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ABSTRACT

BACKGROUND/OBJECTIVES: Inflammatory responses are key pathological factors in various 
canine diseases, making the control of inflammatory responses vital for canine health. 
This study examined the anti-inflammatory effects of rutin on DH82 cells, a type of canine 
macrophage, against lipopolysaccharide (LPS)-induced inflammatory responses.
MATERIALS/METHODS: The inflammatory in vitro experimental model was established 
by stimulating canine macrophage DH82 cells with LPS. To evaluate the inflammation-
preventative effects of rutin, analyses were conducted using enzyme-linked immunosorbent 
assay, western blot, and real-time quantitative reverse transcription polymerase chain reaction.
RESULTS: Rutin inhibited the LPS-induced increase in the protein and gene levels of pro-
inflammatory cytokines (interleukin [IL]-1β, IL-6, tumor necrosis factor-α), while anti-
inflammatory cytokines (IL-10, transforming growth factor-β1) levels remained unchanged. 
Furthermore, rutin suppressed the LPS-induced activation of phosphorylated extracellular 
signal-regulated kinase, Jun N-terminal kinase, inhibitor of nuclear factor kappa B, and 
nuclear factor kappa B (NF-κB) in DH82 cells.
CONCLUSION: Rutin exerts anti-inflammatory effects by inhibiting the mitogen-activated 
protein kinase-NF-κB signaling pathway and reducing the production of pro-inflammatory 
cytokines in DH82 cells.
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INTRODUCTION

The pet industry has experienced significant growth and development due to evolving 
societal attitudes towards pets, increased pet ownership, and a greater willingness among 
pet owners to invest in their companions [1]. A growing focus on pet health and wellness is 
driving the expansion of pet healthcare, including services and products, such as veterinary 
care, nutritional supplements, and items designed to enhance pets’ mental health and overall 
well-being [2]. In addition, there is increasing demand for preventative healthcare options 
for pets [3]. Unlike humans, pets have limited ways to communicate their health problems, 
which can result in substantial medical expenses when diseases emerge [4]. Considering the 
nature of pets, the optimal approach to sustaining pet health is linked to food intake [5].
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Among pets, dogs are susceptible to various inflammation-related diseases. These conditions 
involve inflammatory reactions to injury, infection, or disease. The inflammatory reactions 
can be acute, protecting against harmful stimuli and initiating healing, or chronic, 
potentially causing various health complications [6]. Common conditions associated 
with heightened inflammatory responses include allergies, arthritis, inflammatory bowel 
syndrome, and dermatitis. Dogs may suffer from allergic reactions to food or environmental 
allergens [7]. Arthritis is often observed in older dogs, causing pain, stiffness, and reduced 
mobility due to deteriorating joint cartilage [8]. Inflammatory bowel syndrome manifests as 
increased inflammatory responses in the gastrointestinal tract, causing symptoms such as 
vomiting, diarrhea, and weight loss [9]. Furthermore, dermatitis can be triggered by contact 
with fleas or other irritants [10]. Elevated inflammatory responses are a common factor in 
these conditions.

Inflammation is a complex biological response to pathogens and cell damage. Macrophages 
mediate an inflammatory process, responding to infectious agents and cellular pathological 
responses by activating inflammatory signaling pathways, including nuclear factor kappa 
B (NF-κB) and mitogen activated protein kinase (MAPK) [11,12]. Lipopolysaccharide (LPS), 
a component of the outer membrane of Gram-negative bacteria such as Escherichia coli, 
induces inflammation. LPS is commonly used to develop pathological experimental models 
for studying the anti-inflammatory effects of drugs and natural substances [13]. Exposing 
macrophages to LPS causes NF-κB activation and subsequent nuclear translocation, resulting 
in the release of pro-inflammatory mediators such as interleukin (IL)-1β, IL-6, tumor necrosis 
factor-alpha (TNF-α), and transforming growth factor beta 1 (TGF-β1) [14]. In addition, 
MAPK activation regulates the activities of inflammation-related transcription factors, 
affecting cellular proliferation, cell-cycle arrest, senescence, and apoptosis [15]. Therefore, 
investigating the anti-inflammatory potential of dietary components in dogs should evaluate 
the response of canine macrophages, such as DH82 cells, to inflammatory stimuli.

Rutin (3,3′,4′,5,7-pentahydroxyflavone-3-rhamnoglucoside) is a strong candidate for 
preventing inflammatory responses in canine macrophages, specifically DH82 cells. Rutin is 
a flavonoid structured as a glycoside conjugated to quercetin (3,3′,4′,5,6-pentahydroxyflavone) 
widely found in buckwheat, vegetables, and fruits [16]. Research on rutin’s biological and 
pharmacological effects shows rutin has anti-diabetic, anti-inflammatory, anti-tumor, 
antimicrobial, and antioxidant properties [17-21]. Studies involving tumors, viruses, 
and cell death show that rutin has anti-inflammatory effects, as evaluated through cell 
morphology and nitric oxide (NO), TNF-α, IL-1β, and IL-6 levels [22,23]. Moreover, rutin 
inhibits the induction of TNF-α by LPS and NF-κB activation, which is vital for treating 
vascular inflammatory diseases [24]. Rutin also reduces TNF-α and IL-1β activity and MAPK 
phosphorylation in mouse kidney cells, alleviating carbon tetrachloride (CCl4)-induced 
inflammation [25]. Considering these health benefits, rutin has the potential for various 
industrial applications. However, its potential to protect against inflammatory responses in 
canine models has not been extensively studied.

This study explored the potential anti-inflammatory effects of rutin on canine macrophage 
DH82 cells in response to LPS treatment. In detail, we examined how rutin affects the 
post-translational activation of the MAPK–NF-κB pathway, inflammatory gene and protein 
expressions, and its underlying molecular mechanisms. Thus, this study aimed to assess 
rutin as a functional ingredient for preventing canine inflammatory responses.
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MATERIALS AND METHODS

Canine DH82 cell culture
Canine DH82 cells were cultured in minimum essential medium supplemented with 
15% fetal bovine serum and 1% penicillin/streptomycin and maintained in a humidified 
incubator with 5% CO2 at 37°C (Vision Scientific Co., Ltd., Daejeon, Korea). The cells were 
seeded at a density of 7.0 × 105 cells/mL in 6-well plates (2 mL culture medium per well) and 
cultured until they reached 80–90% confluence. The cells were then treated with varying 
concentrations of rutin (10, 20, and 40 μM) for 24 h, and subsequently the cells were 
challenged with LPS (0.1 μg/mL).

Cell viability assays
Cell viability was assayed using an MTT (3-[4,5-dimethylthiazol-2-yl]-2,5-diphenyl 
tetrazolium bromide). DH82 cells were seeded in a 96-well plate at a concentration of 2.4 × 
104 cells/100 μL. The cells were treated with varying concentrations of rutin (0, 5, 10, 20, 40, 
80, and 100 μM) to assess cytotoxicity of rutin. Following treatment, MTT solution (1 mg/
mL) was added to each well, and the plate was incubated at 37°C for 1 h. Subsequently, optical 
density of the plate was measured at 540 nm using a microplate reader.

Cytokine enzyme-linked immunosorbent assays (ELISA)
The levels of secreted TNF-α and IL-10 were measured using commercially available ELISA 
kits (R&D Systems, Inc., Minneapolis, MN, USA). DH82 cells were seeded in 12-well plates at 
a density of 3.5 × 105 cells/mL and incubated for 24 h at 37°C. The cells were then treated with 
various concentrations of rutin (10, 20, 40 μM) for 24 h before inducing an inflammatory 
response using LPS (0.1 μg/mL) for 6 h. Following incubation, the culture supernatant was 
collected and centrifuged at 1,000 × g at 4°C for 10 min to remove debris before measuring 
the cytokine levels.

Western blot analysis
Total protein extraction and subsequent western blot analysis were performed as described 
in a previous in-house publication [26]. The primary and secondary antibodies used in the 
western blot analyses are detailed in Supplementary Table 1.

Quantitative reverse transcription polymerase chain reaction (qRT-PCR)
Total RNA extraction, cDNA synthesis, and real-time PCR was also executed as described 
previously with relative mRNA expressions were normalized to glyceraldehyde-3-phosphate 
dehydrogenase (GAPDH) [27]. The PCR primers used are detailed in Supplementary Table 2.

Statistical analysis
The data are presented as means with SDs. Statistical significance was determined using 
one-way analysis of variance, followed by Tukey’s post hoc analysis for multiple comparisons 
using the SPSS program (Statistical Package for Social Science; IBM Corp., Armonk, NY, USA). 
Statistical significance was defined as P < 0.05 [28].
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RESULTS

Cytotoxic effects of rutin in DH82 cells
We executed an MTT cell viability assay to evaluate rutin’s cytotoxic effects on DH82 cells at 
0, 5, 10, 20, 40, 80, and 100 μM concentrations. Concentrations of rutin ≤ 80 μM showed no 
significant change in cell viability compared to the control. However, a significant decrease 
in cell viability was observed at 100 μM rutin (Supplementary Fig. 1). Subsequently, rutin was 
treated as 0, 10, 20, and 40 μM to investigate anti-inflammatory effects.

Rutin prevents LPS-induced TNF-α secretion in DH82 cells
M1 macrophages are activated by factors such as interferon (IFN)-γ, and their functions include 
producing pro-inflammatory cytokines, engulfing microbes, and triggering inflammatory 
immune responses. M1 macrophages generate NO or reactive oxygen intermediates to defend 
against bacteria and viruses. In contrast, M2 macrophages are activated by cytokines such as 
IL-4, IL-10, or IL-13, producing polyamines for cell growth or proline for collagen synthesis, 
making them pivotal in wound healing and tissue restoration. Rutin’s anti-inflammatory 
effects on modulating LPS-inducible pro- and anti-inflammatory responses were assessed 
by measuring TNF-α and IL-10 levels in the culture media using ELISA. Rutin pre-treatment 
significantly prevented LPS-induced TNF-α production (Fig. 1A). However, no significant 
changes were found in the anti-inflammatory cytokine IL-10 secretions (Fig. 1B). Consequently, 
rutin pre-treatment significantly lowered the TNF-α/IL-10 ratio in our in vitro setting (Fig. 1C).

Rutin prevents LPS-induced activation of the MAPK–NF-κB pathway
Inflammatory responses are modulated both transcriptionally and post-translationally. Post-
translational regulation of inflammatory reactions occurs through the activation of the MAPK–
NF-κB pathway [2,29]. The MAPK–NF-κB pathway is activated by a wide range of external 
stimuli linked to inflammation, immune reactions, cell growth, differentiation, and survival 
[30]. An important step in activating the MAPK–NF-κB pathway is the phosphorylation-
dependent activation of the inhibitor of nuclear factor kappa B (IκB) kinase complex. 
Phosphorylation of IκB is followed by ubiquitination and proteasome-mediated degradation 
of inhibitory IκB proteins, allowing NF-κB to enter the nucleus and initiate the transcription 
of target genes [31]. Since rutin reduced the production of LPS-induced pro-inflammatory 
cytokines, we hypothesized that rutin treatment might inhibit LPS-induced post-translational 
modifications in the MAPK–NF-κB axis. Indeed, LPS treatment significantly increased the 
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Fig. 1. The effect of rutin on LPS-induced pro/anti-inflammatory cytokines in DH82 cells. After 24 h of rutin treatment (0–40 μM), DH82 cells are exposed to LPS 
(0.1 μg/mL) for 6 h. (A) TNF-α levels, (B) IL-10 levels, (C) TNF-α/IL-10 ratio. Values are expressed as the mean ± SD. 
LPS, lipopolysaccharide; TNF-α, tumor necrosis factor-α; IL-10, interleukin 10. 
a,b,c,dMeans with different letters indicate significant differences (P < 0.05) as determined one-way analysis of variance, followed by Tukey’s post hoc test.



phosphorylation of the MAPK proteins, such as Jun N-terminal kinase (JNK) (Fig. 2A and B) 
 and extracellular signal-regulated kinase (ERK) (Fig. 2A and C); however, rutin (40 µM) 
significantly inhibited this phosphorylation (Fig. 2A-C). Our findings suggested that rutin 
might prevent the post-translational modification in downstream targets of MAPK, including 
IκB and NF-κB. LPS exposure significantly increased the phosphorylation of IκB and NF-κB; 
however, rutin (40 µM) inhibited the phosphorylation of IκB (Fig. 2A and D) and NF-κB in 
canine macrophage cells (Fig. 2A and E). Thus, rutin treatment of DH82 cells inhibited the 
LPS-induced post-translational phosphorylation of proteins at multiple steps in the MAPK–
NF-κB pathway.

Rutin prevents LPS-induced pro-inflammatory cytokine gene expression
Since rutin exposure prevented LPS-induced MAPK–NF-κB activation in DH82 cells, we 
hypothesized that rutin treatment would inhibit pro-inflammatory cytokine gene expression 
in DH82 cells since activating NF-κB triggers pro-inflammatory gene transcription. 
Exposure of DH82 cells to LPS (0.1 μg/mL) markedly increased pro-inflammatory cytokine 
mRNA levels, including Il-6 (Fig. 3A), Il-1β (Fig. 3B), and Tnf-α (Fig. 3C). Treatment with 
rutin (10–40 μM) significantly reduced the mRNA levels of these pro-inflammatory genes 
(Fig. 3A-C). However, no significant differences were found in Tgf-β1 levels (Fig. 3D). The 
anti-inflammatory cytokine Il-10 showed no significant LPS induction following rutin pre-
treatment (Fig. 3E), consistent with the protein secretion results (Fig. 1B).
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Fig. 2. The effect of rutin on LPS-induced proinflammatory gene expression, MAPK, and NF-κB activation in DH82 cells. After 24 h of rutin treatment (0–40 μM), 
DH82 cells are exposed to LPS (0.1 μg/mL) for 5 or 10 min. (A) Representative western blot images, (B) phosphorylated IκB levels, (C) phosphorylated NF-κB 
levels, (D) phosphorylated ERK levels, (E) phosphorylated JNK levels. Protein levels are adjusted relative to the GAPDH reference standard. Values are expressed 
as the mean ± SD. 
LPS, lipopolysaccharide; JNK, Jun N-terminal kinase; MAPK, mitogen-activated protein kinase; NF-κB, nuclear factor kappa B; IκB, inhibitor of nuclear factor 
kappa B; ERK, extracellular signal-regulated kinase; GAPDH, glyceraldehyde-3-phosphate dehydrogenase; p, phosphorylation; t, total. 
a,b,cMeans with different letters indicate significant differences (P < 0.05) as determined one-way analysis of variance, followed by Tukey’s post hoc test.



DISCUSSION

In this study, we found that rutin prevented LPS-induced expression of inflammatory 
cytokines by modulating the MAPK–NF-κB pathway. Our results suggested that prophylactic 
treatment with rutin may help prevent potential inflammatory diseases in dogs. Pathological 
progression in dogs is closely linked to increase inflammation, which can occur locally 
(e.g., skin, intestines, and joints) or be widespread throughout the body [32]. Diagnosing 
inflammatory diseases in dogs can be difficult, emphasizing the importance of prevention 
by addressing toxic substances [33]. In this study, we developed a potential canine 
inflammatory disease model using DH82 cells (macrophages and monocytes) derived from 
a canine histiocytic sarcoma lineage [34]. DH82 cells have also been used to study abnormal 
inflammatory states, including leishmania, monocytic ehrlichiosis, and allergies [35-37]. 
This study focused on the mechanisms underlying inflammation-induced inhibition by rutin 
in LPS-induced conditions. Our findings indicate that rutin inhibits the activation of the 
MAPK–NF-κB pathway, reducing the expression of inflammatory cytokines.

M1 macrophage cell polarization is an activated state of pro-inflammatory immune cells; 
excessive activation contributes to inflammatory disease pathology. M1 macrophages secrete 
pro-inflammatory cytokines, including TNF-α and IL-6, promoting inflammatory responses 
[38]. LPS treatment in DH82 cells upregulates the levels of pro-inflammatory cytokines 
(e.g., TNF-α, IL-6, cyclooxygenase 2 [COX-2], and inducible nitric oxide synthase [iNOS]) 
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Fig. 3. The effect of rutin on LPS-induced mRNA inflammation-related expression in DH82 cells. After 24 h of rutin treatment (0–40 μM), DH82 cells are exposed 
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a,b,cMeans with different letters indicate significant differences (P < 0.05) as determined one-way ANOVA, followed by Tukey’s post hoc test.



[39] at both the protein and mRNA levels. Activating the NF-κB signaling pathway induces 
the production of pro-inflammatory cytokines and chemokines. MAPK signaling works in 
conjunction with NF-κB as a downstream target. Consequently, the MAPK–NF-κB pathway 
is crucial to control overall inflammatory responses [40]. Our investigation showed that 
exposing DH82 cells to LPS induces MAPK phosphorylation, elevating the phosphorylation 
of IκB and NF-κB. The activation of inflammatory cytokine expression and the MAPK–NF-κB 
signaling pathway confirms that we established an inflammatory disease model in LPS-
treated DH82 cells.

Rutin is a glycoside comprising the flavonol quercetin and the disaccharide rutinose [41]; 
it alleviates inflammation, oxidative stress, and diabetes (Tables 1 and 2) [42-51]. Rutin 
can alleviate inflammation locally and systemically. In a colitis model induced by dextran 
sodium sulfate, rutin effectively suppressed intestinal inflammation and oxidative stress, 
improving colonic permeability by increasing tight junction proteins [42]. In LPS-induced 
acute kidney injury, rutin mitigates the increased serum creatinine and blood urea nitrogen 
levels associated with pro-inflammatory cytokine regulation by preventing NF-κB activation 
and enhancing antioxidant enzyme activity [43]. Rutin also ameliorates pathologies in CCl4-
induced hepatic injury by reducing fibrosis and enhancing antioxidative capacities through 
upregulating nuclear factor erythroid 2–related factor 2 and heme oxygenase 1 expression 
[44]. In addition, rutin alleviates inflammation in a cyclophosphamide-induced liver injury 
model by enhancing antioxidant enzyme activity and regulating the expression of pro-
inflammatory cytokines, NF-κB, iNOS, and COX-2 [45].
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Table 1. Inflammation mitigating effects of rutin in vivo
Strain Inducer Treatment Biological markers Ref.
C57BL/6J mouse DSS 20, 40 mg/kg for 8 days Inhibition of colon length reduction; Proinflammatory cytokines; (IL-

6, IL-8, TNF-α) ↓; ZO-1, MUC 2 ↓; NF-κB activation ↓
[42]

C57BL/6J mouse LPS 50, 200 mg/kg for 24 h Proinflammatory cytokines; (TNF-α, IL-6) ↓; NF-κB, TLR4, COX-2 ↓; 
MDA, caspase 3 ↓; GSH, SOD, catalase ↑

[43]

BALB/c mouse CCl4 10, 50, 150 mg/kg for 5 days NF-κB, COX-2, TNF-α, iNOS ↓; Nrf2, HO-1 ↑; Transaminase ↓ [44]
Wistar rats Cyclophosphamide 50, 100 mg/kg for 20 days Proinflammatory cytokines; (TNF-α, IL-6) ↓; p38-MAPK, NF-κB, iNOS, 

COX-2 ↓; AST, ALT, LDH ↓; GSH, GR, GPX ↑
[45]

Sprague-Dawley rats Fructose 50, 100 mg/kg for 4 weeks NLRP3, ASC, caspase-1 ↓; Proinflammatory cytokines; (TNF-α, IL-1β, 
IL-6) ↓; Renal TG, TC, VLDL ↓; PPARα, CPT1, OCTN2 ↓

[49]

DSS, dextran sulfate sodium; IL, interleukin; TNF-α, tumor necrosis factor-alpha; ↑, increased; ↓, decreased; ZO-1, zonula occludens-1; MUC 2, mucin 2; NF-
κB, nuclear factor kappa B; LPS, lipopolysaccharide; TLR, Toll-like receptor; COX, cyclooxygenase; MDA, 3,4-methylenedioxyamphetamine; GSH, glutathione; 
SOD, superoxide dismutase; iNOS, inducible nitric oxide synthase; Nrf2, nuclear factor erythroid 2-related factor 2; HO-1, heme oxygenase 1; MAPK, mitogen-
activated protein kinase; AST, aspartate aminotransferase; ALT, alanine transaminase; LDH, lactate dehydrogenase; GR, glutathione reductase; GPX, 
glutathione peroxidase; NLRP3, nucleotide-binding domain, leucine-rich–containing family, pyrin domain–containing-3; ASC, apoptosis-associated speck-like 
protein; TG, triglyceride; TC, total cholesterol; VLDL, very low density lipoprotein; PPARα, peroxisome proliferator-activated receptor alpha; CPT1, carnitine 
palmitoyltransferase 1; OCTN2, organic cation/carnitine transporter 2.

Table 2. Inflammation mitigating effects of rutin in vitro
Strain Inducer Treatment Biological markers Ref.
RAW264.7 LPS 1.25, 2.5, 5, 10 uM Proinflammatory cytokines; (TNF-α, IL-6, IL-1β) ↓; iNOS, COX-2 ↓; p38-MAPK, NF-κB ↓ [50]
RAW264.7 LPS 20, 50, 100 uM iNOS, TLR4, MyD88, TRAF6 ↓; Activation NF-κB signaling pathway; (p65, IkB ↓) [46]
RAW264.7 Palmitic acid 200 uM TNF-α, IFN-γ, IL-1β, IL-6, MCP1 ↓; Gpr94, XBP-1, Edem1, Herp, CHOP ↓; ROS generation ↓ [51]
HepG2 Oleic acid 20, 40 uM Hepatic triglyceride ↓; MDA, PPARα, SREBP-1, COX-2, LC3-B ↓; SOD activity ↑ [47]
hPDLSCs TNF-α 10 umol/L Osteogenic differentiation; (ALP, RUNX2) ↑; mTOR ↑ [48]
LPS, lipopolysaccharide; TNF-α, tumor necrosis factor-alpha; IL, interleukin; ↑, increased; ↓, decreased; iNOS, inducible nitric oxide synthase; COX, 
cyclooxygenase; MAPK, mitogen-activated protein kinase; NF-κB, nuclear factor kappa B; TLR, Toll-like receptor; MyD88, myeloid differentiation primary 
response 88; TRAF6, tumor necrosis factor receptor-associated factor 6; IκB, inhibitor of nuclear factor kappa B; IFN-γ, interferon-gamma; MCP1, monocyte 
chemoattractant protein-1; Gpr94, glucose-regulated protein 94; XBP-1, X-Box binding protein 1. Edem1, ER degradation-enhancing alpha-mannosidase-like 
protein 1; Herp, homocysteine-responsive stress protein; CHOP, CCAAT-enhancer-binding protein homologous protein; ROS, reactive oxygen species; MDA, 
3,4-methylenedioxyamphetamine; PPARα, peroxisome proliferator-activated receptor alpha; SREBP-1, sterol regulatory element binding protein 1; SOD, 
superoxide dismutase; ALP, alkaline phosphatase; RUNX2, runt-related transcription factor 2; mTOR, mammalian target of rapamycin.



Rutin has demonstrated anti-inflammatory activity in both in vivo and in vitro models. Rutin 
prevents inflammatory responses by regulating pro-inflammatory cytokines, iNOS, and 
COX-2 via the Toll-like receptor 4–myeloid differentiation primary response 88–TNF receptor 
associated factor 6–NF-κB pathway in LPS-induced mouse macrophages [46]. Furthermore, 
rutin attenuates palmitic acid-induced inflammation and oxidative stress in macrophages 
while enhancing antioxidant enzyme activity in liver cancer cells exposed to oleic acid [47]. 
In human periodontal ligament stem cells, rutin inhibits the mammalian target of rapamycin 
signaling pathway, protecting against TNF-α–induced abnormal osteogenic differentiation 
[48]. The imbalance of pro- and anti-inflammatory cytokines is a key feature of inflammatory 
diseases [52]; rutin maintains anti-inflammatory cytokine levels while suppressing pro-
inflammatory cytokine expression. Rutin may suppress pro-inflammatory cytokine 
production by inhibiting NF-κB activation.

Our experimental settings may have significant limitations when considering the absorption 
and distribution of rutin in the gut. Rutin absorption through the gastrointestinal tract 
requires acid hydrolysis catalyzed by α-rhamnosidase and β-glucosidase enzymes of 
intestinal microorganisms [53]. Rutin, after undergoing acid hydrolysis, is converted into 
3,4-dihydroxyphenylacetic acid, 3,4-dihydroxytoluene, m-hydroxyphenylacetic acid, 3-methoxy-
4-hydroxyphenylacetic acid (homovanillic acid), and 3,5,7,3′,5′-pentahydroxyflavonol 
(quercetin). The hydrolysis process is necessary for the formation of these metabolites, which 
subsequently leads to reduced intestinal absorption and bioavailability of rutin compared to 
quercetin. [49]. Therefore, rutin may be metabolized into other compounds when administered 
to canine [54]. Addressing these issues of absorption and distribution requires further research 
to apply our findings practically, utilizing various potential metabolites of rutin.

SUPPLEMENTARY MATERIALS

Supplementary Table 1
Antibodies used for western blot analysis

Supplementary Table 2
Primer sequences for quantitative reverse transcription polymerase chain reaction

Supplementary Fig. 1
The effect of rutin on DH82 cell viability. After 24 h of rutin treatment (0–100 μM), the cell 
viability is measured using the MTT assay. Values are expressed as the mean ± SD. The ratios 
relative to the control are represented as percentages.
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