
which may in turn contribute to the aberrant control of gene expression observed in HD. By
using embryonic cell models of HD, we demonstrate that cellular dysfunction is likely to be
present throughout development, which may have implications for the understanding of HD
developmental pathogenesis. The inability of these mechanisms to maintain survival-associ-
ated functions with cumulative mutant huntingtin insult may then lead to the observable path-
ogenic disease cascade. Therefore the investigation of early signalling dysfunction in HD
models may provide an efficacious approach to developing novel therapeutic targets to delay
age of onset and slow symptom progression.

Supporting Information
S1 Fig. An example of immunofluorescence image quantification using GNU Image
Manipulator. For every cell, a circular region was individually selected within the nucleus (N),
‘perinuclear’ region (P) and cytoplasm (C), and a histogram displaying the mean pixel intensity
for the selected region was generated. Within each cell, N/C and N/P pixel intensity ratios were
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calculated in order to compare the relative localisation of the huntingtin immunostaining, and
to control for background variance between images and coverslips. Cell populations to be
imaged were located by DAPI nuclear staining to avoid investigator bias. For each experiment,
mean pixel intensities for N, P and C regions were measured blind to genotype and condition,
and were taken from all cells present within 9 microscopy images derived from 3 individual
coverslips. The presented data is a result of multiple experiments.
(TIF)

S2 Fig. A-B. The ER marker Calreticulin was used to delineate the area designated as ‘peri-
nuclear’ in these analyses. The amino-terminal epitope of huntingtin detected by Mab2166
colocalises with the ER marker calreticulin in the region immediately surrounding cell nuclei in
StHdhQ7/7, StHdhQ7/111 and StHdhQ111/111 cells. This localisation pattern of huntingtin was then
categorised as ‘perinuclear’ in following experiments. ‘Cytoplasmic’ localisation was considered
as away from the more densely localised huntingtin in the ‘perinuclear’ area, which would
not colocalise with calreticulin. B. 4x magnification of images in A. Magenta = huntingtin,
green = calreticulin. Scale bar = 20μm.
(TIF)

S3 Fig. Subcellular localisation of an N-terminal epitope of huntingtin and mutant hun-
tingtin in StHdhQ7/7, StHdhQ7/111 and StHdhQ111/111 cell lines. Cells were fixed following 0, 5,
15 and 30 min. of stimulation with 100ng/ml EGF, labelled with Ab109115 against amino acids
1–100 of huntingtin, then analysed by confocal microscopy. Scale bar = 20μm. B. Quantitative
analysis of immunofluorescence images in A. Nuclear/Cytoplasmic (N/C) and Nuclear/Peri-
nuclear (N/P) mean pixel intensity ratios (MPI) for StHdhQ7/7, StHdhQ7/111 and StHdhQ111/111

cells following 0, 5, 15 and 30 min. of stimulation with 100ng/ml EGF. Mean pixel intensities
were calculated from confocal microscopy images using GNU Image Manipulator. All images
were randomised and analysed blind to genotype and length of time stimulated with EGF. Each
condition consisted of 9 confocal microscopy images taken from 3 separate coverslips. Error
bars = ± SEM. Data representative of 3 experiments. n = 60–87; � Denotes a significant difference
from 0min.; # Denotes a significant difference from 5mins; �/# p<0.05, ��/## p<0.01, ���/###
p<0.001.
(TIF)

S4 Fig. Subcellular localisation of an N-terminal epitope of huntingtin and mutant hun-
tingtin phosphorylated on S421 in StHdhQ7/7, StHdhQ7/111 and StHdhQ111/111 cell lines.
Cells were fixed following 0, 5, 15 and 30 min. of stimulation with 100ng/ml EGF, labelled with
anti-S421, then visualised by fluorescence microscopy. Each condition consisted of 9 confocal
microscopy images taken from 3 separate coverslips. Scale bar = 20μm.
(TIF)

S5 Fig. A representative image demonstrating the proportion of DARRP-32 and CTIP2
positive cells in primary cultures from HdhQ111 mice. 891 cells were assayed for these striatal
cell markers, of which 93.83% were positively labelled.
(TIF)

S6 Fig. A. Subcellular localisation of an N-terminal epitope of huntingtin and mutant hun-
tingtin in HdhQ7/7, HdhQ7/111 and HdhQ111/111 primary cell lines. Cells were fixed following
0, 5, 15 and 30 min. of stimulation with 100ng/ml EGF, labelled with Ab109115, then ana-
lysed by confocal microscopy. Scale bar = 20μm. B. Quantitative analysis of immunofluo-
rescence images in A. Nuclear/Cytoplasmic (N/C) and Nuclear/Perinuclear (N/P) mean
pixel intensity ratios (MPI) for HdhQ7/7, HdhQ7/111 and HdhQ111/111 primary cells following
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0, 5, 15 and 30 min. of stimulation with 100ng/ml EGF.Mean pixel intensities were calcu-
lated from confocal microscopy images using GNU Image Manipulator. All images were ran-
domised and analysed blind to genotype and length of time stimulated with EGF. Each
condition consisted of 9 confocal microscopy images taken from 3 separate coverslips. n = 49–
70. Error bars = ± SEM. Data representative of 3 experiments; � Denotes a significant difference
from 0min.; �p<0.05, �� p<0.01.
(TIF)

S7 Fig. A. StHdhQ7/7, B. StHdhQ7/111 and C. StHdhQ111/111 cells treated with either AKT
inhibitor VIII, MEK 1/2 inhibitor, or the equivalent volume of DMSO for 2 hours prior to
0, 5, 15 and 30 mins stimulation with 100ng/ml EGF, then probed with amino-terminal
huntingtin antibody Ab109115. Scale bar = 20μm. D-E. Quantification of mean pixel
intensity (MPI) from images represented in A-C for the D. Nuclear/Cytoplasmic (N/C)
ratio and E. Nuclear/Perinuclear (N/P) ratio. Error bars = SEM. Light grey bars and asterisks
signify statistically significant differences between DMSO conditions. Black asterisks and
hashes indicate statistically significant differences between DMSO vs AKT inhibitor conditions
and DMSO vs MEK inhibitor conditions, respectively. Data representative of three experi-
ments. n = 78–140. �/# p<0.05, ��/## p<0.01, ���/### p<0.001.
(TIF)

S8 Fig. Relative quantitation (RQ) values representing gene expression fold change of Egr1
in HdhQ7/7 and HdhQ111/111 primary cells following stimulation for 0 or 2 hours with
100ng/ml EGF stimulation. Statistical analysis was conducted on ΔCt values. Egr1 expression
in both genotypes was significantly increased following EGF stimulation (both p<0.001), and
the extent of this increase was significantly larger in HdhQ111/111 primary cells compared to
HdhQ7/7 cells (p<0.05). Error bars = ± SEM. N = 5. � p<0.05, �� p<0.01, ���p<0.001.
(TIF)
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