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Abstract: Oxidative dissolution of stibnite (Sb2S3), one of the most prevalent geochemical processes
for antimony (Sb) release, can be promoted by Sb-oxidizing microbes, which were studied under
alkaline and neutral conditions but rarely under acidic conditions. This work is dedicated to un-
raveling the enhancement mechanism of stibnite dissolution by typical acidophile Acidithiobacillus
ferrooxidans under extremely acidic conditions. The results of solution behavior showed that the
dissolution of Sb2S3 was significantly enhanced by A. ferrooxidans, with lower pH and higher redox
potential values and higher [Sb(III)] and [Sb(V)] than the sterile control. The surface morphology
results showed that the cells adsorbed onto the mineral surface and formed biofilms. Much more
filamentous secondary minerals were formed for the case with A. ferrooxidans. Further mineral phase
compositions and Sb/S speciation transformation analyses showed that more secondary products
Sb2O3/SbO2

−, Sb2O5/SbO3
−, SO4

2−, as well as intermediates, such as S0, S2O3
2− were formed for

the biotic case, indicating that the dissolution of Sb2S3 and the Sb/S speciation transformation was
promoted by A. ferrooxidans. These results were further clarified by the comparative transcriptome
analysis. This work demonstrated that through the interaction with Sb2S3, A. ferrooxidans promotes
S/Sb oxidation, so as to enhance S/Sb transformation and thus the dissolution of Sb2S3.

Keywords: stibnite oxidative dissolution; Sb/S speciation transformation; Acidithiobacillus ferrooxidans

1. Introduction

Antimony (Sb) is widely used as a metal additive in brake pads, alloys, semiconductors
and flame retardants [1,2]. The extensive demand for antimony has promoted the massive
mining of antimony ore, leaving behind a large number of abandoned mines and waste
tailings, the main sources for the serious Sb pollution around Sb mines areas [1,3,4]. It is
known that stibnite (Sb2S3) is the main form of Sb in the abandoned mines and waste tailings
as well as Sb ores, and the oxidative dissolution of Sb2S3 may be the most predominant
cause for serious Sb pollution, the mechanism, however, remains with little known as of
yet [5]. It is thus, of great significance to further study and unravel the oxidative dissolution
process of stibnite.

Under abiotic conditions, Sb2S3 can be oxidized slowly by dissolved oxygen possibly
by two typical stages, i.e., the dissolution of Sb2S3 to form aqueous Sb(OH)3 and H2S
(Equation (1)), and the oxidations of Sb(OH)3 and H2S by dissolved oxygen to form
Sb(OH)5/Sb(OH)6

− and sulfate, respectively (Equations (2) and (3)) [6,7]. It was reported
that Sb2S3 oxidation can be significantly promoted under the action of Sb-oxidizing bacteria
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in nature environments [4,8]. For example, Li et al. isolated six Sb-oxidizing bacteria from
Xikuangshan, Hunan, China, the largest Sb ores area in the world, and found that the
strain with the highest Sb-oxidation activity could aerobically oxidize 50 mmol/L Sb(III) in
3 days [9]. Nguyen et al. isolated two Sb-oxidizing strains and found they can aerobically
oxidize 500 mmol/L Sb(III) within 24 h, and one strain can even anaerobically oxidize Sb(III)
with nitrate as the electron acceptor [10]. Xiang et al. demonstrated that the Sb-oxidizing
bacteria AS-1 significantly enhanced the oxidations of Sb and S (Equations (4) and (5)),
resulting in enhancement of the mobilization of Sb [4]. Up to date, most of the relevant
studies were under alkaline, neutral and weak acidic conditions [4,5,11], but rarely under
extremely acidic conditions (pH < 3) [1,12].

Sb2S3 (s) + 6H2O (l) 
 2Sb(OH)3 (aq) + 3H2S (aq) (1)

2Sb(OH)3 + O2 + 2H2O→ 2Sb(OH)5 (2)

H2S + 2O2 → H2SO4 (3)

Sb2S3 (s) + 6O2 (aq) + 6H2O (l) AS−1−−−→ 2Sb(OH)3 (aq) + 3H2SO4 (aq) (4)

Sb(OH)3 (aq) + 3H2O (l) AS−1−−−→ Sb(OH)3
− (aq) + 3H+ (aq) + 2e− (5)

Of note, is that extremely acidic environments commonly occur for Sb2S3 when it
coexists with other sulfide minerals typically pyrite and arsenopyrite and they are oxidized
by acidophiles [1,13]. Torma et al. reported that Sb2S3 can be oxidized by Acidithiobacil-
lus ferrooxidans, the most typical acidophile with a variety of sulfur oxidation pathways
(Equations (6)–(8)) [12]. Nguyen et al., however, found that Sb in the contaminated sedi-
ment was difficult to solubilize by A. ferrooxidans and the extraction efficiency of Sb was
the lowest in comparison to those of Cr, Cu, Mn, Ni, and Zn [14]. The reason for that may
be the speciation transformation of Sb occurring during the dissolution process of Sb2S3,
i.e., the soluble Sb was transformed into the insoluble Sb, which is unclear as of yet.

2S0 + 3O2 + 2H2O
A. f−−→ 2SO4

2− + 4H+ (6)

S2O3
2− A. f−−→ S0 + SO3

2− (7)

SO3
2− + H2O

A. f−−→ SO4
2− + 2H+ + 2e− (8)

Therefore, in this work, we focused on the dissolution process of Sb2S3 mediated by
A. ferrooxidans under extremely acidic conditions, with a systematic investigation of the Sb
and S speciation transformation by Sb and S X-ray photoelectron spectroscopy (XPS) and
X-ray absorption near-edge structure (XANES) spectroscopy, besides the determination of
the solution parameters, surface morphology and phase composition of the solid residues.
We found that under the action of A. ferrooxidans, the content of aqueous Sb(OH)3 increased
significantly, and much of the Sb-oxides (Sb2O3/SbO2

−, Sb2O5/SbO3
−) and secondary

sulfur products (S0, S2O3
2−, SO3

2−, SO4
2−) appeared, indicating that by promoting the

Sb/S oxidation, A. ferrooxidans enhanced the oxidative dissolution process of Sb2S3. These
findings could be of value for deeply understanding Sb occurrence and fate during Sb2S3
dissolution and providing insights into prevention and control of Sb pollution in acidic Sb
mine areas and tailings.

2. Results
2.1. Physicochemical Parameters

The physicochemical parameters of the solution for the case with A. ferrooxidans and
sterile control were in terms of pH, redox potential (ORP), [SO4

2−], [Sb(III)], [Sb(V)] and
[SbT] (the concentration of total dissolved Sb), which are shown in Figure 1a,b. The pH
values for both cases gradually decreased, and the pH for the case with A. ferrooxidans was
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significantly lower than that in the sterile control (Figure 1a). The ORP values for the sterile
control gradually decreased from 335 mV to 274 mV and then increased to 325 mV, while
for the case with A. ferrooxidans, the ORP values changed slightly on days 0–13, increased
sharply by ~100 mV to ~460 mV from day 13 to day 18 and then slightly decreased
(Figure 1a). The [SO4

2−] gradually increased to ~4.0 g/L for both cases and then remained
basically steady, but it took four days more to reach the steady stage for the sterile control
compared to A. ferrooxidans (Figure 1b). The [SbT] gradually increased during the whole
experiment for both cases, while it was higher for the case with A. ferrooxidans than in the
sterile control, and the former was approximately two times higher than the latter at the
late stage of the experiment (Figure 1b). The concentrations of different forms of dissolved
antimony, i.e., [Sb(III)] and [Sb(V)], show a similar trend to [SbT] for both cases. The [Sb(III)]
and [Sb(V)] had significant differences on days 0–30 for both cases, while there was only a
small [Sb(V)] on days 0–12 for the sterile control (Figure 1b).
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Figure 1. Changes in the pH and ORP values (a) and the concentrations of Sb(III), Sb(V), SbT and
SO4

2− (b) in the solution during dissolution of stibnite in the presence or absence of A. ferrooxidans.

2.2. Surface Morphology of Solid Residues

The surface morphology of solid residues for the case with A. ferrooxidans and the
sterile control are shown in Figure 2a–f, respectively. During the dissolution of Sb2S3 in
the presence of A. ferrooxidans, the bacteria would absorb on the surface of the mineral
and form many corrosion pits (Figure 2a). At the same time, there were many filamentous
secondary minerals distributed in the culture system, and the EDS results showed that the
main elements of the secondary minerals were Sb, S and O (Figure 2b,c). Meanwhile, the
attached bacteria on the mineral surface wrapped the solid to generate biofilms, which were
bright blue in the fluorescence microscope (FM) image (Figure 2d). Of note, different from
the surface of the mineral with the adsorbed bacterial cells (Figure 2a,d), the secondary
minerals formed for the case with A. ferrooxidans contained no bacterial cells, because no
significant N and P elements were detected in the secondary minerals (Figure 2c) and no
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blue was observed after DAPI staining by FM observation (not shown). In contrast, no
significant changes occurred on the surface of Sb2S3, and the main composition of minerals
remained basically steady for the sterile control (Figure 2e,f).
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Figure 2. SEM-EDS and FM images of the solid for the group with A. ferrooxidans (a–d) and the sterile
group (e,f) on day 30. Images (a,b) represent surface morphology of the solid for the group in present
of A. ferrooxidans, where the dash arrow and circle in image (a) shows the attached bacterial cells and
corrosion pits, respectively, and dash oval shows the filamentous secondary minerals. Image (c) is the
elemental composition of the selected area in image (b). Image (d) represents the biofilm on the solid
surface by fluorescence microscopic analysis after 4′,6-diamidino-2-phenylindole (DAPI) staining
with DNA, where the square in the lower left corner shows the non-stained image of the same solid
particle under the optical microscopy. Images (e,f) show the surface morphology of the solid for the
group in the sterile experiment and the elemental composition of the selected area, respectively.

2.3. Phase and Composition of Solid Residues

The XRD patterns of solid residues for the cases with A. ferrooxidans and the sterile
control are presented in Figure 3a. The results show that the phase types of the solid residues
remained unchanged for both cases in comparison with pristine stibnite, comprising Sb2S3,
quartz, Sb2O3 and calcite, which is consistent with Wu et al. [15]. However, the diffraction
signal at 27◦ associated with Sb2O3 became stronger for the case with A. ferrooxidans, but
there was no difference for the case of the sterile control, indicating that more Sb2O3 was
generated [16].

The FT-IR spectra (Figure 3b) show that the bands at 1056, 1106 and 1159 cm−1 assigned
to the C-O and C-O-C vibrations of polysaccharides became apparently broader for the case
with A. ferrooxidans than for the sterile control, while the intensities of the bands at 1878,
1793, 1687, 1525 and 1409 cm−1 assigned to the C=O and N-H vibrations of proteins were
apparently higher for the case with A. ferrooxidans [17–22], indicating that the bacterial cells
were adsorbed on the mineral surface, which is consistent with the FM results (Figure 2d).
Notably, strong bands appeared in the range from 3000 cm−1 to 4000 cm−1 associated with
O-H, Sb-S and Sb-O vibrations [23], indicating the enhancement of Sb2S3 dissolution by
A. ferrooxidans and the secondary products of antimony oxide(s).

The Raman spectra of the reference samples show significant differences in the inten-
sity and positions of pristine Sb2S3 mineral and other Sb and/or S-containing compounds
(Figure S1), where the bands at 154, 200, 630, 720, and 995 cm−1 could be signed as the char-
acteristic peaks of S0, Sb2O5, SbO3

−, Sb2O3, and SO4
2−, respectively [24–27]. By comparing

the Raman spectra of solid residues for the case with A. ferrooxidans and the sterile control
(Figure 4) with the reference spectra, strong and broad bands at 154 and 200 associated with
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S0 and Sb2O5 appeared, respectively, indicating the oxidation of Sb2S3 and the formation
of S0 and Sb2O5. The new bands at 216 and 720 cm−1 assigned to Sb2O3 [28,29] were
strongest for the case with A. ferrooxidans at day 30, indicating the formation of Sb2O3 due
to the dissolution of Sb2S3 by A. ferrooxidans. Notably, a new band at 630 cm−1 assigned to
sodium antimonate (NaSbO3) [30] appeared for the case with A. ferrooxidans rather than the
sterile control, indicating of the bio-oxidation of Sb(III) by A. ferrooxidans, the formation of
Sb2O5-Sb(V) species and the promotion of Sb2S3 dissolution by A. ferrooxidans. In addition,
a new broad band at 995 cm−1 assigned to SO4

2− species appeared at day 30 for the case
with A. ferrooxidans [31], indicating that the S2− was oxidized to SO4

2−.
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2.4. S and Sb Speciation Transformation

The S 2p(3/2) XPS spectra and the fitted results of the solid residues for the case with
A. ferrooxidans at days 3, 18 and 30 and the sterile control at days 3 and 30 are shown in
Figure 5a and Table S1, respectively. The results in Figure 5a shows that the surface sulfur
species comprised S2− (161.35 eV), S− (eV), S0 (164.20 eV), SO3

2− (166.50 eV), and SO4
2−

(168.50 eV) [32] for the case with A. ferrooxidans. The fitted results (Table S1) further show
that during bio-oxidation, the content of S2− species gradually decreased from 94.8% to
50.0%, and the content of SO4

2− species gradually increased from 5.2% to 34.3%. Meanwhile,
11.4% of S−, 2.9% of S0 and 1.4% of SO3

2− were detected, indicating that surface S2− of
Sb2S3 was oxidized to SO4

2− via S−, S0 and SO3
2− by A. ferrooxidans. In contrast, only S2−

and SO4
2− species were detected in the sterile control, and the content of SO4

2− species was
apparently lower than that in the Bio group, indicating that A. ferrooxidans could notably
promote the oxidization of sulfur in stibnite.

The S K-edge XANES spectra of the reference samples (Figure 5b) show different peak
intensities and positions, which can be used to differentiate the S speciation composition of
the unknown sample. It can be seen from Figure 5c that for both the case of A. ferrooxidans
and the sterile control, the intensity of the peak at 2483.0 eV gradually increased, indicating
the formation of SO4

2−, which is consistent with the S 2p(3/2) XPS results. According
to a previous study [26], the linear combination fitting of the unknown spectra with the
reference spectra is suitable to analyze the content of S speciation compositions because
of high sensitivity, and the fitted results are shown in Figure 5c. The fitted results of the
S K-edge XANES spectra show that Sb2S3, NaSO3, Na2S2O3, S0 and Na2SO4 are detected
for both the cases with A. ferrooxidans and in the sterile control, and the content of S2−

and SO4
2− species had similar trends to the XPS results, further demonstrating that in

the presence of A. ferrooxidans, the surface sulfur was oxidized and transformed faster
during the bio-oxidation of Sb2S3. Notably, stibnite, as an acid insoluble mineral, is mainly
dissolved by thiosulfate, and the formation of thiosulfate is also found.
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According to the Sb 3d(3/2) and 3d(5/2) XPS spectra (Figure 6a), the surface Sb species
comprised Sb2S3 (529.5 eV; 539.2 eV), Sb2O3 (532.0 eV; 539.6 eV), and Sb2O5 (532.1 eV;
540.2 eV) and ranged from an approximate peak O 1s (532.6 eV) [33]. The fitted results
(Table S2) further show that for the case with A. ferrooxidans, the content of Sb2S3 species
gradually decreased from 75.1% to 35.9%, and the content of Sb2O3 and Sb2O5 species
gradually increased to 22.1% and 25.4%, respectively. In contrast, for the sterile control,
14.2% Sb2O3 and 3.4% Sb2O5 were detected.

The Sb L1-edge XANES spectra of the different referenced samples show different peak
positions (Figure 6b), where the max adsorption bands for Sb2S3, Sb2O3 and Sb2O5/NaSbO3
were 4.706, 4.707 and 4.711 keV, respectively. For the XANES spectra of the case with
A. ferrooxidans and the sterile control, apparent adsorption bands at 4.706, 4.707 and 4.711 keV
were detected, indicating the formation of Sb2O3 and Sb2O5/NaSbO3. The fitted results
(Figure 6c) further show that the Sb species for the case with A. ferrooxidans were mainly
composed of 76.8–73.8% Sb2S3 and 20.9–26.2% Sb2O3 on days 3 and 18, while it became
59.1 Sb2S3, 30.2% Sb2O3 and 9.7% Sb2O5, indicating the oxidation of Sb2O3 to Sb2O5. For the
sterile control, the Sb species Sb2O3 and Sb2O5 were also detected on day 30.
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days 3 and 30 and for the case with A. ferrooxidans on days 3, 18, and 30, respectively. The pie charts
in figure (c) represent the percentage composition of Sb species of each XANES spectrum.

2.5. Comparative Transcriptome Analysis

The transcriptomes of bacterial cells grown on stibnite and S0 were sequenced and
analyzed, which is of value to clarify the enhancement mechanism of the formation of
S and Sb-containing intermediates during stibnite dissolution by A. ferrooxidans at the
transcriptome level. Figure 7 shows the statistical diagram of the number of the differential
expression genes between the cells grown on stibnite and S0, indicating that the expression
of most genes for the bacterial cells grown on stibnite were significantly inhibited in com-
parison with that on S0, which is due to the high toxicity of dissolved Sb(III) and Sb(V) to
the bacterial cells during the dissolution of stibnite [11,23]. Of note, there are some genes
significantly up-regulated for the cells grown on stibnite than S0 (as presented in Table S3),
i.e., AFE_1575 (encoding type I restriction enzyme, R subunit), AFE_1577 (encoding type
I restriction enzyme M protein), AFE_2393 (encoding transposase), AFE_3223 (encod-
ing NAD(P)H dehydrogenase, quinone), AFE_1654 (encoding formate dehydrogenase
(FdhD) protein), AFE_1652 (encoding oxidoreductase alpha subunit), AFE_1651 (encoding
3-hydroxyisobutyrate dehydrogenase family protein), AFE_1589 (encoding DNA-damage-
inducible protein), AFE_2312 (encoding Major facilitator superfamily (MFS) transporter),
AFE_1636 (encoding hypothetical protein). These up-regulated genes are mainly annotated
as the function of metabolic process, cellular process, binding, catalytic activity, trans-
porter activity, molecular carrier activity and cellular anatomical entity in the GO (gene
ontology) level 2, indicating these processes are mostly related to stibnite dissolution by
A. ferrooxidans.
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3. Discussion
3.1. The Dissolution and Sb/S Intermediates Formation

Previous laboratory experiments have shown that some bacteria in neutral and alkaline
environments can accelerate Sb oxidation, reduction and methylation [1,34]. In the present
study, we experimentally proved that A. ferrooxidans can grow on Sb2S3 and significantly
promote the release of Sb and S of Sb2S3 and the subsequent oxidation processes in an
extremely acidic environment.

The dissolution process of Sb2S3 is a dissolution equilibrium process, and the dissolu-
tion of minerals in the sterile control group is very slow. However, after the addition of
A. ferrooxidans, the concentrations of H+, soluble Sb(III) and Sb(V) in the solution increased
significantly (Figure 1). During the dissolution of Sb2S3, massive amounts of Sb- and
S-containing intermediates were released, where the oxidation of S0, and ultimately re-
duced sulfur intermediates to sulfuric acid by A. ferrooxidans is one main factor affecting the
change in pH [21,35] and the increase in cell density (Figure S2), resulting in a decrease in
the pH of the solution (Figure 1a). On the other hand, the attached bacterial cells, evidenced
by the FM observation (Figure 2d) and the FT-IR spectroscopy (Figure 3b), can fall off into
the culture with the maturation and abscission of biofilms [36], which also results in an
increase in the bacterial density of the solution. According to Multani et al., high ORP in
the environment promoted Sb(III) oxidation to Sb(V), which could be the main reason for
the higher [Sb(V)] for the case with A. ferrooxidans than the sterile control (Figure 1b) [3].

The morphology of the intermediates formed in the presence and absence of A. ferroox-
idans is significantly different, where many filamentous secondary minerals are distributed
in the culture system in the presence of A. ferrooxidans, while little secondary mineral is
formed on the mineral surface in the absence of A. ferrooxidans. These intermediates are
mainly comprised of S0, S2O3

2−, SO4
2−, Sb2O3/SbO2

−, Sb2O5/SbO3
− (Figures 5 and 6).

According to a previous study, the S2O3
2− was formed due to the oxidation of Sb2S3 by the
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thiosulfate pathway, and then oxidized to other S species according to Equations (6)–(8) [12].
Both the solid phases Sb(III)-Sb2O3 and Sb(V)-Sb2O5 and the dissolved phases Sb(III)-
SbO2

− and Sb(V)-SbO3
− were detected, which is probably because the occurrence of

Sb2O3/SbO2
− or Sb2O5/SbO3

− is a dynamic balance process, depending on the pH and
ORP of the solution [1]. Of note, during bio-oxidation, the decrease of the content of
S2− species and the increase of the content of SO4

2− and Sb2O5 species were significantly
higher than the sterile control experiment (Figures 5 and 6), indicating that A. ferrooxidans
significantly promoted the dissolution of Sb2S3 by enhancing Sb/S transformation.

3.2. The Differential Expression Genes Related to Sb2S3 Bio-Oxidation

Though most of the genes are down-regulated for the bacterial cells grown on stibnite,
the bacterial sulfur oxidation activity is still existing evidenced by the expression of the
relevant genes, contributing to the rapid formation of reduced sulfur species and the
significant increase of [SO4

2−] and decrease of pH in the solution.
The genes with significant up-regulation for the bacterial cells grown on stibnite in

comparison with that on S0 are mostly related to stibnite dissolution by A. ferrooxidans. Ac-
cording to previous studies, AFE_1652 and AFE_1654 belong to the cluster that involves the
oxidation of formate, which is a basic biochemical process of A. ferrooxidans, indicates that
the oxidation of formate is probably related to the bio-oxidation stibnite [37,38]. The gene
AFE_3223 is responsible for the biosynthesis of ubiquinone and other terpenoid-quinones,
which are electron carriers in electron transfer pathways. According to previous studies,
there are two electron transfer pathways proposed in A. ferrooxidans for the oxidation of
ferrous, by which the one is the “downhill electron pathway” through c-cytochrome Cyc1 to
aa3 cytochrome oxidase, and the other is “uphill electron pathway” through c-cytochrome
CycA1–> bc1 complex–>ubiquinone pool–> NAD(P) [38–40]. The latter pathway has been
proved to be related to the Arsenic (III) biotransformation via A. ferrooxidans [41], the
up-regulation of AFE_3223 indicates the probable contribution of this pathway to the elec-
tron transfer in the biotransformation of Sb (III) in the presence of trace iron. In addition,
AFE_2312 is very similar to xylose and galactose proton symporters, which is proposed
to be related to the MFS transporter superfamily contributing to the carbohydrate trans-
porter of the outer membrane [38,42], thus the up-regulation of this gene indicated that the
extracellular substances probably took a key role in the stibnite dissolution process and
contributes to the biofilm formation of A. ferrooxidans on the stibnite surface.

3.3. Enhancement Mechanism of Stibnite Dissolution Mediated by A. ferrooxidans

It can be derived from the above discussion that A. ferrooxidans promotes the disso-
lution of Sb2S3 most probably by the three following coherent aspects: (i) A. ferrooxidans
adsorbed on the surface of Sb2S3 with the up-regulation of genes encoding the MFS trans-
porter, resulting in the formation of biofilms and many corroded pits on the mineral
surface with obvious changes in the mineral surface structure and chemical speciation,
so as to strengthen the cell-mineral interaction and the dissolution process of minerals;
(ii) A. ferrooxidans enhanced S oxidation due to the bacterial sulfur oxidation activities,
resulting in enhancement of S transformation and cell growth, producing more sulfuric
acid to reduce the pH and further enhance the oxidation of Sb(OH)3 with Sb transforma-
tion forming a large number of Sb2O3/SbO2

−, Sb2O5/SbO3
−, and thus accelerating the

dissolution of Sb2S3; (iii) the presence of trace iron enhances the uphill electron transfer
to NAD(P), accelerating the transformation of Sb(III) by A. ferrooxidans. Moreover, the
pertinent enhancement mechanism can be shown schematically in Figure 8. All these
findings are of significance to understanding the biogeochemistry of Sb at acidic mining
areas and tailings.
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Figure 8. The acidic dissolution mechanisms of Sb2S3 under abiotic condition (a) and biotic condition
in the presence of A. ferrooxidans (b), accompanied with comparison of the dissolution effect (SEM
graphs). Where the heavy lines in figure (b) were used to demonstrate the enhancement effects of the
A. ferrooxidans in comparison with the dissolution effects in the abiotic case in figure (a).

4. Materials and Methods
4.1. Mineral Sample

The original stibnite sample used in this study was from Xikuangshan, Hunan, China.
The mineral composition was determined by X-ray fluorescence (XRF, RIGAKU, ZSX
Priums, Tokyo, Japan). The X-ray diffraction (XRD) patterns (Figure S3) show that the
original Sb2S3 mainly includes Sb2S3, Sb2O3, SiO2 and CaCO3 phases, and the XRF results
(Table S4) show that its composition mainly includes Sb, S and Si. The original Sb2S3
mineral was dried, ground, passed through −200 mesh screens and retained by −400 mesh
screens to obtain particles with sizes of 38 to 75 µm.

4.2. Bacterial Strain and Culture Condition

The bacterial strain A. ferrooxidans ATCC 23,270 (Accession number of 16S rRNA
gene in GenBank: NR_041888) used in this study was provided by the Key Laboratory of
Biometallurgy of Ministry of Education of China, Changsha, China. The basal medium
for cultivation of A. ferrooxidans comprised the following ingredients (in g/L): (NH4)2SO4,
3.0; MgSO4, 0.5; K2HPO4, 0.5; KCl, 0.1; Ca(NO3)2, 0.01, with an initial pH of 2.5, which is
adjusted by 1 M H2SO4.

4.3. Dissolution Experiment

Prior to the biodissolution experiment, the strain was adapted to the energy substrate
Sb2S3 by cultivation for several generations with the addition of 10 g/L Sb2S3 to the basal
medium. The biodissolution experiment of Sb2S3 by A. ferrooxidans was carried out in
250 mL Erlen–Meyer flasks containing 100 mL basal medium and 1 g stibnite (referred to as
the Bio group). In contrast, the experiment without A. ferrooxidans was taken as the sterile
control group (referred to as the Abio group). The initial cell density was 6 × 107 cells/mL.
Cultivation of the Bio and Abio groups was performed in an incubator shaker (ZQZY-C8)
at 30 ◦C and 180 r/min.

4.4. Analyses Methods

For the culture medium, the pH and redox potential (ORP) values, the cell densi-
ties, and the concentrations of SO4

2− and Sb were determined at 3–5 day intervals dur-
ing cultivation. The pH of the solution was measured with a pH meter (PHS-3C) by
standing the culture for 3–5 min and placing the pH electrode in the solution at 30 ◦C.
Similarly, the ORP was measured with a platinum (Pt) electrode using a calomel elec-
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trode (Ag/AgCl) as the reference electrode. The cell density was directly counted by
a light microscope (Olympus, Center Valley, PA, USA) with a blood corpuscle counter
(XB-K-25). For the [SO4

2−], [Sb(III)] and [Sb(V)], 1 mL of the solution was collected, cen-
trifuged and preserved at −80 ◦C until analysis. The [SO4

2−] in the solutions was analyzed
by using inductively coupled plasma-atomic emission spectroscopy (ICP–OES) (IRIS In-
trepid II XSP, Thermo Fisher, Waltham, MA, USA), and the [Sb(III)] was measured by
hydride generation (PS Analytical Ltd., Kent, UK) -inductively coupled plasma-atomic
emission spectrometry (ICP-AES) (Beijing Haiguang, Beijing, China). Hydride was pro-
duced when 2% KBH4 (prepared in 0.5% KOH) and 5% HCl were mixed in reducing
reagents (5% ascorbic acid + 5% thiourea), and 6 mol/L HCl was added to the solution for
the determination of [SbT] [43]. The [Sb(V)] was obtained by subtracting the [Sb(III)] from
the [SbT]. The above data were analyzed statistically by Excel 2015 and SPSS 20.0 software
and are presented in terms of the mean value with the standard deviation (SD) as the error
bar from triplicate cultures (n = 3).

For the solid residues, the morphology and composition were analyzed by scanning
electron microscopy (SEM) coupled with an energy dispersive spectroscopy (EDS) facility
(Oxford AZtecLive Ultim Max 20, Abingdon, UK). Briefly, the samples were first prefixed
with 25% formaldehyde overnight, dehydrated using a graded ethanol series, coated with
gold and introduced into the SEM chamber for observation. The adsorption of bacterial
cells on the mineral surface was observed under a fluorescence microscope (FM) (Nexcope
NE900, Ningbo, China) with an intelligent mercury lamp power box (NFP-1N, Ningbo,
China) by staining with 4′,6-diamidino-2-phenylindole (DAPI).

The mineral phase and composition were measured by XRD, FT-IR and Raman spec-
troscopy. Before analysis, the solid samples taken out during cultivation were immediately
frozen with liquid N2, and then dried under vacuum conditions. The Fourier transform
infrared (FT-IR) spectra were collected in the range of 4000–500 cm−1 by an FT-IR spec-
trometer (Nexus 670, Nicolet, Madison, WI, USA). Raman spectra were recorded at room
temperature in the range of 200–4000 cm−1 by a Raman spectrometer (Thermo Fisher, Sun-
nyvale, CA, USA). The Sb and S speciation was characterized by Sb and S XPS and XANES
spectroscopy. Briefly, XPS spectra were collected by an X-ray photoelectron spectrometer
(Thermo Fisher Scientific, East Grinstead, UK) with a voltage and current on X-rays of
12 kV and 6 mA, respectively, and all photoelectron binding energies (BEs) were referenced
to the C1 s adventitious contamination peak set at 284.5 eV BE. The Sb L-edge and S K-edge
XANES spectra were collected at beamline 4B7A at the Beijing Synchrotron Radiation
Facility (BSRF), Beijing, China. The S K-edge XANES spectra were recorded in fluorescence
mode from 11,820 eV to 11,980 eV at a step of 0.2 eV and a dwell time of 2 s at each energy
level. The Sb L1-edge XANES spectra were recorded in total electron yield (TEY) mode
from 4660 eV to 4760 eV at a step of 0.2 eV. Athena software was used for the normalization
of XANES spectra and linear combination fitting (LCF) analysis [44].

For the comparative transcriptome analysis, the bacterial cells were grown on the
energy substrates S0, or stibnite, and were collected at the mid-post logarithmic growth
phase. The cell samples for the transcriptome analysis were triplicate (n = 3) for each case.
The transcriptome was sequenced with an Illumina Hiseq 2500 platform (Illumina, San
Diego, CA, USA) by Magigene Co. Ltd., Guangzhou, China. Before sequencing, the total
RNA was extracted by Trizol, and then the RNA library was constructed by NEBNextő
Ultra II Directional RNA Library Prep Kit for Illumina after removing the ribosomal RNA.
The differential expression of genes (DEGs) of A. ferrooxidans grown on S0 and stibnite were
analyzed according to previous studies [45–47].

5. Conclusions

The dissolution of Sb2S3 can be enhanced in presence of A. ferrooxidans with an obvious
decrease in pH and increase in cell density, soluble Sb/S concentration and ORP values,
formation of biofilm on the mineral surface with many corroded pits and producing
filamentous secondary minerals distributing in the culture system. Comprehensive FT-IR,
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XRD, XPS, XANES and Raman spectroscopic analyses showed that the main S and Sb
speciation in the culture system is S0, S2O3

2−, SO4
2− and Sb(OH)3, Sb(OH)5, Sb2O3/SbO2

−,
Sb2O5/SbO3

−. It can be inferred that A. ferrooxidans accelerated the oxidation of S getting
more energy to enhance the cell growth and thus, strengthen the cell-mineral interaction and
S transformation; produce more sulfuric acid to promote the oxidation of Sb(OH)3 and thus,
strengthen Sb transformation. The up-regulated genes related to uphill electron transfer
to NAD(P) also contribute to accelerating the transformation of Sb (III) by A. ferrooxidans.
All the above promote the dissolution of Sb2S3. All these findings are of significance to
understanding the biogeochemistry of Sb at acidic mining areas and tailings.
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