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Background: Tumors are characterized by extracellular matrix (ECM)

remodeling and stiffening. The ECM has been recognized as an important

determinant of breast cancer progression and prognosis. Recent studies have

revealed a strong link between ECM remodeling and immune cell infiltration in

a variety of tumor types. However, the landscape and specific regulatory

mechanisms between ECM and immune microenvironment in breast cancer

have not been fully understood.

Methods: Using genomic data and clinical information of breast cancer

patients obtained from The Cancer Genome Atlas (TCGA) and Gene

Expression Omnibus (GEO) databases, we conducted an extensive multi-

omics analysis to explore the heterogeneity and prognostic significance of

the ECM microenvironment. Masson and Sirius red staining were applied to

quantify the contents of collagen in the ECM microenvironment. Tissue

immunofluorescence (IF) staining was applied to identify T helper (Th) cells.

Results: We classified breast cancer patients into two ECM-clusters and three

gene-clusters by consensus clustering. Significant heterogeneity in prognosis

and immune cell infiltration have been found in these distinct clusters.

Specifically, in the ECM-cluster with better prognosis, the expression levels

of Th2 and regulatory T (Treg) cells were reduced, while the Th1, Th17 and T

follicular helper (Tfh) cells-associated activities were significantly enhanced.

The correlations between ECM characteristics and Th cells infiltration were

then validated by clinical tissue samples from our hospital. The ECM-associated

prognostic model was then constructed by 10 core prognostic genes and

stratified breast cancer patients into two risk groups. Kaplan-Meier analysis

showed that the overall survival (OS) of breast cancer patients in the high-risk

group was significantly worse than that of the low-risk group. The risk scores

for breast cancer patients obtained from our prognostic model were further

confirmed to be associated with immune cell infiltration, tumor mutation
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burden (TMB) and stem cell indexes. Finally, the half-maximal inhibitory

concentration (IC50) values of antitumor agents for patients in different risk

groups were calculated to provide references for therapy targeting distinct

ECM characteristics.

Conclusion: Our findings identify a novel strategy for breast cancer subtyping

based on the ECM characterization and reveal the regulatory roles of Th cells in

ECM remodeling. Targeting ECM remodeling and Th cells hold potential to be a

therapeutic alternative for breast cancer in the future.
KEYWORDS

extracellular matrix, immune cell infiltration, T helper cells, prognostic model,
breast cancer
Introduction

Breast cancer is the most common cancer in the world (1).

The occurrence of tumor invasion and metastasis is an

important risk factor affecting the prognosis of breast cancer

patients. Therefore, it is of great clinical significance to further

explore the mechanism of breast cancer invasion and metastasis

and identify new therapeutic targets against tumor metastasis.

For the past few years, the significance of the interaction between

tumor cells and tumor microenvironment (TME) in malignant

tumor progression has attracted extensive attention (2, 3). As a

key component of TME, extracellular matrix (ECM) mainly

includes collagen, fibronectin, laminin, glycosaminoglycan,

proteoglycan and various ECM remodeling enzymes, whose

main function is to provide important biochemical and

biomechanical support for the cells in it. ECM remodeling,

that is the significant changes in ECM contents and

arrangement, has been shown to be closely associated with the

differentiation, proliferation and metastasis of tumors (4, 5). A

study of pan-cancer landscape of ECM gene dysregulation found

that a subset of ECM genes specifically dysregulated in tumors,

and high expression of this subset genes was adversely

prognostic in pan-cancer analyses (6). Extensive alterations of

the ECM have been found in breast cancer, including the

upregulation or altered arrangement of fibrillar collagen,

fibronectin and other remodeling enzymes, and the

consequent enhancement of ECM stiffness (7–9). There is also

extensive clinical imaging and pathological evidence that the

denseness and hardness of tumor tissue are closely related to its

malignancy (10). During the development of mammary cells

from normal to ductal carcinoma in situ and then invasive

carcinoma, the hardness of ECM increases gradually (11).

Recent studies have shown that increased tissue stiffness in

breast cancer promotes the cytoskeleton remodeling by
02
activating the Rho/ROCK signaling pathway, and parallel

aligned collagen can promote epithelial-mesenchymal

transition (EMT) by upregulating TGF-b receptors,

accelerating invasion and metastasis (12, 13). In addition,

ECM remodeling can also cause overexpression of EGFR,

ERBB2, CD44 and other receptors in TME, and further induce

tumor invasion and metastasis through the transactivation of

downstream PI3K/Akt, MAPK and other signaling pathways

(13–15).

The interrelationship between immune cells and ECM, both

of which are important components consisting of TME, has

become an emerging and crucial topic in the field of tumor

biology. The maintenance of a balance between immune system

and ECM remodeling dynamics is essential to ensure the

homeostasis of physiological processes. Immune cells are

involved in the degradation, synthesis and reconstruction of

ECM components (16, 17). Several ECM components, such as

laminin and collagen, can be served as ligands for immune cells,

so as to facilitate the adhesion and trafficking process (18). The

dynamic crosstalk between ECM and immune cells could alter

the TME from a tumor suppressive to tumorigenic state. For

example, this process accelerates the transformation of tumor-

associated macrophages (TAMs) from pro-inflammatory M1

macrophages to anti-inflammatory M2 macrophages, which

further promotes tissue remodeling and tumor progression

(19). In addition, the complex T helper (Th) cells-mediated

immune response has also been reported to be closely linked to

the accumulation of collagen and other ECM components (20).

In skin cancer, chemokines such as CCL-17 and CCL-18

secreted by stromal cells can recruit immunosuppressive

regulatory T (Treg) cells to infiltrate in tumor islands, and

overexpression of CCL-17 and its ligand CCR-4 can promote

the aggregation of CD4-positive (CD4+) Treg, Th2 and Th17

cells (21, 22). In summary, the ECM in tumor is highly
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disorganized and remodeled due to the abnormal activation of

fibroblasts and aberrant deposition of ECM components by the

interaction of tumor, stromal and immune cells. Therefore,

revealing the interplay between ECM and immune system is

critical for fully understanding the significance of ECM

remodeling in cancer progression, and rational designing new

strategies for immunotherapy. However, there is still a lack of

comprehensive and integrated analysis of ECM-related gene

expression profiles in tumors, especially in breast cancer, as

well as the lack of correlation analysis between distinct ECM

signatures and immune-related features including Th

cell subpopulations.

In this present study, we questioned whether breast cancer

has heterogeneous ECM remodeling-related features and which

signaling pathways and biological processes drive the formation

of these phenotypes? With multi-omics data from publicly

available databases, we classified breast cancer patients into

distinct ECM-related clusters, and revealed significant

differences in the abundance of immune cells, especially Th

cells, within these distinct ECM-related subpopulations. The

above correlation results between ECM and Th cells were also

validated by collecting clinical tissue samples. In addition, we

developed and validated the ECM-related prognostic signature

using RNA-seq and prognostic information from breast cancer

cohorts of public databases. Our systematic analysis of the ECM

characteristics in breast cancer will provide an important

research reference for prognostic evaluation and treatment

strategy formulation.
Materials and methods

Patients and datasets

A total of 1727 samples from The Cancer Genome Atlas

(TCGA) cohort and 3 Gene Expression Omnibus (GEO) cohorts

were included in this study. The RNA-Seq expression profile of

1208 samples, including 1096 breast cancer samples and 112

normal mammary samples, mutation data, copy number

variation data and the corresponding clinical information of

1085 samples were downloaded from TCGA database (https://

portal.gdc.cancer.gov). In addition, the RNA-seq data and

follow-up information of 3 external validation cohorts were

downloaded from GEO database (http://www.ncbi.nlm.nih.

gov/geo), including 327 samples of GSE20685 (23), 104

samples of GSE42568 (24), and 88 samples of GSE20711 (25).

A total of 30 cases of breast cancer tissues used to validate the

link between ECM characteristics and Th cells infiltration were

collected from the First Affiliated Hospital of Xi’an Jiaotong

University. All the patients had signed the informed consent

before surgery, and the present study was authorized by the

Ethics Committee of the First Affiliated Hospital of Xi’an
Frontiers in Immunology 03
Jiaotong University, and followed TCGA and GEO data access

policies and publication guidelines.
Consensus clustering

Subsequently, 328 ECM-associated genes were obtained

based on gene ontology terms, which were attached in

Supplementary Table 1. According to the expression levels of

the above ECM-associated genes, the ConsensusClusterPlus

package in R software was applied to perform consensus

clustering to determine the optimal clusters for breast cancer

patients in TCGA database. The results of K-means clustering

from k=2 to k=9 were represented by heatmaps, and the optimal

cluster number was determined by the consistent cumulative

distribution function (CDF) plot and the area of delta region.
Identification of differentially expressed
genes and functional enrichment analysis

The DEGs between breast cancer and normal mammary

gland tissues, as well as between different ECM-clusters, were all

identified by the limma R package. The Wilcoxon test was used

to identify DEGs, and genes with log2|fold change (FC) |> 1 and

false discovery rate (FDR) < 0.05 were termed as DEGs. Gene

Ontology (GO) and Kyoto Encyclopedia of Genes and Genomes

(KEGG) functional enrichment analyses were then employed to

identify potential biological functions and signaling pathways of

DEGs using the clusterProfiler package of R software.
Abundance calculation of immune cells,
fibroblasts and TME scores

The single-sample gene set enrichment analysis (ssGSEA)

algorithm was used to calculate the enrichment levels of 23

immune cells, and the gene sets corresponding to these 23

immune cells were summarized in Supplementary Table 2.

The ssGSEA algorithm was implemented through GSVA

package. The relative abundance of fibroblasts was obtained by

the Microenvironment Cell Populations-counter (MCP-

counter) method. The deconvolution algorithm CIBERSORT

was also applied to impute the degree of immune cells

infiltration from the bulk tumor transcriptome data. A total of

1000 simulations were conducted for CIBERSORT, and samples

with p < 0.05 were selected for the subsequent analysis. The

stromal scores, immune scores and ESTIMATE scores were then

measured using ESTIMATE package of R software, an algorithm

estimating the tumor purity as well as the degree of immune and

stromal infiltration based on RNA-seq data from tumor samples

containing TME components.
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Tissue collagen staining
and quantification

For Masson staining (Solarbio), paraffin embedded sections

from breast cancer sample tissues were stained according to the

manufacturer’s instructions to examine the contents and

arrangement of collagen. After staining, the green or blue

colored parts were fibrillar collagens, and red parts were

muscle fibers. Picrosirius red analysis was achieved by using

paraffin sections of breast cancer tissues stained with the

combined Sirius Red/Fast Green dye solution (Chondrex), in

which Sirius Red specifically bind to the helical structure of

fibrillar collagens and Fast Green bind to non-collagenous

proteins in tissues. Whole stained sections were scanned with

the slide scanner (Leica) at 20× magnification. For the collagen

quantification results of Masson staining for each sample, 3

fields of view were randomly selected from the slices for the

following statistical analysis, and collagen contents in breast

cancer tissues were quantified by ImageJ software.
Tissue immunofluorescence staining

The paraffin embedded sections from breast cancer tissue

samples were deparaffinized in xylene and dehydrated in

gradient concentration of ethanol. Antigen repair of tissue

slides was subsequently performed in ethylene diamine

tetraacetic acid (EDTA) buffer (pH 8.0) for 15 min in a

microwave oven, followed by permeabilized with 0.5%

TritonX-100 for 10 min, and blocked with 5% bovine serum

albumin (BSA). Then tissue slides were incubated overnight with

specific primary antibodies, followed by secondary antibodies of

Cy3-conjugated goat anti-rabbit IgG and FITC-conjugated goat

anti-mouse IgG(Proteintech). Primary antibodies used for IF

staining included CD4 (Proteintech, 67786, 1:200), T-bet

(Abcam, ab150440, 1:30), CCR4 (Abcam, ab59550, 1:50),

CD25 (Abcam, ab231441, 1:50) and IL-17A (Abcam, ab79056,

1:100). DAPI solution (Bioworld, 1:1000) was next used for

nuclear staining. Image capture was performed by a Leica

confocal microscope at 40× magnification. For the quantitative

analysis of each Th cells, we randomly selected 3 fields from the

slices of each sample for statistical analysis.
Establishment of the ECM -associated
prognostic model

Univariate COX regression analysis by survival R package

was used to identify the potential prognostic DEGs between

different ECM-clusters. The prognostic genes with p<0.05

filtered by univariate COX regression were subsequently
Frontiers in Immunology 04
included in the least absolute shrinkage and selection operator

(LASSO) regression analysis to determine the core prognostic

genes by glmnet package. The risk score for each breast cancer

patient in our prognostic model was calculated using this

following formula: risk score = b1*expG1 + b2*expG2 + … +

bn*expGn, where b was the regression coefficient of the genes

obtained by LASSO regression and expG was the expression

level of core prognostic gene. The formula was then applied to

the external GEO validation cohorts to verify the validity and

reproducibility of our prognostic model. Combining the risk

scores with other clinical parameters, we then constructed a

nomogram prediction model by independent risk factors

obtained by multivariable COX regression using the R

rms package.
Prediction of the drug sensitivity of
patients in different risk groups

The pRRophetic package constructs ridge regression model

based on Genomics of Drug Sensitivity in Cancer (GDSC) cell

line expression profiles and TCGA gene expression profiles to

predict the half-maximal inhibitory concentration (IC50) of

antitumor agents. To identify potential therapeutic agents for

breast cancer patients with different ECM characteristics, we

applied the pRRophetic package to predict the IC50 of

chemotherapeutic agents for breast cancer patients in different

risk groups.
Statistical analysis

All data were analyzed using R version 4.1.0 or GraphPad

Prism 8, and all experiments were repeated at least 3 times.

These results were presented as mean ± standard deviation (SD).

Student’s two-sided t-test was used to compare the differences

between two groups. Survival between different risk groups were

compared by Kaplan-Meier curves followed by log-rank test.

Correlation analysis was conducted by pearson’s test. P < 0.05

was considered as statistically significant.
Results

The landscape of expression levels,
mutation and copy number variation of
ECM-related genes in breast cancer

Initially, a total of 328 ECM-related genes were curated

based on gene ontology terms for this study. Subsequently, we
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identified 118 ECM-related DEGs between breast cancer and

normal mammary gland tissues of TCGA database by the

criteria of log2|FC| > 1, FDR < 0.05, of which 59 genes were

up-regulated while the other 59 genes were down-regulated in

tumor tissues. The heatmap in Supplementary Figure 1A and

volcano map in Supplementary Figure 1B depicted the

expression levels and distribution of the above ECM-associated

DEGs. In addition, we also extracted the mutation and CNV

data of ECM -related genes from TCGA database. From the

waterfall plot, we observed that in 986 breast cancer patients

with mutation information, a total of 624 patients (63.29%) had

mutations in ECM -related genes. We showed the genes with the

top 30 mutation rates in Supplementary Figure 1C, among

which the mutation rates of CDH1, a crucial gene involved in

the formation of cell adhesion junction, was the highest (13%).

Other genes with high mutation frequency included

neurofibromatosis type 1-related gene NF1 (4%), several

collagen molecules such as COL12A1 (2%), COL6A3 (2%),

COL14A1 (2%), and the basement membrane-related

molecules LAMA1 (2%), LAMA2 (2%). Supplementary

Figure 1D demonstrated the CNV frequencies of ECM-related

genes, where ICAM2, PECAM1, SOX9 and ITGB4 had high

copy number gain frequencies, while MFAP2, HSPG2 and

PDPN had high copy number loss frequencies. The above

results suggested that there was significant heterogeneity in

genomic alterations and expression levels of ECM -related

genes in breast cancer.
ECM -related phenotypes in
breast cancer

To further clarify the characteristics of ECM in breast

cancer, we analyzed the expression profiles of 328 ECM

-related genes in 1208 breast cancer patients in TCGA

database to develop consensus clustering. According to the

CDF in Supplementary Figure 2A and the function delta area

in Supplementary Figure 2B, we chose to divide breast cancer

patients into two clusters for the clustering outcome was

stable when k=2 (Figure 1A). Next, we compared the overall

survival (OS) data of these two different ECM-clusters and

found that the patients in cluster A lived longer than patients

in cluster B (Figure 1B). Dimensionality reduction algorithm

of PCA was then used to confirm the samples of the above two

clusters were separately distributed (Figure 1C). In order to

explore the underlying mechanism accounting for the

prognosis differences between distinct ECM-clusters, we

then analyzed the DEGs between cluster A and cluster B by

the cutoff value of log2|FC| > 1 and FDR < 0.05 and identified

a total of 1214 DEGs. Functional enrichment analysis of GO

and KEGG of DEGs were subsequently performed, and we
Frontiers in Immunology 05
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ECM-associated pathways, there were also significant

differences in several immune-related pathways between

these two ECM-clusters. For example, GO analysis

demonstrated that DEGs were significantly enriched in

biological processes (BP) related with T cell activation and

cell chemotaxis (Figure 1D). For molecular function (MF),

significant differences in immune system-related activities

(such as immune receptor activity, cytokine activity and

chemokine activity) were also observed (Figure 1D). The

bar plot of Figure 1E demonstrated the significantly

enriched KEGG pathways, in particular, the significant

differences in the cellular differentiation process of Th

(including Th1, Th2 and Th17) cells could be found.
Characteristics of immune cell infiltration
in distinct ECM-clusters

Considering the significant enrichment of immune

pathways between distinct ECM-clusters, we next applied

ssGSEA algorithm to measure the relative contents of 23

immune cells in breast cancer patients from TCGA database.

For the majority of immune cells, such as activated CD8-

positive (CD8+) T cells and natural killer (NK) cells with

tumor-killing effects, their relative contents in cluster A were

significantly higher than those in cluster B (Figure 2A).

However, the relative abundance of CD56dim-NK cells in

cluster A was lower than that in cluster B, and there was no

significant difference in the contents of neutrophils between

these two ECM-clusters. In addition, we also noticed that the

distribution of Th cell subpopulations in the two ECM-

clusters was significantly different (Figure 2A). Among

them, the pro-inflammatory Th1 cells were highly expressed

in cluster A, and anti-inflammatory Th2 and Treg cells were

expressed at low levels in cluster A, indicating that the good

prognosis of cluster A may be associated with the different

differentiation routes and maintenance status of Th cell

subpopulations induced by distinct ECM characteristics in

breast cancer (Figure 2B–D). For other Th cell subsets, the

results calculated by ssGSEA algorithm also showed that the

proportions of Th17 and T follicular helper (Tfh) cells in

cluster A were higher than those in cluster B, although the

differences were not as significant as those in Th1, Th2 and

Treg cells (Figure 2E, F). Moreover, the MCP-counter

algorithm was also used to calculate the relative abundance

of intra-tumoral fibroblasts, and the results showed that the

fibroblasts abundance in cluster B was much higher than that in

cluster A, suggesting that high fibroblast content was associated

with the state of intra-tumoral immunosuppression as well as

poor prognosis for breast cancer patients (Figure 2G).
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Validation of Th cells infiltration
characteristics by clinical tissue samples

Subsequently, to validate the above correlation results

between ECM and Th cells infiltration obtained from the

public database, a total of 30 breast cancer tissue samples were

collected and validated by collagen staining and IF labeling of

Th cells’ markers. We applied Masson staining and Sirius red

staining to determine the contents of collagen in breast cancer

tissue samples and quantified the percentage of collagen

contents using ImageJ software (Figure 3A). According to

the collagen contents, these 30 patients were divided into two

groups: high collagen content and low collagen content. The

analysis of disease-free survival (DFS) data showed that the

DFS of patients with low collagen content was significantly

prolonged compared with patients with high collagen content

(Figure 3B). Afterwards, tissue IF staining was used for co-

labeling CD4 with T-bet, CCR4, CD25 and IL17A to label the

contents of Th1, Th2, Treg and Th17 cells, respectively, where

CD4 was taken as a pan-T helper cell marker (Figures 3C-F).

Statistical analysis demonstrated that the abundance of Th1

and Th17 cells were significantly higher in the low collagen

content group than in the high collagen group, while Th2 and
Frontiers in Immunology 06
Treg cells in the high collagen group were significantly higher

than those in the low collagen group. Correlation analysis also

showed that Th1 and Th17 cell contents were negatively

correlated with collagen contents, while Th2 and Treg cell

contents were positively correlated with collagen contents

(Figures 3G–J). The above results from clinical tissue samples

further validate the link between ECM characteristics and Th

cell subpopulations.
Identification of distinct gene-clusters
using prognosis-related DEGs

We next performed univariate COX regression analysis on

the DEGs between the two distinct ECM-clusters and extracted

the expression levels of prognosis-associated DEGs. Based on the

above prognosis-associated DEGs, we performed consensus

clustering again and chose to classify breast cancer patients

into three gene-clusters according to the CDF and function delta

area (Figures 4A–C). The results of Kaplan-Meier survival

analysis also showed significant differences in OS among these

three different gene-clusters (Figure 4D). The heatmap in

Figure 4E demonstrated the overview of DEGs in the ECM-
B C

D E

A

FIGURE 1

Identification of ECM-clusters in breast cancer based on ECM-associated genes. (A) Breast cancer patients in TCGA database were stratified into
two different ECM-clusters according to consensus clustering with k=2. (B) Kaplan-Meier survival analysis demonstrated the prognostic differences
between these two ECM-clusters. (C) Dimensionality reduction algorithms of PCA showed that these two ECM-clusters were separately distributed.
(D) GO analysis between different ECM-clusters demonstrated the differences in terms of biological processes, cellular components and molecular
functions. (E) KEGG analysis demonstrated the differential expression of signaling pathways among ECM-clusters. ECM, extracellular matrix; TCGA,
the Cancer Genome Atlas; PCA, principle component analysis; GO, Gene Ontology; KEGG, Kyoto Encyclopedia of Genes and Genomes.
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B C

D E

F G

A

FIGURE 2

Correlation analysis between immune cell infiltration and ECM-clusters. (A) Distribution of the relative abundance of 18 immune cells obtained
by ssGSEA algorithm in different ECM-clusters. B-F. Relative contents of Th cell subpopulations, including Th1 (B), Th2 (C), Treg (D), Th17 (E) and
Tfh (F) cells in different ECM-clusters. (G) Relative abundance of fibroblasts in different ECM-clusters calculated by MCP-counter algorithm.
ssGSEA, single-sample gene set enrichment analysis; Th cell, T helper cell; Th1, type 1 T helper cell; Th2, type 2 T helper cell; Treg, regulatory
T cell; Th17, type 17 T helper cell; Tfh, T follicular helper cell; MCP-counter, Microenvironment Cell Populations-counter; *p<0.05; **p<0.01;
***p<0.001; ****p<0.0001.
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clusters and gene-clusters, suggesting that there were significant

differences in gene expression patterns between distinct clusters.
Development and validation of the ECM-
related prognostic model

The prognostic ECM -associated DEGs of breast cancer

patients were then used for the following LASSO Cox regression

analysis. According to the optimal penalty parameter (l) shown in
the Supplementary Figures 3A, B, the ECM -related prognostic

model based on 10 core prognostic genes was established. The risk
Frontiers in Immunology 08
scores of breast cancer patients in this prognostic model can be

obtained by this following formula: Risk score = 0.167 * expression

level of P4HA3 + 0.297 * expression level of ZMAT3 +(-0.168) *

expression level of TNN + 0.328 * expression level of ENPEP +

0.260 * expression level of PCDHB12 + (-0.298) * expression level

of SGCE + (-0.275) * expression level of PDLIM4 + 0.170 *

expression level of WNT7B + (-0.146) * expression level of

FGD3 + (-0.122) * expression level of IL33. Then, the breast

cancer patients could be stratified into two different risk groups by

the median value of risk scores, and the patients in the high-risk

group had a higher death probability than those in the low-risk

group (Figure 5A). Next, the RNA-seq data and prognostic
B

C D

E F

G

H

I

J

A

FIGURE 3

Validation of the correlation between ECM characteristics and Th cell infiltration by clinical tissue samples. (A) Measurements of collagen
contents in breast cancer tissues by Sirius red staining and Masson staining. (B) Kaplan-Meier survival analysis revealed the DFS differences in
breast cancer patients with different collagen contents. C-F. Tissue immunofluorescence staining showed the contents of Th1 (C), Th2 (D), Treg
(E) and Th17 (F) cells in breast cancer tissue samples. G-J. Contents of Th1 (G), Th2 (H), Treg (I) and Th17 (J) in breast cancer tissues with
different collagen abundances, and the corresponding correlation analysis between collagen abundances and Th cell contents. DFS, diseases-
free survival; *p<0.05; **p<0.01; ***p<0.001.
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FIGURE 4

Classification of breast cancer patients into three gene-clusters based on DEGs between ECM-clusters. (A) The CDF curves obtained by
consensus clustering based on the DEGs between ECM-clusters. (B) The function delta area under CDF curves. (C) Classification of breast
cancer patients into three gene-clusters according to consensus clustering with k=3. (D) Kaplan-Meier survival analysis demonstrated the
prognostic differences between these three gene-clusters. (E) The heatmap demonstrated the overview of DEGs in the ECM-clusters and gene-
clusters. DEGs, differential expressed genes; CDF, cumulative distribution function.
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FIGURE 5

Development and validation of the ECM-associated prognostic model for breast cancer patients. (A) Kaplan-Meier survival analysis showed the
OS differences of breast cancer patients in different risk groups from TCGA training cohort. (B) Kaplan-Meier survival curve of OS of breast
cancer patients from GEO testing cohort. (C) AUC of time-dependent ROC curves to evaluate the predictive efficacy of the prognostic model in
TCGA training cohort. (D) AUC of time-dependent ROC curves to evaluate the predictive efficacy of the prognostic model in GEO testing
cohort. (E) Distribution of risk scores of breast cancer patients in different ECM-clusters. (F) Distribution of risk scores of breast cancer patients
in different gene-clusters. (G) Nomogram for predicting 1-, 3- and 5-year survival of breast cancer patients constructed by combining risk
scores and clinical parameters. OS, overall survival; GEO, Gene Expression Omnibus; AUC, area under the curve; ROC, receiver operating
characteristic curve; *p<0.05; ***p<0.001.
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information from 3 GEO cohorts (GSE20685, GSE20711 and

GSE42568) of breast cancer patients were extracted for external

validation of the stability and reproducibility of our prognostic

model. This formula obtained from the TCGA training cohort was

then applied to calculate the risk scores of breast cancer patients

from the GEO validation cohort, and Kaplan-Meier analysis also

showed that the prognosis of the high-risk group was significantly

worse than that of the low-risk group (Figure 5B). Furthermore,
Frontiers in Immunology 11
the predictive efficacy of our prognostic model for predicting OS

for breast cancer patients was assessed by time-dependent receiver

operating characteristic (ROC) curves, and the results showed that

our prediction model could achieve superior fitting effect both in

the TCGA training cohort and the GEO validation cohort

(Figures 5C, D). We then detected the link between risk scores

and distinct ECM-clusters or gene-clusters, and found that the

risk scores were much higher in the clusters with poor prognosis
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FIGURE 6

Association of risk scores obtained from the prognostic model with immune infiltration and TMB. (A) Heatmap showing the correlation between
the relative abundance of 22 immune cells and 10 core prognostic genes of our prognostic model. (B-E). Correlation analysis between risk
scores and the contents of CD8+ T cells (B), naïve B cells (C), M1 macrophages (D) and M2 macrophages (E). (F-H). The distribution differences
in stromal scores (F), immune scores (G) and ESTIMATE scores (H) in breast cancer patients of different risk groups. (I) Correlation analysis
between risk scores and TMB of breast cancer patients. (J) The distribution differences of TMB in breast cancer patients from different risk
groups. TMB, tumor mutation burden; *p<0.05; **p<0.01; ***p<0.001; ****p<0.0001.
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(Figures 5E, F). Afterwards, we incorporated the clinical

parameters and risk scores into the establishment of nomogram

model. The corresponding scores of each variable can be obtained

from top scale based on the coefficient values fromCox regression,

and the total summed scores of each breast cancer patient can be

used to e s t imate the 1- , 3 - and 5-year surv iva l

probability (Figure 5G).
Correlation analysis of ECM-related
prognostic risk with immune infiltration,
tumor mutation burden and
drug sensitivity

To verify the correlation between our prognostic model and

intra-tumoral immune cell infiltration characteristics, we next

applied CIBERSORT algorithm to calculate the relative

abundance of 15 immune cells. The heatmap in Figure 6A

demonstrated that all the 10 core prognostic genes constituting

the prognostic model significantly correlated with the expression

levels of immune cells. The correlation analysis between risk

scores and immune cells showed that, the relative abundance of

CD8+ T cells, naïve B cells, and M1 macrophages were

negatively correlated with patients’ risk scores (Figures 6B–D),

while the tumor-promoting M2 macrophages were positively

correlated with risk scores (Figure 6E). To confirm the accuracy

of the link between the prognostic model and TME, ESTIMATE

algorithm was also applied to measure the stromal scores,

immune scores and ESTIMATE scores for breast cancer

patients. We found that compared with the patients in the

low-risk group, the stromal scores in the high-risk group were

significantly up-regulated (Figure 6F), while the immune scores

and ESTIMATE scores were significantly down-regulated

(Figures 6G, H).

Correlation analysis also showed a positive correlation

between TMB and risk scores, that is, the TMB levels in

patients with high-risk were higher than those in patients with

low-risk (Figure 6I, J). Supplementary Figures 4A, B depicted the

mutation profiles of the high-risk and low-risk groups,

respectively. The mutation frequency of patients in the

high-risk group was slightly higher than that in the low-risk

group, but the most common mutated genes were almost

identical. Correlation analysis of risk scores and stem cell

index also demonstrated a positive correlation between them

(Supplementary Figure 4C). Although this correlation was not

strong enough, the relationship between ECM characteristics

and stem cell-like properties still needs to be further investigated.

Finally, we compared the differences in drug sensitivity between

the high-risk group and the low-risk group and screened that the

IC50 values for Bicalutamide and CMK were lower in the high-

risk group (Supplementary Figures 4D, E), while the IC50 values

for Gefitinib and Gemcitabine were lower in the low-risk group

(Supplementary Figures 4F, G). The above drug sensitivity
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results are expected to provide references for targeted

treatment strategies for breast cancer patients with distinct

ECM characteristics.
Discussion

The ECM consists of a variety of structural macromolecules,

such as collagen, laminin, fibronectin and elastin, which stores

growth factors and bioactive molecules, including matrix

metalloproteinases (MMPs), heparan sulfate, and fibroblast

growth factors (26). The tumor and stromal cells in the TME

secrete interstitial matrix to support cell proliferation and tumor

growth. In particular, the ECM components at the tumor site

provide the structural foundation for biological activities, allowing

tumor growth, motility and differentiation (27). Breast cancer

patients stratified according to ECM components and

arrangement demonstrated significantly distinct prognoses,

among which the ECM characteristics of patients with the worst

prognosis were characterized by ordered collagen arrangement

and high expression of integrins and MMPs (6). The ECM-

associated gene set was extracted based on gene ontology terms,

and we then classified breast cancer patients into two ECM-

clusters according to the ECM genes expression profiles.

Significant prognostic difference was found between these two

ECM-clusters. We next performed functional enrichment analysis

of the DEGs, and in addition to differences in ECM, cell adhesion

and other related pathways, we were surprised to find that several

immune-related pathways, including T cell activation, cell

chemotaxis, Th cell differentiation, cytokine and chemokine

activation signaling pathways were significantly enriched. The

above results suggest that the significant prognostic difference

between distinct ECM-clusters may be due to the tumor immune

infiltration traits caused by the distinct ECM characteristics.

Through the ssGSEA, CIBERSORT and ESTIMATE

algorithms, we validated the correlation between the ECM-

associated prognostic model and immune infiltration

characteristics. The ECM-cluster with better prognosis usually

exhibit fewer fibroblasts and tumor-promoting cells (such as M2

macrophages and Treg cells), as well as more tumor-killing cells

(such as M1 macrophages, NK cells, CD8+ T cells and Th1 cells).

Recent studies have also shown that some core components of the

ECM are involved in the regulation of immunemicroenvironment.

For example, collagen can affect the function and phenotype of

tumor-infiltrating immune cells such as tumor-associated

macrophages (TAMs) and T cells (15). The increasing ECM

stiffness and aligned arrangement of collagen could not only

limit the migration of T cells into the tumor core (28–30), but

also affect the interaction between T cells and antigen-presenting

cells (APCs) and reduce T cell activation (31, 32). Although studies

on the mechanosensing of T cells are still limited, it has also been

shown that T cell activation is significantly mitigated when the
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culture matrix stiffness is increasing (32). In addition, when T cells

were cultured on stiff substrates, more anti-inflammatory cytokines

were expressed and secreted (31). TAMs are mainly composed of

anti-inflammatory M2 macrophages, and the tumor-promoting

phenotypes of TAMs are also considered to be affected by the

surrounding ECM on the migration and immunosuppressive

function of TAMs. Studies have demonstrated that monocytes

cultured on the collagen matrix with high density will polarize

towards M2 macrophages, and the ability to attract CD8+ T cells

and promote T cell proliferation will be significantly reduced

(33, 34). Our results undoubtedly solidify and complement the

above findings, and provide new evidence and supplement for the

link between ECM and immune infiltration.

The CD8+ T cells in TME are of much interest due to their

cytotoxic function, while in recent years, CD4+ T cells have

attracted more attention for their coordinating role with other

immune cells or the direct cytotoxic effects. In our study, we

identified a previously unreported link between distinct ECM-

clusters and CD4+ Th cells. We found significant differences in the

proportion of Th cell subpopulations in breast cancer patients with

distinct ECM characteristics. Th1 cells with the function of

activating CD8+ cytotoxic T cells increased in the ECM-cluster

with better prognosis. While the anti-inflammatory and pro-

tumorigenic Th2 cells and immunosuppressive Treg cells were

increased in the ECM-cluster with poor prognosis. The

immunostimulatory Tfh cells and Th17 cells with dual immune

regulatory effects both showed higher abundance in the ECM-

cluster with better prognosis. We speculate that the heterogeneity

in the expression profiles of Th cells may be partly responsible for

the differences in prognosis of distinct ECM-clusters. The reasons

for the Th cells heterogeneity caused by distinct ECM

characteristics have also been provided by several previous

studies. For example, T cells cultured in high density collagen

overexpressed the markers of immunosuppressive Treg cells and

downregulated markers of cytotoxic T cells (31). Moreover, in vivo

studies have demonstrated that collagen can promote the increase

of CD4/CD8 ratio in infiltrating T cells and CD4+ T cells will

differentiate toward pro-tumorigenic Th2 cells (35). The binding of

integrin a2b1, a surface marker for Th17 cells, to collagen

promoted the synthesis of IL-17, and blocking the binding of

collagen and integrin a2b1 decreased the severity of collagen-

induced inflammation (36). However, the specific function and

mechanism by which ECM regulates Th cells activation and

differentiation still need further in-depth studies.

The potential disadvantages of our study should be

acknowledged: 1) A total of 4 cohorts (breast cancer cohort from

TCGA and 3 GEO cohorts) were included in our study for

construction and validation of the ECM-associated prognostic

model. However, all the sequencing data and prognostic

information were obtained from public databases. We believe that

the present prediction model would be more reliable if it can be

validated by a prospective clinical trial cohort. 2) Tissue IF staining

was applied to verify the link between ECM characteristics and Th
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cells infiltration, and we will enrich our results with more sufficient

research methods in the future. 3) In-depth molecular biology

studies will be applied in future studies to elucidate the specific

mechanism by which ECM regulated Th cells infiltration

characteristics and the prognosis of breast cancer patients.

Conclusion

In conclusion, we identified and validated the link between

ECM characteristics and immune infiltration features in breast

cancer, especially the expression profiles of Th cell

subpopulations. We also constructed and verified the ECM-

associated prognostic model using TCGA and GEO databases,

and confirmed that the risk scores of breast cancer patients

obtained from our prognostic model were correlated with

immune infiltration and TMB. Our findings identify a novel

strategy for breast cancer subtyping based on ECM remodeling

characterization and reveal the regulatory roles of Th cells in

ECM remodeling. Targeting ECM remodeling and Th cells hold

potential to be a therapeutic alternative for breast cancer in

the future.
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SUPPLEMENTARY FIGURE 1

Overview of expression levels, mutation and CNV of ECM-associated
genes in breast cancer. (A). Heatmap showing the differences in

expression levels of ECM-associated genes between breast cancer and
normal mammary gland tissues. (B). Volcano map showing the

distribution of differentially expressed ECM-associated genes between
breast cancer and normal mammary gland tissues. (C). Waterfall plot

showing the mutation profiles of ECM-associated genes in breast cancer.
(D). The CNV profiles of ECM-associated genes in breast cancer. CNV,

copy number variation.

SUPPLEMENTARY FIGURE 2

Identification of ECM-clusters by consensus clustering. (A). The CDF
curves obtained by consensus clustering based on ECM-associated

genes. (B). The function delta area under CDF curves.

SUPPLEMENTARY FIGURE 3

The LASSO Cox regression coefficient profiles for establishing the ECM-
associated prognostic model. Abbreviations: LASSO, least absolute

shrinkage and selection operator.

SUPPLEMENTARY FIGURE 4

Mutation profiles, stemness index correlation and drug sensitivity

prediction of breast cancer patients in different risk groups. (A-B). The
mutation profiles of breast cancer patients in high-risk (A) and low-risk (B)
groups. C. Correlation analysis between risk scores and stemness index in

breast cancer patients. (D-G). Prediction of drug sensitivity of breast
cancer patients to antitumor agents – Bicalutamide (D), CMK (E),
Gefitinib (F) and Gemcitabine (G) - in different risk groups.

SUPPLEMENTARY TABLE 1

The 328 ECM-associated genes provided by gene ontology terms.

SUPPLEMENTARY TABLE 2

The information of genes sets for 23 immune cells for ssGSEA algorithm.
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