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Abstract

Background: A significant proportion of individuals with diabetes or impaired glucose tolerance have fasting plasma
glucose less than 6.1 mmol/L and so are not identified with fasting plasma glucose measurements. In this study, we sought
to evaluate the utility of plasma lipids to improve on fasting plasma glucose and other standard risk factors for the
identification of type 2 diabetes or those at increased risk (impaired glucose tolerance).

Methods and Findings: Our diabetes risk classification model was trained and cross-validated on a cohort 76 individuals
with undiagnosed diabetes or impaired glucose tolerance and 170 gender and body mass index matched individuals with
normal glucose tolerance, all with fasting plasma glucose less than 6.1 mmol/L. The inclusion of 21 individual plasma lipid
species to triglycerides and HbA1c as predictors in the diabetes risk classification model resulted in a statistically significant
gain in area under the receiver operator characteristic curve of 0.049 (p,0.001) and a net reclassification improvement of
10.5% (p,0.001). The gain in area under the curve and net reclassification improvement were subsequently validated on a
separate cohort of 485 subjects.

Conclusions: Plasma lipid species can improve the performance of classification models based on standard lipid and non-
lipid risk factors.
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Introduction

Global prevalence of diabetes mellitus is rising as a result of

population ageing, changes in diet, reduced physical activity and

rising obesity prevalence [1,2]. In 2010, an estimated 285 million

people worldwide had diabetes mellitus, 90% of whom had type 2

diabetes mellitus [1]. This figure is projected to rise to 439 million

by 2030 [3].

In Australia, Magliano et al. [4] conservatively estimate at least 2

million adults with type 2 diabetes by 2025, and close to 3.5

million by 2033 [5]. This presents a burgeoning burden on health

service resources.

Early intervention through lifestyle changes have been reported

to have a positive effect on reducing the progression of those at risk

of type 2 diabetes [6]. Early intervention through pharmacological

treatment of impaired glucose tolerance (IGT) individuals at high

risk of type 2 diabetes with oral antidiabetic agents that improve

insulin sensitivity and preserve b-cell function have also been

shown to reduce the progression of IGT to type 2 diabetes by 50–

70% [7].

Type 2 diabetes risk prediction models can assist the decision-

making process regarding the clinical management of a patient in

terms of identifying a need for early intervention. The prediction

models are typically multivariate, combining several disease risk

factors to quantify a patient’s risk disposition to an outcome over a

specified span of time in the future. On the basis of the risk score

computed by the model, healthcare interventions or lifestyle

changes can be recommended and targeted towards those at an

increased risk of developing a disease or those likely to have an

adverse clinical outcome such as patients with established clinical

atherosclerosis [8,9]. Noble et al. [10] performed a comprehensive

review of 94 type 2 diabetes risk prediction models. Their findings

summarised the most common components of type 2 diabetes risk

prediction models to include non-lipid risk factors such as age, a

measure of obesity such as body mass index (BMI), waist

circumference or waist-to-hip ratio, gender, family history of

diabetes, a measure of blood pressure such as systolic blood

pressure, diastolic blood pressure or hypertension and fasting

plasma glucose (FPG), two-hour postprandial plasma glucose or

glycated haemoglobin (HbA1c). The common lipid risk factors

incorporated into type 2 diabetes risk prediction models are high

density lipoprotein cholesterol (HDL-C), low density lipoprotein

cholesterol (LDL-C) and triglycerides. However, recent studies

have suggested that specific lipid species may be useful markers of
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diabetes. For example, Haus et al. [11] showed that certain

ceramide subspecies are elevated in obese subjects with type 2

diabetes and correlate with the severity of insulin resistance. While

Boon et al. [12] showed that ceramides contained in LDL are

elevated in type 2 diabetes and promote inflammation and skeletal

muscle insulin resistance.

The Australian Diabetes, Obesity and Lifestyle (AusDiab) study

is the largest Australian longitudinal population-based study

examining the natural history of diabetes, pre-diabetes (combined

impaired fasting glucose (IFG) and IGT), heart disease and kidney

disease. The baseline study conducted in 1999–2000 provided

benchmark national data on the prevalence of diabetes, obesity,

hypertension and chronic kidney disease in Australia. The baseline

study preceded two follow up studies spaced approximately five

and seven years apart where similar extensive collection of data

was performed [13,14]. The classification of the subjects was

determined by a fasting plasma glucose test and an oral glucose

tolerance test. The thresholds for the fasting plasma glucose and

2 h post load glucose used to determine type 2 diabetes and pre-

diabetes status were consistent with the recommended thresholds

set by the International Diabetes Federation. At the five year

follow-up of 6537 subjects, 225 had developed type 2 diabetes.

This represented 15.8% of those who had IGT at baseline, 11.4%

of those with impaired fasting glucose (IFG) and 1.2% of the

normal glucose tolerance (NGT) group. These progression

percentages of pre-diabetes (IFG+IGT) to type 2 diabetes highlight

the increased risk in this group and the potential advantage, from a

diabetes prevention point of view, to identify these individuals for

the purpose of early intervention.

Individuals with FPG .7.0 mmol/L are diagnosed as having

type 2 diabetes and individuals with FPG of between 6.1 mmol/L

and 7.0 mmol/L (IFG) are usually followed-up with a subsequent

oral glucose tolerance test which will confirm these individuals to

having IGT, IFG or type 2 diabetes. However, a significant

proportion of individuals with type 2 diabetes or IGT have FPG

below 6.1 mmol/L. This subgroup in the population are often

neglected and not followed-up on post type 2 diabetes screening.

In this study, we set out to identify undiagnosed type 2 diabetes

and IGT in individuals with an FPG ,6.1 mmol/L with the

perspective that these individuals can then proceed to receive the

required treatment or early intervention. In the AusDiab study,

individuals with an FPG,6.1 mmol/L account for approximately

35.3% of all individuals with either prevalent undiagnosed type 2

diabetes or IGT.

While standard plasma lipids (LDL-C, HDL-C and triglyc-

erides) are recognised risk factors for type 2 diabetes [10],

recent studies using lipidomic approaches have demonstrated

that the individual lipid species present in lipoproteins show

differential association with disease status and so may provide

additional information relating to disease pathogenesis and

disease risk [15–18]. In this study we have applied lipidomics to

assess the utility of individual plasma lipid species in improving

on standard lipid and non-lipid risk factors in the task of

identifying undiagnosed type 2 diabetes and IGT in individuals

with an FPG ,6.1 mmol/L.

Methods

Ethics Statement
All participants in the AusDiab study provided informed written

consent. This study was approved by the Ethics Committee of the

Alfred Hospital (Project No: 104/10).

Study Design
The initial cross-sectional substudy which this work is based on

was designed to identify associations of individual plasma lipid

species with type 2 diabetes and for this purpose 351 individuals

were selected. 117 individuals had undiagnosed type 2 diabetes

(cases). Controls were frequency selected to match the cases in

terms of age, sex and BMI. The controls consist of 170 NGT, 45

IGT and 19 IFG.

In this analysis, we have utilised a subset of the 351 individuals

described above, focusing on individuals with a FPG measurement

of less than 6.1 mmol/L for the purpose of training our

classification model to evaluate the utility of plasma lipid species

in type 2 diabetes risk classification. This subset consisted of 246

subjects of whom 36 had undiagnosed type 2 diabetes, 40 had

undiagnosed IGT and 170 had NGT. Figure 1 provides a detailed

breakdown of the subject numbers for each FPG category. The

original matching criteria do not apply in this selected subset. For

convenience, we will label these subjects the initial subset.

Validation Cohort
To validate the utility of including individual plasma lipids

species in type 2 diabetes risk classification, a separate cohort

consisting of 485 subjects with FPG ,6.1 mmol/L were selected

randomly from the AusDiab study where none of the selected 485

subjects were part of the initial subset. The validation set consisted

of 101 subjects with IGT and 384 subjects with NGT which is

representative of the relative class proportions in the Australian

population for the given sample size.

Sample Preparation and Lipid Extraction
The order of the plasma samples was randomised prior to lipid

extraction and analysis for each cohort. Quality control plasma

samples were included at a ratio of 1 quality control plasma

sample to 11 subject plasma samples. Total lipid extraction from a

10 mL aliquot of plasma was performed by single phase

chloroform: methanol (2:1) extraction [19].

High Performance Liquid Chromatography-mass
Spectrometry Analysis
Lipid analysis was performed by liquid chromatography,

electrospray ionisation-tandem mass spectrometry using an

Agilent 1200 liquid chromatography system combined with an

Applied Biosystems API 4000 Q/TRAP mass spectrometer with a

turbo-ion spray source (350uC) and Analyst 1.5 data system [19].

We have previously reported the use of precursor ion, neutral loss

scans and multiple reaction monitoring (MRM) scans to identify

and measure the predominant lipid species of the following lipid

classes: dihydroceramide (dhCer), ceramide (Cer), monohexosyl-

ceramide (MHC), dihexosylceramide (DHC), trihexosylcermide

(THC), GM3 ganglioside (GM3), sphingomyelin (SM), phosphati-

dylcholine (PC), alkylphosphatidylcholine (PC(O)), alkenylpho-

sphatidylcholine (plasmalogen, PC(P)), lysophosphatidylcholine

(LPC), lysoalkylphosphatidylcholine (lysoplatelet activating factor,

LPC(O)), phosphatidylethanolamine (PE), phosphatidylinositol

(PI), phosphatidylserine (PS), phosphatidylglycerol (PG), cholester-

ol ester (CE), free cholesterol (COH), diacylglycerol (DG) and

triaclyglycerol (TG) [19–21]. The abbreviations shown above are

only used when referring to individual lipid species as in LPC 22:6

which define a lysophosphatidylcholine with a fatty acid contain-

ing 22 carbons and six double bonds. For a number of the lipids

which contain two fatty acid chains the MRM based measure-

ments here do not directly determine the constituent fatty acids

but rather the sum of the number of carbons and the sum of the
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number of double bonds across both fatty acids. Accordingly, we

denote these species as the combined length and number of double

bonds, e.g. PC 36:4.

A total of 71 diacylglycerol and triacylglycerol species and 216

other lipid species were analysed in two separate experiments.

Relative lipid amounts were calculated by relating the peak area of

each species to the peak area of the corresponding stable isotope or

non-physiological internal standard [19].

Statistical Analysis
To train a classification model that best stratifies type 2 diabetes

and IGT from NGT, we applied approaches in machine learning

and utilised MATLAB 2012a and the libraries of LIBSVM 3.14

[22] to implement the multivariate classification modelling

experiments. The classification models were based on C-support

vector classification [23,24] with a polynomial kernel, and were

trained and tested within a 3-fold stratified cross validation

framework on 246 subjects with FPG ,6.1 mmol/L from the

initial subset. The following features (predictors) were available for

inclusion in the models: sex, age, systolic blood pressure, waist,

total cholesterol, HDL-C, triglycerides and HbA1c and 287

individual lipid species. All lipid species measurements were log-

transformed and missing lipid species measurements were imputed

with a log-transformed value of zero. A missing lipid species

measurement is indicative that the specific lipid species was below

the limit of detection in the sample.

In 3-fold cross validation, the dataset is randomly divided into

thirds. As we applied stratified 3-fold cross validation, every third

maintains an equal class proportion of the subjects, i.e., they had

the approximately equal numbers of type 2 diabetes, IGT and

NGT. The classification model was trained on two thirds of the

dataset (known as the training set of samples) and the trained

classification model was subsequently tested on the remaining

third (known as the test set of samples). The order of feature

inclusion for training the classification model was based on the

area under the receiver operator characteristic curve (AUC)

achieved by each feature as assessed on the training set of samples.

The feature with the highest AUC was first to be included in the

model. With each new feature included in the model, the

performance of the classification model in terms of specificity,

sensitivity and AUC was recomputed.

After the completion of the first iteration, the thirds of samples

were permuted and the classifier retrained on a different pairing of

samples (i.e. thirds). Feature selection was repeated to determine

the order of inclusion in the model and classifier performance was

reassessed once again in this new iteration on a new set (third) of

test samples. In 3-fold cross validation, there are three possible

pairings of sets of training and test samples, after the 3 possible

permutations were performed and assessed; the entire process was

repeated 200 times with samples randomly assigned to a

stratification segment each time. Repeating cross-validation

multiple times helps to minimise sampling bias with respective to

the allocation of test and training samples. The performance

measures (specificity, sensitivity and AUC) over 600 iterations

were computed and the mean and 95% confidence interval for

each measure was subsequently calculated.

Modelling was performed with three different combinations of

features,

a. risk factors: sex, age, systolic blood pressure, waist, total

cholesterol, HDL-C, triglycerides, HbA1c

b. lipid species: 287 individual lipid species

c. combination of risk factors and lipid species: sex, age,
systolic blood pressure, waist, total cholesterol, HDL-C,

triglycerides, HbA1c and 287 individual lipid species

For each model variant, the optimal operating point is regarded

as the number of features required to attain maximum AUC.

For the validation of our results on an unseen set of subjects,

each of the three model variants were trained on all 246 samples of

the initial subset using on the x most frequently selected features

where x corresponds to the optimal operating point for that model.

Each of the trained classification models were tested on the

validation set of 485 subjects. As the lipid measures from the two

cohorts were experimentally analysed at different time periods, we

applied z-score transformation to the log-transformed lipid species

Figure 1. Distribution of patients in the AusDiab cross-sectional cohort and typical clinical management of patients in the various
fasting plasma glucose categories. The top half of the figure describes the distribution of patients in the AusDiab cross-sectional cohort by FPG
ranges while the lower half of the figure describes the typical clinical management of patients in the various FPG categories. Typical clinical
management is distinct to patient management in the AusDiab study. In a typical clinical context, subjects with FPG $7.0 mmol/L are diagnosed
immediately as having diabetes, subjects with an FPG between 6.1 mmol/L and 6.9 mmol/L are referred for a 2 hr oral glucose tolerance test to
confirm their diabetes status (type 2 diabetes, IFG or IGT) and subjects with an FPG #6.0 mmol/L are not typically followed up. The subjects in the
latter group may have diabetes or be at risk of diabetes.
doi:10.1371/journal.pone.0076577.g001
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measurements on both datasets separately to mitigate any

potential experimental batch effects prior to training and testing

the classification models.

Results

In Table 1, we summarise the characteristics of the two groups

of subjects in the AusDiab cross-sectional study used to train and

test our type 2 diabetes risk classification models within a 3-fold

cross validation framework. These two groups were collectively

labelled initial subset earlier. The subjects in both groups have an

FPG ,6.1 mmol/L. The first group includes prevalent undiag-

nosed type 2 diabetes and IGT and the second group is NGT. The

first group of subjects had higher levels of 2 hr post-load glucose

and HbA1c as expected. They were also older, had higher mean

systolic blood pressure, total cholesterol and triglycerides than the

second group of subjects.

Classification models were created using risk factors alone, lipid

species alone or a combination of risk factors and lipid species.

Figure 2 is an illustrative plot of how AUC changed as an

increasing number of features were included in each model.

Models created using risk factors alone (up to nine) showed an

increase in the area under the ROC curve for only the first two

risk factors (Figure 2). Table 2 shows that the two most frequently

incorporated features in training the type 2 diabetes risk

classification models based solely on risk factors were triglycerides

and HbA1c, the rest of the risk factors were incorporated in a 2

risk factor type 2 diabetes risk classification model with a frequency

of less than 2%.

Table 3 describes the 17 most frequently incorporated lipid

species features in training the type 2 diabetes risk classification

model based solely on lipid species. Again, we focussed on the top

17 features in this context since the maximum AUC is achieved

with 17 lipids (Figure 2). Within the top 17 features, 7

diacylglycerol species were incorporated in more than 97% of

the models trained. Overall, only five classes of lipid species i.e.,

diacylglycerols, triaclyglycerols, cholesterol esters, phosphatidyl-

ethanolamines and dihydroceramides were reflected in the top 17

most frequently incorporated features in the type 2 diabetes risk

classification model based solely on lipid species.

Table 4 describes frequently incorporated features in a type 2

diabetes risk classification model based on a combination of risk

factors and lipid species. 23 features were required in this scenario

to attain maximum AUC (Figure 2). Six diacylglycerol species and

triglycerides were always incorporated in a 23 feature model

consisting of both risk factors and lipid species with the rest of the

features consisting of HbA1c, diacylglycerols, triaclyglycerols,

cholesterol esters and 1 species each of phosphatidylethanolamine

and dihydroceramide.

Table 5 is a detailed summary of the performance of type 2

diabetes risk classification models based solely on risk factors, lipid

species and a combination of risk factors and lipid species. The

optimal operating point specified in the table reflects the number

of features used to attain the maximum AUC. The risk factor only

model consisting of sex, age, systolic blood pressure, waist, total

cholesterol, HDL-C, triglycerides and HbA1c achieved an AUC of

0.777 at an optimal operating point of two features. The lipid

species only model achieved an AUC of 0.765 at an optimal

operating point of 17 features where the majority of lipid species in

this model were diacylglycerols and triaclyglycerols. The com-

bined lipid and risk factor model consisting of the entire

Table 1. Characteristics of the 246 AusDiab subjects in the initial subset (with FPG less than 6.1 mmol/L).

Prevalent Undiagnosed Type 2 Diabetes & IGT (n=76)a NGT (n=170)a p-valueb

Age (yrs) 71 (58–74) 60 (49–72) 4.861023

Sex (male %) 43.4 47.6 0.69

Waist (cm) 92.1 (85.9–100.5) 90.3 (83.3–98.2) 0.24

Hip (cm) 103.4 (98.5–107.1) 103.3 (98.9–108.3) 0.72

Waist-to-hip ratio 0.90 (0.83–0.95) 0.86 (0.80–0.93) 0.13

FPG (mmol/L) 5.4 (5.1–5.7) 5.3 (5.1–5.6) 0.24

PLG (mmol/L)c 10.7 (8.9–11.9) 5.8 (4.8–6.6) 1.03610234

HbA1c (%) 5.3 (5.1–5.6) 5.1 (5.0–5.3) 4.0461027

Insulin (pmol/L) 91.0 (66.7–127.1) 83.7 (68.8–101.4) 0.13

HOMA-B (mmol/L)d 129.3 (107.0–163.7) 124.8 (107.6–148.7) 0.23

HOMA-S (mmol/L)e 49.3 (36.4–67.4) 55.3 (45.9–66.3) 0.08

BMI (kg/m2) 26.3 (24.4–29.5) 26.0 (23.6–27.9) 0.33

Systolic BP (mmHg) 144 (131–159) 133 (121–146) 1.661023

Diastolic BP (mmHg) 74 (64–82) 70 (61–80) 0.24

Total Cholesterol (mmol/L) 6.30 (5.50–6.80) 5.70 (5.10–6.40) 1.461023

HDL-C (mmol/L) 1.34 (1.13–1.65) 1.42 (1.20–1.67) 0.24

LDL-C (mmol/L) 3.83 (3.12–4.52) 3.67 (3.00–4.23) 0.18

Triglycerides (mmol/L) 1.90 (1.29–2.53) 1.20 (0.90–1.55) 7.061028

aRepresented as median (IQR).
bMann Whitney U-test p-value, except for sex where the p-value is based on the chi-square test of proportions, p-values are corrected for multiple comparisons using
the Benjamini-Hochberg approach.
cPost-load glucose.
dHomeostasis Model Assessment score for estimate of steady state beta cell function.
eHomeostasis Model Assessment score for estimate of insulin sensitivity.
doi:10.1371/journal.pone.0076577.t001
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complement of features described in the two previous models

achieved an AUC of 0.826 at an optimal operating point of 23

features. The two non-lipid species features included in the top 23

most frequently incorporated features were HbA1c and triglycer-

ides as expected. The combined model had the highest sensitivity

(57.6%) among the three models and comparable specificity

(91.3%) to the rest of the models.

The difference in mean AUC of 0.049 between the risk factor

model and the combination risk factor and lipid species model was

statistically significant (p,0.001) and this translates into a

statistically significant net reclassification improvement (NRI) of

10.5% (p,0.001). Using the combined risk factor and lipid species

model, a mean of 66.2% of undiagnosed type 2 diabetes and

49.9% of IGT were classified as requiring treatment or

intervention while a mean of 91.3% of NGT subjects were

classified as not requiring treatment or intervention.

In Table 6, we summarise the performance of each of the three

type 2 diabetes risk classification model variants tested on the

unseen cohort of 485 subjects. The gain in AUC and net

reclassification improvement were confirmed on a randomly

selected group of 485 AusDiab subjects with fasting glucose

measurement,6.1 mmol/L (excluding all subjects from the initial

cohort), where the combined risk factor and lipid species risk

classification model achieved a gain in AUC of 0.044 and an NRI

of 18.7% over the risk factor only model.

Discussion

Plasma lipid profiling of two separate cohorts of the AusDiab

study provided us with the ability to evaluate the capacity of

plasma lipids to improve on traditional risk factors for the

identification of prevalent undiagnosed type 2 diabetes and pre-

diabetes. The results demonstrate that the addition of plasma lipid

species to triglycerides and HbA1c significantly improves the

classification of individuals at risk of type 2 diabetes. The gain in

AUC of 0.044 and an NRI of 18.7% over the risk factor only

model in the validation set of subjects confirms that the inclusion

of plasma lipid species to standard lipid and non-lipid risk factors,

Figure 2. Plot of the area under the receiver operating characteristic curves (AUC) over an increasing number of features included
in type 2 diabetes risk classification models. The combined model which includes sex, age, systolic blood pressure, waist, total cholesterol,
HDL-C, triglycerides and HbA1c and 287 individual lipid species as features in the model attained a maximum AUC of 0.826 using 23 features the most
frequent of which are listed in Table 4. Solid lines denote the mean AUC and broken lines represent the corresponding 95% confidence intervals
plotted against the number of features incorporated into the model. The plot is truncated at 23 features.
doi:10.1371/journal.pone.0076577.g002

Table 2. Most frequently incorporated features in a 2-feature
risk factor only classification model.

Ranka Feature Frequency of Incorporation (%)

1 Triglycerides 99.0

2 HbA1c 98.8

3 Systolic Blood Pressure 1.50

4 Age 0.33

aNo other risk factor features were included in a 2 risk factor model.
doi:10.1371/journal.pone.0076577.t002
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specifically, HbA1c and triglycerides, improves type 2 diabetes risk

classification performance.

In the initial subset, our objective was to identify individuals

with prevalent undiagnosed type 2 diabetes or IGT from

individuals with NGT. The stratification of subjects based on

FPG in the cross-sectional study is shown in Figure 1. Individuals

with FPG $6.1 mmol/L are identified as having type 2 diabetes

or IFG. Subsequent development of multivariate classification

models to identify IGT and prevalent undiagnosed type 2 diabetes

from NGT in individuals with FPG ,6.1 mmol/L identified

triglycerides and HbA1c as the principal drivers of risk stratifica-

tion in a cohort which was generally well-matched in character-

istics between the NGT and non-NGT groups as described in

Table 1.

When plasma lipid species were included as predictors in the

model, classification performance improved and we observed

diacylglycerol to be the major lipid class most frequently

incorporated, representing seven of the top eight ranked lipid

species, although dihydroceramide, phosphatidylethanolamine,

triacylglycerol and cholesterol ester species were also frequently

incorporated. The significance of this result lies in the fact that

these diacylglycerol species are able to contribute independently to

the stratification of the groups beyond total triglycerides, implying

that they do not simply reflect the elevated triglyceridemia present

in the high risk individuals but rather reflect a separate biological

process. Stahlman et al. [25] recently reported on the composition

of VLDL and LDL from dyslipidemic women with type 2 diabetes;

diglycerides were significantly elevated whereas triglycerides

showed a non-significant increase. They also observed an

enrichment of palmitate (16-carbon saturated fatty acid) in both

diacylglycerol and triacylglycerol species which is also in agree-

ment with our observations of the most frequently incorporated

species (DG 16:0/16:0, DG 16:0/22:5 and DG 16:0/22:6,

Table 4). They propose that the inability to observe a significant

association between triacylglycerol species and type 2 diabetes may

relate to the rapid metabolism of the large triacylglycerol rich

VLDL particles. While diacylglycerol has been implicated in the

aetiology of insulin resistance in both muscle and liver by its

activation of protein kinase C-e (PKCe) [26–28], it is, at present,
unclear if this can be mediated by the diacylglycerol rich

lipoproteins identified in these studies.

Some type 2 diabetes risk prediction models are heavily

weighted on obesity. However, obesity is not always associated

with deleterious changes to the lipidome associated with increased

risk of diseases such as type 2 diabetes and coronary heart disease.

For instance, a recent study by Ortega et al. [29], found that 46

percent of all obese adults in their study were metabolically

healthy, i.e. they did not have high blood pressure, high blood

cholesterol, or a high blood sugar levels and had a 38 percent

lower risk of mortality from any cause compared to metabolically

unhealthy obese people. Being obese in this instance did not

predispose these individuals to an increased risk of disease over

their non-obese counterparts as the physiological characteristics of

these individuals were not translated into deleterious lipidomic

profiles. This opinion is consistent with an earlier commentary

[30] which identified the metabolically benign obese to have

favourable metabolic profiles, high insulin sensitivity, no hyper-

tension, normal lipid, inflammation and hormonal profiles (low

triglycerides and C-reactive protein concentrations and high

HDL-C and adiponectin concentrations) making them almost

indistinguishable from young lean individuals in this regard. Stefan

Table 3. Most frequently incorporated features in a 17-
feature lipid species only classification model.

Ranka Feature Frequency of Incorporation (%)

1 DG 16:0/22:5 100

2 DG 16:0/22:6 100

3 DG 16:1/18:0 100

4 DG 16:1/18:1 100

5 DG 16:0/16:0 99.8

6 DG 18:0/18:1 99.5

7 DG 16:0/18:0 97.3

8 dhCer 18:0 90.3

9 PE 40:6 86.2

10 TG 14:1/16:1/18:0 78.3

11 TG 16:1/16:1/16:1 75.2

12 DG 18:0/18:2 69.8

13 CE 24:1 57.0

14 DG 16:0/20:4 56.5

15 DG 14:0/18:1 48.0

16 DG 16:0/20:3 43.2

17 CE 22:0 38.5

aFor conciseness only the top 17 features in a 17 lipid species model are listed.
doi:10.1371/journal.pone.0076577.t003

Table 4. Most frequently incorporated features in a 23-
feature combined risk factor and lipid species classification
model.

Ranka Feature Frequency of Incorporation (%)

1 DG 16:0/16:0 100

2 DG 16:0/22:5 100

3 DG 16:0/22:6 100

4 DG 16:1/18:0 100

5 DG 16:1/18:1 100

6 DG 18:0/18:1 100

7 Triglycerides 100

8 DG 16:0/18:0 99.3

9 HbA1c 94.8

10 dhCer 18:0 94.7

11 PE 40:6 93.7

12 TG 14:1/16:1/18:0 93.0

13 TG 16:1/16:1/16:1 88.8

14 DG 18:0/18:2 85.3

15 DG 16:0/20:4 73.5

16 DG 14:0/18:1 72.0

17 CE 24:1 70.5

18 DG 16:0/20:3 65.0

19 DG 14:0/16:0 54.2

20 TG 14:0/16:0/18:2 54.0

21 TG 16:0/17:0/18:2 52.8

22 CE 22:0 49.7

23 DG 14:0/18:2 48.2

aFor conciseness, only the top 23 features in a 23 combined feature model are
listed.
doi:10.1371/journal.pone.0076577.t004
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et al. [31] also described the potentially protective metabolic

profile of these individuals to consist of lower visceral, liver and

muscle fat content compared to insulin-resistant obese people.

Additionally, they had a better ability to trap free fatty acids in

adipose tissue and had lower carotid intima-media thickness which

also suggests a favourable cardiovascular profile.

With our ability to measure 287 individual lipid species in

plasma through the use of liquid chromatography electrospray

ionisation tandem mass spectrometry, we have obtained a more

detailed view of specific lipid species that are tightly coupled to

mechanisms associated with the pathogenesis of type 2 diabetes. As

the groups were matched for BMI during selection, there was no

resultant significant difference in waist circumference (a surrogate

measure for visceral obesity) between the groups and thus waist

circumference does not improve the discrimination power of the

model. The matching of waist circumference however enhances

the efficiency of our analysis in identifying lipid species that may

contribute additionally and independently to waist circumference

in risk stratification for type 2 diabetes.

Although the groups in this study were matched for age, sex and

BMI, plasma lipid species were still able to significantly improve

on type 2 diabetes risk classification performance when added to

triglycerides and HbA1c as predictors in the diabetes risk

classification model. This suggests that plasma lipid species are

able to capture some of the more subtle signatures of diabetes risk

beyond risk factors such as BMI, sex, triglycerides and HbA1c.

These results highlight the potential utility of plasma lipid species

in the diagnosis of type 2 diabetes.

Limitations of the Study
The current study is of cross-sectional design and of moderate

size. To maximise the utilization of available samples and to

minimise sampling bias, we have employed a 3-fold cross

validation framework repeated 200 times to assess the perfor-

mance of the trained models and to obtain corresponding

confidence intervals for the various measures of performance.

We have also validated the utility of lipid species in the context of

type 2 diabetes risk classification on an unseen set of 485 subjects

from the AusDiab study from which the gain in AUC and NRI

from our cross-validated models were confirmed. This provides

strong evidence that our results have not occurred by chance. We

were however unable to obtain plasma samples for undiagnosed

diabetes in the validation set of subjects, the inclusion of which we

feel may further improve our validation performance results. A

non-trivial extension of the current work to include the entire

AusDiab study would provide us with the ability to perform a

rigorous cost-benefit analysis to assess the feasibility of including

plasma lipids species in a clinical diagnostic/screening model for

the classification of type 2 diabetes risk in an actual population

setting. Such larger validation studies will pave the way for the

translation of this technology into clinical use for population-based

risk screening of type 2 diabetes.

Table 5. Summary of classification model performance.

Model Aa Bb A+Bc

Operating Pointd 2 17 23

Area under ROC curve 0.777 (0.773, 0.781) 0.765 (0.760, 0.769) 0.826 (0.822, 0.83)

Gain in AUCe 0.049

Sensitivity (%) 44.0 (43.1, 44.9) 46.5 (45.8, 47.3) 57.6 (56.9, 58.3)

Specificity (%) 94.4 (94.1, 94.8) 90.3 (89.9, 90.6) 91.3 (91, 91.6)

NRIf (%) 10.5

Classification Accuracyg (%)

Type 2 diabetes 45.7 (44.7, 47.2) 52 (50.8, 52.9) 66.2 (65.3, 67.4)

IGT 42.5 (41.3, 43.3) 41.6 (40.5, 42.5) 49.9 (48.9, 50.9)

NGT 94.4 (94.1, 94.8) 90.3 (89.9, 90.6) 91.3 (91, 91.6)

aRisk factor model.
bLipid species model.
cCombined risk factor and lipid species model.
dNumber of features required to attain maximum AUC.
eDifference in AUC between model A+B and model A.
fNet reclassification improvement between model A+B and model A.
gCorrect classification of type 2 diabetes and IGT into the group requiring treatment or intervention and NGT into the group not requiring treatment or intervention
expressed as a percentage of the total number of subjects in the type 2 diabetes, IGT and NGT groups individually.
doi:10.1371/journal.pone.0076577.t005

Table 6. Performance of different classification models on
the validation cohort.

Model aa bb a+bc

Operating Point 2 17 23

Area under ROC curve 0.684 0.668 0.729

Gain in AUCd 0.044

Sensitivity 32.7 34.7 53.4

Specificity 86.2 83.1 83.8

NRIe 18.3%

aRisk factor model trained on the AusDiab cross-sectional study and tested on
validation dataset.
bLipid species model trained on the AusDiab cross-sectional study and tested
on the validation dataset.
cCombined risk factor and lipid species model trained on the AusDiab cross-
sectional study and tested on the validation dataset.
dDifference in AUC between model a+b and model a.
eNet reclassification improvement between model a+b and model a.
doi:10.1371/journal.pone.0076577.t006
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