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An unknown quantum state cannot be copied and broadcast freely due to the no-cloning theorem.
Approximate cloning schemes have been proposed to achieve the optimal cloning characterized by the
maximal fidelity between the original and its copies. Here, from the perspective of quantum Fisher
information (QFI), we investigate the distribution of QFI in asymmetric cloning machines which produce
two nonidentical copies. As one might expect, improving the QFI of one copy results in decreasing the QFI
of the other copy. It is perhaps also unsurprising that asymmetric phase-covariant cloning outperforms
universal cloning in distributing QFI since a priori information of the input state has been utilized.
However, interesting results appear when we compare the distributabilities of fidelity (which quantifies the
full information of quantum states), and QFI (which only captures the information of relevant parameters)
in asymmetric cloning machines. Unlike the results of fidelity, where the distributability of symmetric
cloning is always optimal for any d-dimensional cloning, we find that any asymmetric cloning outperforms
symmetric cloning on the distribution of QFI for d # 18, whereas some but not all asymmetric cloning
strategies could be worse than symmetric ones when d . 18.

C
lassical information can be replicated perfectly and broadcast without fundamental limitations. However,
information encoded in quantum states is subject to several intrinsic restrictions of quantum mechanics,
such as Heisenberg’s uncertainty relations1 and quantum no-cloning theorem2. The no-cloning theorem

tells us that an unknown quantum state cannot be perfectly replicated because of the linearity of the time
evolution in quantum physics, which is the essential prerequisite for the absolute security of quantum cryp-
tography3. Nevertheless, it is still possible to clone a quantum state approximately, or instead, clone it perfectly
with certain probability4,5. Therefore, various types of quantum cloning machines have been designed for different
quantum information tasks, including universal quantum cloning machine (UQCM)6,7, state-dependent cloning
machines8 and phase-covariant quantum cloning machine (PQCM)9–12.

So far, the optimality of the approximate cloning machine is judged generally by whether the obtained fidelity
between the cloning output state and the ideal state achieves its optimal bound. Although the fidelity may have
qualified the complete information of the quantum states, in most scenarios, only the information of certain
parameters which are physically encoded in quantum states is our practical concern. For example, the relative
phase estimation is an extremely important issue in the field of quantum metrology13,14. Thus it is not necessary to
gain complete information of the whole quantum states themselves, but rather the relevant parameter informa-
tion. QFI is a natural candidate to quantify the physical information about the involved parameters15. In a recent
work16, the authors pointed that the QFI of relevant parameter encoded in quantum states also cannot be cloned
perfectly, while it might be broadcast even in some non-commuting quantum states. Furthermore, from the
perspective of QFI, Song et al. showed that Wootters-Zurek cloning performs better than universal cloning for the
symmetric cloning cases17. In our recent work, the multiple phase estimation problem was investigated in the
framework of symmetric quantum cloning machines18.

On the other hand, we note that quantum cloning machines not only provide a good platform for investigating
distribution of quantum information, but also have been proved to be very efficient eavesdropping attacks on the
quantum key distribution (QKD) protocols19–22. In this context, asymmetric quantum cloning machines would be
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of particular interest since the eavesdropper can adjust the trade-off
between the information gained from a quantum communication
channel and the error rate of information transmitted to the author-
ized receiver. Motivated by these considerations, we investigate the
problem of distributing QFI in asymmetric quantum cloning
machines for any dimensionality. We focus on the following four
questions: (i) Is it possible to improve the QFI of one copy by decreas-
ing that of the other copy? If YES, what’s the trade-off relation
between them? (ii) Does asymmetric PQCM always perform better
than asymmetric UQCM on the capability of distributing QFI? (iii)
Does asymmetric cloning always outperform symmetric cloning in
distributing QFI for any dimensionality? (iv) What’s the difference
between fidelity and QFI on the characterization of distributability in
asymmetric cloning? Except for the fourth question need to be cla-
rified in detail, we can briefly answer the first two questions in the
affirmative but the third in the negative. Our results shed an alterna-
tive light on quantum cloning and may be exploited for quantum
phase estimation.

Results
Quantum Fisher information. We start with a brief introduction of
QFI and give a useful form of QFI for a special kind of mixed qudit
states, which usually represents the output states of qudit cloning.
Recall that QFI of parameter h encoded in d-dimensional quantum
state rh is generally defined as15,23,24

F h~Tr rhL2
h

� �
, ð1Þ

where Lh is the so-called symmetric logarithmic derivative, which is
defined by Lhrh~ LhrhzrhLhð Þ=2 with hh 5 h/hh. By diagonalizing
the matrix as rh 5 Snlnjynæ Æynj, one can rewritten the QFI as25,26

F h~
X

n

Lhlnð Þ2

ln
z
X

n

lnF h,n{
X
n=m

8lnlm

lnzlm
yn Lhymjh ij j2, ð2Þ

where F h,n is the QFI for pure state jynæ with the form

F h,n~4 Lhyn Lhynjh i{ yn Lhynjh ij j2
� �

: ð3Þ

Note that equation (2) suggests the QFI of a non-full-rank state is
only determined by the subset of {jyiæ} with nonzero eigenvalues.
Physically, the QFI can be divided into three parts26,27. The first term
is just the classical Fisher information determined by the probability
distribution; The second term is a weighted average over the QFI for
all the nonzero eigenstates; The last term stemming from the mixture
of pure states reduces the QFI and hence the estimation precision
below the pure-state case. Though the equation (2) is powerful, there
is no explicit expression for an arbitrary d-dimensional mixed state.
However, it is worth noting that the output reduced states of UQCM
and PQCM all have a form as

rout~g yj iin yh jz 1{g

d
Id, ð4Þ

which is completely characterized by a parameter independent
shrinking factor g and the dimensionality d. Here, jyæin and Id are
the input state and d-dimensional identity matrix, respectively.
Although rout has such a simple form, an analytical expression of
QFI is still difficult to achieve28. Fortunately, if we restrict our
discussions to the special case of input states in the form

yj iin~
1ffiffiffi
d
p
X

k

eihk kj i, ð5Þ

which are covariant with respect to rotations of the phases, a general
form of QFI for any parameter hk could be given by (see methods)

F hk~
4 d{1ð Þg2

2dzd d{2ð Þg : ð6Þ

The above equation is a key mathematical tool for our analysis of
this paper. Although this expression only holds for the com-
bination of equations (4) and (5), it is powerful since the scaling
form of rout is usually satisfied in quantum cloning machines or in
the case of a pure state under white noises. On the other hand, the
equatorial states are widely employed in the physical implement-
ations of quantum communication ideas (such as BB84 protocol29)
as well as in the demonstration of fundamental questions in quan-
tum information processing. After a simple calculation, we find
that F hk is a monotonically increasing function of the shrinking
factor g. This is to be expected because the larger g indicates more
information the reduced output state rout contains about the rele-
vant parameter.

Distributability. Before moving to the discussion of distribution, a
proper measure that quantify the distributability of cloning machines
should be well defined. Note that one can define the distributability
in different ways which depends on what is distributed in the
procedure. For example, it can be defined from the perspectives of
fidelity which quantifies the total information of the state, and QFI
which quantifies the information of particular parameters in the
state.

It is well known that, unlike the symmetric cloning in which all the
copies are the same, the outputs of asymmetric cloning are noniden-
tical. Hence, the optimality of asymmetric cloning can be judged by
maximizing the sum of all copies’ fidelities, as discussed in refer-
ences30,31. Intuitively, when we consider the distribution of quantum
states, the distributability of asymmetric cloning can be defined as

F~
X

i

Fi, ð7Þ

where Fi is the fidelity between the original and the ith copy. Namely,
the larger F indicates the better capability of distribution on the
quantum states.

In a seminal work24, the authors pointed that both fidelity and QFI
are highly related to the distinguishability of the states, which is
measured by Bures distance32. Therefore, from the perspective of
QFI, the measure

F~
X

i

F i,h, ð8Þ

also qualifies the capability of distributing information of relevant
parameter encoded in the input state, where F i,h denotes the QFI of
parameter h in the ith copy. In the following discussions, we will use
the definitions (7) and (8) to quantify the distributabilities of fidelity
and QFI respectively in asymmetric cloning machines.

QFI distribution for 2-dimensional cloning. As we mentioned
above, one is particularly interested in the asymmetric cloning
machines which produce two copies with different qualities within
the framework of quantum cryptography. Two typical asymmetric
cloning machines are asymmetric UQCM30, which clones all input
states equally well, and asymmetric PQCM9, which works equally
well only for equatorial input states with the form of equation (5). We
first discuss the 2-dimensional cloning by obtaining the analytical
results, and then generalize it to d-dimensional cloning by the
assistance of numerical simulations.

Asymmetric 2-dimensional UQCM. The 1 R 1 1 1 optimal
asymmetric UQCM was independently proposed by Niu and
Griffiths33, Bužek et al34 and Cerf35. Though their formalisms are
slightly different, the results are exactly the same. For the sake of
convenience, we adopt the quantum circuit approach developed by
Bužek. The transformation of asymmetric UQCM can be written in
the following form
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yj iA a Wzj iBRzb 0j iB zj iR
� �

?a yj iA Wzj iBRzb yj iB Wzj iAR,
ð9Þ

where Wzj i~ 00j iz 11j ið Þ
. ffiffiffi

2
p

and zj i~ 0j iz 1j ið Þ
. ffiffiffi

2
p

. The

parameters a and b are real, and satisfy the normalization
condition a2 1 b2 1 ab 5 1. With the transformation (9) in mind,
it is now an easy exercise to verify that the two different copies of the

original state yj i~ 0j izeih 1j i
� �. ffiffiffi

2
p

are

rA~ 1{b2
� �

yj i yh jz b2

2
I2, ð10Þ

rB~ 1{a2
� �

yj i yh jz a2

2
I2: ð11Þ

From the point of geometry, the asymmetric UQCM shrinks the
original Bloch vector by two different shrinking factors (gA 5 1 2 b2,
gB 5 1 2 a2) regardless of its direction. As special cases, we can see
that if gA 5 1, then no information has been transferred from the
original system, while, if gB 5 1, then all of the information in system
A has been transferred to system B. In addition, if gA 5 gB 5 2/3 (i.e.,

a~b~1
. ffiffiffi

3
p

), then it reduces to the symmetric UQCM case.

Obviously, the two shrinking factors gA and gB are related, and
should satisfy the no-cloning inequality30,34

g2
Azg2

Bz 1{gAð Þ 1{gBð Þƒ1, ð12Þ

which is an ellipse in the (gA, gB) space. An optimal asymmetric
UQCM is characterized by a point (gA, gB) which lies on the bound-
ary of this ellipse.

According to equation (6), when d 5 2, the QFI of parameter h is
proportional to g2. Immediately, the QFIs are

FA~ 1{b2
� �2

,F B~ 1{a2
� �2

: ð13Þ

Here and henceforth we omit the subscript hk for brevity since we
restrict our discussions to the single-parameter scenario. Remark-
ably, a trade-off relation exists for the two QFIs: if one QFI is large,
correspondingly another QFI will become small. Combining equa-
tions (12) and (13), the trade-off relation of QFI is expressed as

FAzF Bz
ffiffiffiffiffiffiffi
FA

p
{1

� � ffiffiffiffiffiffiffi
F B

p
{1

� �
ƒ1: ð14Þ

This trade-off tells us that even we only concern cloning the informa-
tion of a particular parameter encoded in quantum states, two close-

to-perfect copies cannot be achieved simultaneously, imposed by
quantum mechanics. An intuitive presentation of this trade-off rela-
tion is shown in Fig. 2(b) (dashed line).

In the following, we consider the distribution of QFI in the asym-
metric UQCM. As we defined in equation (8). the distributability of
QFI is measured by

FUQCM~FAzF B: ð15Þ

Therefore, the largerF is, the more QFI of the relevant parameter has
been distributed to the two copies. We find that the asymmetric
UQCM always performs better than symmetric UQCM in distrib-
uting QFI, which means

FUQCM gA=gBð ÞwFUQCM gA~gBð Þ: ð16Þ

This can be proved by the method of Lagrange multiplier. One will
find three extreme points: (gA 5 0, gB 5 1), (gA 5 gB 5 2/3) and (gA

5 1, gB 5 0). It is easy to verify that F gA~gBð Þ~8=9 is the min-
imum value.

In order to show the difference of distributability between QFI and
fidelity, we also write the corresponding fidelities defined as FA(B) 5

ÆyjrA(B)jyæ

FA~1{
b2

2
, FB~1{

a2

2
: ð17Þ

According to equation (7), we adopt F 5 FA 1 FB to qualify the
capability of asymmetric UQCM in distributing the entire quantum
state. Figure 1 shows the results of asymmetric 2-dimensional
UQCM. It is remarkable that, from the perspective of QFI, the asym-
metric UQCM is always works better than symmetric UQCM, which
is a sharp contrast to the result of fidelity31, where the symmetric
UQCM is always optimal.

Asymmetric 2-dimensional PQCM. In the context of quantum
cryptography3, the UQCM studied in the previous subsection
might be optimal if the detail setup of QKD protocol is not
specified. But it may not be optimal for the quantum states
involved in a special QKD protocol. Practically, it is possible that
we already know a priori information of the input states. Thus, a
state-dependent cloning machine would perform better than
UQCM. The best-known example of state-dependent cloning
machine is the so-called PQCM. The symmetric PQCM was firstly
proposed by Bruß et al for the equatorial qubit state10 and then an
asymmetric version was demonstrated by Niu and Griffiths9.
Recently, the asymmetric PQCM has been experimentally realized
using NMR36 and fiber optics37.

Figure 1 | Results of asymmetric 2-dimensional UQCM. (a) Fidelities as a function of shrinking factor gA and (b) QFIs as a function of gA.
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Previous studies suggest that the equatorial qubit state PQCM can
be realized by both economic9 and non-economic10,38 transforma-
tions. One can check that both economic and non-economic meth-
ods achieve the same distributability of QFI. In the text we discuss the
non-economic case as it can be directly generalized to d-dimensional
PQCM. The transformation of asymmetric PQCM can be written in
the following form

ij iA 0j iB Sj iR?c ij iA ij iB Sij iR
z a ij iA jj iBzb jj iA ij iB
� �

Sj

		 

R
,

ð18Þ

with i, j 5 0, 1 and i ? j. a2 1 b2 1 c2 5 1 is the normalization
condition. jSiæR is a set of orthogonal normalized ancillary state. For

the equatorial qubit-state yj i~ 0j izeih 1j i
� �. ffiffiffi

2
p

, the output states

have the form as

rA~2ac yj i yh jz 1{2ac
2

I2, ð19Þ

rB~2bc yj i yh jz 1{2bc
2

I2: ð20Þ

Then, the shrinking factors are gA 5 2ac, gB 5 2bc. Using the
normalization condition, the shrinking factors can be simplified as

gA~2a
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1{a2{b2
p

, ð21Þ

gB~2b
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1{a2{b2
p

: ð22Þ

As is seen, in the scenario of asymmetric PQCM, there are two free
parameters to be optimized. Therefore, an optimal asymmetric
PQCM is defined as the following: if we fix the quality of one copy,
then the other copy is optimal with the highest quality. From the
equations (21) and (22), one can eliminate b and obtain the trade-off
relation between gA and gB

gB~
gA

a

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1{

g2
A

4a2
{a2

r
: ð23Þ

Assuming gA is constant, the optimal value of aoptimal~gA

. ffiffiffi
2
p

can

be found, and the optimal trade-off relation reduces to

g2
Azg2

B~1: ð24Þ

The corresponding QFIs are

FA~g2
A, F B~g2

B ð25Þ

In the symmetric case, we have gA~gB~1
. ffiffiffi

2
p

. Remarkably,

according to equation (14), one can immediately find the inequality

F PQCM~FAzF B~1§FUQCM : ð26Þ

The meanings of above equation are twofold. On one hand, it indi-
cates that asymmetric PQCM performs better than asymmetric
UQCM in distributing QFI by virtue of the known information.
This result is essentially in agreement with that of fidelity. To be
clear, we plot the trade-off relations between A’s fidelity (QFI) and
B’s fidelity (QFI) for both asymmetric UQCM and PQCM in Fig. 2. It
is evident that the lines of asymmetric PQCM are always above those
of asymmetric UQCM, except for the start points and end points. On
the other hand, it should be noted that, for the 2-dimensional PQCM,
the asymmetric case is as good as the symmetric case on the capabil-
ity of distributing QFI, while the later always performs better than the
former with the measure of fidelity. The reason is that the fidelity FB

as a function of FA is strictly concave, but the QFIF B as a function of
FA is convex. This results in the sum of two fidelities and QFIs
achieving its maximal and minimal value, respectively, in the sym-
metric case.

QFI distribution for d-dimensional cloning. Until now, we have
restricted our discussions to the 2-dimensional cloning. Although
all quantum information tasks can be performed by using only
two-level systems, it has been recently recognized that higher-
dimensional quantum states (i.e., qudits) can offer significant
advantages for improving the security of quantum cryptographic
protocols39, achieving higher information-density coding40,41 and
reducing the required resources for quantum computation and
simulation42,43.

Based on these considerations, it would be essential to extend
above discussions to d-dimensional cloning. One may think the
results will be trivial and analogous conclusions will be obtained as
well as the 2-dimensional cloning. However, as we will show below,
there are some similarities between them, but more importantly,
significant differences will appear with increasing dimensionality d.

Asymmetric d-dimensional UQCM. The optimal asymmetric d-
dimensional UQCM was proposed by Cerf30 and Braunstein et al44.
For a d-dimensional quantum system, the corresponding
asymmetric UQCM can be generalized directly from the
transformation (9) with jW1æ and j1æR instead defined in higher-

dimension, Wzj i~ 1ffiffiffi
d
p
Xd{1

j~0
jjj i, and zj iR~

1ffiffiffi
d
p
Xd{1

j~0
jj iR

respectively. Hence, the normalization condition now reads a2 1

b2 1 2ab/d 5 1. The output reduced density matrices are written
in the form of equation (4)

Figure 2 | Trade-off relations for 2-dimensional asymmetric UQCM and PQCM. (a) Fidelity (b) QFI. The dotted lines denote the symmetric cases.
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rA~ 1{b2
� �

yj i yh jz b2

d
Id, ð27Þ

rB~ 1{a2
� �

yj i yh jz a2

d
Id, ð28Þ

with shrinking factors gA 5 1 2 b2 and gB 5 1 2 a2. In particular, if a2

5 b2 5 d/(2d 1 2), we recover the results of symmetric UQCM.
Similarly, we can obtain a trade-off relation between two shrinking
factors gA and gB.

g2
Azg2

Bz
2d2{4

d2
1{gAð Þ 1{gBð Þƒ1, ð29Þ

which corresponds to a set of ellipses in the space of shrinking factors
that their eccentricities vary with dimensionality. It should be noted
that in the infinite dimensional case, the corresponding ellipse
shrinks to the line gA 1 gB 5 1.

Now we turn to the calculation of QFI. Assuming the input state is
a d-dimensional equatorial state, then the QFIs of output states (27)
and (28) are obtained directly by (6).

FA~
4 d{1ð Þ 1{b2ð Þ2

2dzd d{2ð Þ 1{b2ð Þ , ð30Þ

F B~
4 d{1ð Þ 1{a2ð Þ2

2dzd d{2ð Þ 1{a2ð Þ : ð31Þ

The tradeoff relation between FA and F B can be derived by sub-
stituting

gX~
d2{2dð ÞFXz

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
d2{2dð Þ2F 2

Xz32 d2{dð ÞFX

q
8 d{1ð Þ ð32Þ

into (29) with X 5 A, B, but it is too complicated to present in the text.
Nevertheless, there is no doubt that one cannot gain, at the same
time, two copies whose QFIs are above values allowed by the trade-
off relation.

We are concerned with whether the d-dimensional asymmetric
UQCM still performs better than symmetric UQCM in distributing
QFI. Against all expectations, the results become subtle with increas-
ing d. Unlike the 2-dimensional case where asymmetric UQCM is
always better than symmetric UQCM, the d-dimensional asymmet-
ric UQCM may be worse than symmetric UQCM under certain

conditions. As shown in Fig. 3(a), we find the sum of two fidelities
still reaches its largest value at the point of gA 5 gB 5 (d 1 2)/(2d 1

2), which means, by the measure of fidelity, the symmetric UQCM
will optimally copy the state regardless of the dimension31. However,
Figure 3(b) shows that the distributability of QFI achieves its smallest
value at the point of gA 5 gB when d 5 3, 10, while it is interesting to
note that the point of gA 5 gB becomes a local maximum point when
d 5 30. Namely, the asymmetric UQCM is no longer always better
than symmetric UQCM with increasing d. The reason is that even
though QFI is a monotonically function of the shrinking factor, it is
not a linear function of it. This sophisticated relation betweenF and
g reveals above interesting results.

Naturally, we start wondering when the asymmetric UQCM may
become worse than symmetric UQCM. The numerical simulation
shows that when d # 18, the gA of global minimal F is equal to the
symmetric case. While a bifurcation appears at d 5 18, which means
gA 5 (d 1 2)/(2d 1 2) is no longer the global point of minimalF , as
shown in Fig. 4. Mathematically, we can understand the bifurcation
as follows: F as a function of gA has three extreme points which are
physically allowed when d # 18, and gA 5 gB is the point of global
minima. When d . 18, it has five extreme points, as seen from the
insertion in Fig. 3b. Moreover, gA 5 gB is no longer the global
minima but a local maximum point. Thus, the symmetric UQCM
may outperform the asymmetric case. However, it is hard to under-
stand why the critical point is d 5 18 in physical, we conjecture this
critical point is related to the Hilbert space structure of qudits. We
leave this as an open question and the further study is underway.

Asymmetric d-dimensional PQCM. The generalization of
asymmetric PQCM to d-dimensional is much more difficult, and
in particular, it is too complicated to present an analytical trade-off
relation between two copies. However, with the aid of numerical
simulations, we can confirm two main results about the distribu-
tion of QFI in asymmetric d-dimensional PQCM: (i) PQCM gains
an advantage over UQCM by utilizing the priori information, and (ii)
a sudden change of the point of minimum also exists in asymmetric
PQCM with increasing d.

The cloning transformation of asymmetric d-dimensional PQCM
can be introduced45

ij iA 0j iB Sj iR?c ij iA ij iB Sij iR

z a
Xd{1

i=j

ij iA jj iBzb
Xd{1

i=j

jj iA ij iB

 !
Sj

		 

R,

ð33Þ

Figure 3 | Results of asymmetric d-dimensional UQCM. (a) Fidelity and (b) QFI as a function of gA for d 5 3, 10, 20, 30, respectively from top to down.

The red circles denote the corresponding results of symmetric UQCM, and the insertion is magnified plot of d 5 30.
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with the normalization condition (d 2 1)(a2 1 b2) 1 c2 5 1. Given
the input state in the form of (5), then, the shrinking factors of the
output copies read as

gA~ d{2ð Þa2z2a
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1{ d{1ð Þ a2zb2ð Þ

p
, ð34Þ

gB~ d{2ð Þb2z2b
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1{ d{1ð Þ a2zb2ð Þ

p
, ð35Þ

where we have use the normalization condition to eliminate the
parameter c. Similar to the 2-dimensional case, here we again need
to optimize two free tuning parameters. Therefore, in the same way,
an optimal asymmetric PQCM is defined by optimizing gB as large as
possible when gA is fixed, and vice versa. By eliminating the para-
meter b, we can obtain the trade-off relation (not the optimal one)

gB~
d{2
d{1

1{ d{1ð Þa2{
gA{ d{2ð Þa2

2a

� �2
" #

z
gA{ d{2ð Þa2

a

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1{

gA{ d{2ð Þa2

2a

� �2
{a2

d{1

vuut
:

ð36Þ

The optimal trade-off relation need to be further optimized by
choosing a proper value of aoptimal to make the largest gB.
Unfortunately, there is not a closed analytical form of aoptimal

for any dimensionality d. However, by simple numerical simula-
tions, we find that asymmetric PQCM indeed always performs
better than asymmetric UQCM in distributing QFI as shown in

Fig. 5(a). When the dimensionality d is large (e.g., d 5 20), it
should be noted that the advantage of PQCM over UQCM almost
disappears. Moreover, similar to the case of asymmetric d-dimen-
sional UQCM, the asymmetric d-dimensional PQCM is not
always better than the symmetric case for any dimensionality d.
Figure 5(b) shows that a bifurcation of the point of global min-
imum also occurs at d 5 18. This phenomena stresses that the
critical point appearing at d 5 18 is not in any sense accidental.
The physical reason behind this is worth further study.

Discussions
In this paper, we have investigated the distribution of QFI in
asymmetric cloning machines which produce two nonidentical
copies. In particular, we have elucidated four questions as we
mentioned before. Here, we summarize our results by replying
these questions. (i) The answer is YES. It is definite that improv-
ing the QFI in one copy results in decreasing the QFI of the other
copy, and the trade-off relation can be obtained analytically except
for the asymmetric d-dimensional PQCM. (ii) The answer is also
YES. Thanks to a priori knowledge of the input states, PQCM
always performs better than UQCM in distributing QFI. (iii)
The answer is not so straightforward. It should be divided into
two categories: for 2-dimensional cloning, asymmetric cloning
always outperforms symmetric cloning on the distribution of
QFI; While for the d-dimensional cloning case, the above conclu-
sion only holds when d # 18 and becomes invalid when d . 18,
i.e., the asymmetric cloning is not always better than symmetric
cloning for any dimensionality. (iv) The most significant differ-
ence between fidelity and QFI is that fidelity is a linear function of
the shrinking factor while QFI is nonlinear. This leads to the
counterintuitive result that symmetric cloning is always optimal
from the perspective of fidelity, but asymmetric cloning usually
works better than symmetric cloning on the distribution of QFI,
except for some particular situations (e.g., when d 5 30 and gA 5

0.25, see the insertion in Fig. 3b).
In view of these findings, we note that there are some problems in

need of further clarifications. The first important issue is to under-
stand why does the critical point appear at d 5 18, not other num-
bers. Secondly, we should realize that we have confined our
discussion to the distributability of single parameter in asymmetric
cloning machines. However, from both theoretical and practical
points of view, it seems to be interesting to examine the problem
of multi-parameter distribution in asymmetric quantum cloning.
Intuitively, there would be a trade-off relation of the quantum
Fisher information matrices between two nonidentical copies.
These would be very intriguing topics that need further studies.

Figure 4 | gA of minimal FUQCM as a function of dimensionality d.

Figure 5 | Results of asymmetric d-dimensional PQCM. (a) Trade-off relations between FA and F B for d-dimensional asymmetric UQCM (dashed

lines) and PQCM (solid lines) with d 5 3, 10, 20, 30, respectively from top to bottom. The insertion is magnified plot of d 5 10. Note that when d 5 20 and

30, the two lines overlap so greatly that cannot be resolved. (b) gA of minimal F PQCM as a function of dimensionality d.
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Methods
Here, we give the details of the derivation of equation (6) from equations (4) and (5).
To be clear, we can rewrite the equation (4) as

r~
d{1ð Þgz1

d
yj i yh jz 1{g

d
Id{ yj i yh jð Þ: ð37Þ

Note that the eigenvalues of r consists of only two categories: l0 5 [(d 2 1)g 1 1]/d,
and ln 5 (1 2 g)/d with 1 # n # d 2 1. Obviously, jy0æ 5 jyæ is an eigenstate of r.
Thus the problem is converted to construct a complete orthogonal set (containing d 2

1 bases) of the operator P̂~I{ yj i yh j which is also orthogonal to jyæ at the same
time. The procedure can be divided into three steps: (i) finding d 2 1 bases of P̂which
are orthogonal to jyæ; (ii) using the Gram-Schmidt procedure to orthogonalize them
and (iii) the normalization.

Step (i) Intuitively, the d 2 1 bases which are orthogonal to jyæ can be written as

Qnj i~
1ffiffiffi
2
p {e{i hn{h0ð Þ,0 . . . , 1|{z}

nth

, . . . 0

2
4

3
5 ð38Þ

where 1 # n # d 2 1.
Step (ii) According to the procedure of Gram-Schmidt orthonormalization, one

can construct a set of orthogonal but un-normalized bases:

~yn

		 E
~ Qnj i{

1
n

Xn{1

m~1

ei hm{hnð Þ Qj

			 E: ð39Þ

Step (iii) Notice that ~yn
~yn

		D E
~ nz1ð Þ=2n, we finally obtain the d 2 1 orthogonal

and normalized bases of the operator P̂

ynj i~
ffiffiffiffiffiffiffiffiffiffi

2n
nz1

r
Qnj i{

1
n

Xn{1

m~1

ei hm{hnð Þ Qj

			 E
" #

, ð40Þ

which are also orthogonal to jyæ.
By this time, we have diagonalized the state (4) in the bases {jyæ, jy1æ, …, jynæ}, and

then the QFI can be calculated by equation (2). Note that all the parameters hk is
equally weighted due to the symmetry of jyæ, thus the QFI of any parameter is the
same. Furthermore, we observe that the part of classical Fisher information vanishes
since the probability distribution is independent of parameters hk, if measured in this
bases. The remaining work is to determine the last two terms in equation (2). After
lots of complicated but straightforward calculations, we obtain the QFI of any para-
meter hk

F hk ~
X

n

lnF h,n{
X
n=m

8lnlm

lnzlm
yn Lhymjh ij j2,

~
4 d{1ð Þg2

2dzd d{2ð Þg :
ð41Þ
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