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Serotonin (5-hydroxytryptamine [5-HT]) is a monoamine that has various functions in both neuronal and non-neuronal sys-
tems. In the central nervous system, 5-HT regulates mood and feeding behaviors as a neurotransmitter. Thus, there have been 
many trials aimed at increasing the activity of 5-HT in the central nervous system, and some of the developed methods are al-
ready used in the clinical setting as anti-obesity drugs. Unfortunately, some drugs were withdrawn due to the development of 
unwanted peripheral side effects, such as valvular heart disease and pulmonary hypertension. Recent studies revealed that pe-
ripheral 5-HT plays an important role in metabolic regulation in peripheral tissues, where it suppresses adaptive thermogenesis 
in brown adipose tissue. Inhibition of 5-HT synthesis reduced the weight gain and improved the metabolic dysfunction in a diet-
induced obesity mouse model. Genome-wide association studies also revealed genetic associations between the serotonergic 
system and obesity. Several genetic polymorphisms in tryptophan hydroxylase and 5-HT receptors were shown to have strong 
associations with obesity. These results support the clinical significance of the peripheral serotonergic system as a therapeutic 
target for obesity and diabetes. 
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INTRODUCTION

Serotonin (5-hydroxytryptamine [5-HT]) has diverse func-
tions in neuronal and non-neuronal systems. It acts as a hor-
mone and a mitogen, as well as a neurotransmitter. At the time 
of its discovery (1918), 5-HT was thought to be a vasoconstric-
tor stored in platelets, so it was named serotonin after the Latin 
word serum and the Greek word tonic [1,2]. In 1937, 5-HT was 
found in the enterochromaffin (EC) cells of the gastrointestinal 
tract and named enteramine because it was thought to cause 
smooth muscle contraction in the gut [3]. It was not until 1952 
that scientists reported 5-HT’s role as a neurotransmitter [4]. It 
has since been discovered that 5-HT is a neurotransmitter as-
sociated with mood, behavior, sleep cycles, and appetite [2]. 

  The synthesis of 5-HT is initiated with the hydroxylation of 
tryptophan by tryptophan hydroxylase (TPH), which is the 
rate-limiting enzyme for 5-HT synthesis. Thus, 5-HT produc-
tion is regulated by the activity of TPH and the availability of 
tryptophan. The biological actions of 5-HT are mediated 
through the membrane-bound 5-HT receptors and terminat-
ed by its uptake into cells through a 5-HT transporter (SERT, 
Slc6a4) [5]. There are two isoforms of TPH. TPH1 is predomi-
nantly expressed in the peripheral tissues including the pineal 
gland, whereas TPH2 is exclusively expressed in the brain and 
the enteric nervous system [6,7]. Because 5-HT cannot cross 
the blood-brain barrier, the peripheral 5-HT system is func-
tionally separate from the central 5-HT system. 
  Within the central and enteric nervous systems, 5-HT is 
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synthesized and stored in the presynaptic neurons. Most 5-HT 
in the periphery is synthesized in EC cells [8] and platelets are 
the major storage site for circulating 5-HT. Several studies re-
cently reported that 5-HT can be synthesized in other periph-
eral tissues (e.g., the heart, pancreas, and adipose tissue) and 
plays a role in a cell-autonomous manner [9-11]. 
  In this review, we will discuss the recent findings on the 
roles of central/peripheral 5-HT in metabolism and its clinical 
implications for the treatment of obesity. 

THE 5-HT RECEPTOR FAMILIES

5-HT regulates various physiological and pathological process-
es, which are mediated through numerous 5-HT receptors. The 
5-HT receptors are phylogenetically ancient and present in the 
lowest invertebrates as well as the higher mammals [12]. More 
than fourteen 5-HT receptors in seven families are known to 
mediate the diverse effects of 5-HT (Table 1) [13,14]. All 5-HT 
receptors are G-protein-coupled receptors except for the 5-HT3 
receptor, which is a ligand-gated cation channel [12,15].

Table 1. The 5-HT receptors, their functions and the specific 
receptor agonists/antagonists

Receptor subtype Structure Transduction system
5-HT1A GPCR ↓cAMP

G-protein coupled- K+ current

5-HT1B GPCR ↓cAMP

5-HT1D GPCR ↓cAMP

5-HT1E GPCR ↓cAMP

5-HT1F GPCR ↓cAMP

5-HT2A GPCR ↑PCR

5-HT2B GPCR ↑PCR

5-HT2C GPCR ↑PCR

5-HT3 LGIC Ion conductance (K+, Na+, Ca2+)

5-HT4 GPCR ↑cAMP

5-HT5A GPCR ↓cAMP

Ca2+ mobilization

K+ current

5-HT5B GPCR Not known

5-HT6 GPCR ↑cAMP

5-HT7 GPCR ↑cAMP

5-HT, 5-hydroxytryptamine; GPCR, G protein coupled receptor; 
cAMP, cyclic adenosine monophosphate; PCR, phosphocreatine; 
LGIC, ligand-gated ion channel.

  The 5-HT1 receptor family consists of five receptors: the 
5-HT1A, 5-HT1B, 5-HT1D, 5-HT1E, and 5-HT1F receptors. 
All these receptors are Gαi/o protein-coupled receptors that in-
hibit adenyl cyclase and reduce the cyclic adenosine monophos-
phate levels. The 5-HT2 receptor family consists of the 5-HT2A, 
5-HT2B, and 5-HT2C receptors. These receptors are Gαq/11 
protein-coupled receptors that mediate excitatory neurotrans-
mission. The 5-HT2A and 5-HT2C receptors are mainly ex-
pressed in the central nervous system (CNS). The 5-HT2B re-
ceptor is expressed in peripheral tissues including the liver, kid-
ney, heart, and stomach. It is associated with cardiac function, 
valvular heart disease, and heart morphogenesis. The 5-HT3 re-
ceptor is a member of the Cys-loop ligand-gated ion channel 
family. This channel is formed by a homopentamer of 5-HT3A 
subunits or heteropentamer of 5-HT3A subunits with 5-HT3B-
E subunits. Opening of the channel in response to 5-HT acti-
vates an inward current and depolarizes the membrane. 
 
REGULATION OF APPETITE BY CENTRAL 
5-HT

Appetite is regulated by hypothalamic feeding circuits. Briefly, 
anorexigenic proopiomelanocortin (POMC) neurons release 
α-melanocyte-stimulating hormone, the endogenous ligand for 
the melanocortin 4 receptor (MC4R), to reduce appetite and 
food intake. Orexigenic neuropeptide Y/agouti-related peptide 
(NPY/AgRP) neurons increase appetite and food intake by re-
leasing the endogenous MC4R antagonist, AgRP, and they sup-
press POMC neurons by releasing γ-aminobutyric acid (GABA). 
  It has long been known that 5-HT in the hypothalamus 
plays an important role in the control of appetite and energy 
balance. Central 5-HT has suppressive effects on food intake 
and body weight. Fenfluramine, which enhances 5-HT release, 
is a prototypical agent that leads to serotonergic suppression of 
feeding [16]. 5-HT reuptake inhibitors and monoamine oxi-
dase inhibitors, which can increase the central serotonergic 
activity, also reduce food intake [17,18]. In contrast, inhibition 
of central 5-HT synthesis by intraventricular injection of a 
TPH inhibitor induced hyperphagia and obesity in rats [19]. 
  Studies using receptor-specific knock-out (KO) mice have 
provided more precise insight into the roles of 5-HT in appetite 
regulation. The involvement of central 5-HT1B and 5-HT2C 
receptors in the regulation of appetite was initially suggested by 
the anorectic effects of a central serotonergic agonist (m-chlo-
rophenylpiperazine [mCPP]) [20]. A major contribution of 
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5-HT2C receptor to feeding control was confirmed by a study 
using Htr2c KO mice [21]. Htr2c KO mice are hyperphagic and 
obese, and the anorectic effects of mCPP do not occur in Htr2c 
KO mice [22]. Furthermore, studying the effects of 5-HT on 
the hypothalamic feeding circuit revealed that 5-HT activates 
POMC neurons through the 5-HT2C receptor and inhibits 
NPY/AgRP neurons through the 5-HT1B receptor [23]. Thus, 
central 5-HT inhibits food intake by modulating the hypotha-
lamic feeding circuits. Many drugs targeting 5-HT2C receptor 
have been produced and some are currently being used in the 
clinical setting. However, others were discontinued because of 
severe complications such as pulmonary hypertension and val-
vular heart disease (Table 2) [24,25]. Recently, a selective 5- 
HT2C receptor agonist (Belviq, lorcaserin hydrochloride; Are-
na, Zofingen, Switzerland) was officially approved for use in 
the treatment of obesity [26]. 
  Given that TPH2 is exclusively expressed in the brain, Tph2 
KO mice were expected to be hyperphagic and obese. Howev-
er, Tph2 KO mice do not show an obese phenotype although 
their central 5-HT level is decreased [27,28]. In addition, 
Htr1b KO mice do not become obese although they are hyper-
phagic [29]. There have also been reports supporting that cen-
tral 5-HT increases the sympathetic tone and activates brown 
adipose tissue (BAT) [30,31]. Taken together with the known 
adverse effects of anti-obesity drugs with regard to their in-
creasing the 5-HT activity in the brain, these controversial 
data indicate that increasing the 5-HT activity in the brain 
may not be a good strategy for anti-obesity treatment. 

 ROLES OF 5-HT IN PERIPHERAL TISSUES

Although TPH1 is widely expressed in the peripheral tissues, 
over 90% of the total body 5-HT is produced in the gut [32]. 
The majority of the peripheral 5-HT is stored in platelets and 
controls the hemodynamics upon the activation of platelets. 
5-HT is also present in other peripheral tissues and acts auton-
omously on many cells in the cardiovascular, gastrointestinal, 
hematopoietic, and immune systems, as well as in the bone, 
liver, and placenta [33].

Gut
EC cells are dispersed throughout the intestinal mucosa and 
are the main source of 5-HT in the gut. The major targets of the 
gut-derived 5-HT (GDS) are the mucosal projections of prima-
ry afferent neurons. These include extrinsic nerves and afferent 
neurons. The extrinsic nerves transmit sensations of nausea 
and discomfort to the CNS. There are two types of intrinsic pri-
mary afferent neurons (IPANs). The submucosal IPAN regulate 
the peristaltic and secretory reflexes, whereas myenteric IPAN 
regulate giant migrating contractions. The 5-HT secreted from 
myenteric neurons mediates fast and slow excitatory neuro-
transmission and regulates gastrointestinal motility. 
  Many 5-HT receptor agonists/antagonists are already used 
to regulate gut motility in the clinical setting (Table 3). Pres-
sure, acid, and/or cancer therapeutic agents are known to re-
lease 5-HT from EC cells, which provokes abdominal discom-
fort and nausea [34,35]. 5-HT3 receptor antagonists, such as 

Table 2. Anti-obesity drugs that work by regulating the central serotonergic system

Name or code Company Action Current status

Lorcaserin Arena Pharma 5-HT2C receptor agonist FDA approved.
ATHX-105 Athersys 5-HT2C receptor agonist Withdrawn 
BVT.74316 Biovitrum 5-HT6 receptor antagonist Withdrawn
PRX-07034 EPIX Pharma 5-HT6 receptor antagonist Phase lI
Tesofensine NeuroSearch 5-HT/DA/NA reuptake inhibitor Phase III
Dov-21,947 Dov Pharmaceuticals 5-HT/DA/NA reuptake blocker Phase ll
Sibutramine 5-HT/NA reuptake inhibitor FDA approved (1997)

Withdrawn due to cardiovascular 
   complication (2010)

Fenfluramine/phentermine 5-HT releasing agent/NA stimulant FDA approved (1973)
Withdrawn due to cardiovascular 
   complication (1997)

Adapted from ClinicalTrials.gov [25].
5-HT, 5-hydroxytryptamine; FDA, Food and Drug Administration; DA, dopamine; NA, noradrenaline.
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ondansetron (Zofran; GSK, London, UK), granisetron (Kytril; 
Roche Laboratories, Basel, Switzerland), or alosetron (Lotron-
ex; GSK, London, UK), alleviate the 5-HT-induced discomfort 
that extrinsic sensory nerves convey to the CNS. Irritable bow-
el syndrome (IBS) is a disease linked to the serotonergic sys-
tem. The persistent visceral hypersensitivity of the bowel in IBS 
patients can be blunted by the administration of a 5-HT4 re-
ceptor agonist (Tegaserod; Novartis, Basel, Switzerland) [36]. 
Thus, drugs that inhibit the 5-HT3 receptor or enhance the 
5-HT4 receptor have been used to treat IBS.
  Many studies suggest that 5-HT plays a role in the pathogene-
sis of gastrointestinal diseases by affecting the production of pro-
inflammatory mediators and the immune system [37]. 5-HT re-
ceptors have been identified on various immune cells such as 
lymphocytes, monocytes, macrophages, and dendritic cells 
[38,39]. The T lymphocyte-derived 5-HT may act as an auto-
crine factor and has demonstrated a fundamental role as an in-
trinsic cofactor in T-cell activation and function through the 
5-HT7 receptor [40].

Liver
5-HT is known to regulate liver regeneration. Partial hepatec-

tomy has been widely used as an experimental model to un-
derstand the role of 5-HT in liver regeneration. The number of 
platelets (filled with 5-HT) strongly correlates with the hepa-
tocyte proliferative capacity [41]. In contrast, several studies 
using SERT-deficient rats reported that the regenerative pro-
cess is not influenced when the platelet 5-HT level is reduced 
[42]. Thus, the mechanism underlying liver regeneration is 
more complex than has previously been thought, and more 
studies are needed to elucidate the main source of 5-HT to 
regulate liver regeneration. To directly examine the function 
of 5-HT in liver regeneration, partial hepatectomy was per-
formed on Tph1 KO and wild type (WT) control mice. All 
markers of hepatocyte proliferation were reduced in Tph1 KO 
mice, suggesting that 5-HT is involved in the induction of he-
patocyte proliferation after a major loss of hepatic tissue [43]. 
It has also been demonstrated that 5-HT can promote liver re-
generation after liver injury through the 5-HT2 receptor or 
5-HT7 receptor [44,45].
  Crane et al. [46] reported a role of peripheral 5-HT in the liv-
er after exposure to a high fat diet (HFD). When fed a HFD, 
WT mice become obese and develop fatty liver disease. In con-
trast, Tph1 KO mice do not develop a fatty liver after exposure 
to a HFD and have reduced fat accumulation in the liver. 5-HT 
increases hepatic glucose uptake and fat content in liver [47,48]. 
The duodenal 5-HT content increases in ob/ob mice and treat-
ment with a 5-HT3 receptor antagonist caused the reduction of 
the elevated 5-HT levels and an increase in SERT in the duode-
num. In these mice, the 5-HT3 receptor antagonist also reduced 
the fat content, inflammation, and necrosis of the liver [48].
  With regard to insulin resistance, Sumara et al. [8] reported 
that inhibition of GDS improves the glucose tolerance in mice 
fed a HFD. In hepatocytes, GDS signaling through the 5-HT2B 
receptor promotes gluconeogenesis. In addition, GDS pre-
vents glucose uptake into hepatocytes in a glucose transporter 
2-dependent manner. Therefore, gut-specific Tph1 KO mice 
and liver-specific Htr2b KO mice showed improved glucose 
tolerance compared to WT mice [8]. 

Pancreatic β-cells and the impact of 5-HT on diabetes 
mellitus 
It has long been known that 5-HT is present in the same vesi-
cle with insulin in pancreatic β-cell after preloading of 5-hy-
droxytryptophan, a precursor of 5-HT, and 5-HT has been as-
sociated with the regulation of the blood glucose concentra-
tion [49,50]. Recently, 5-HT has been identified as a down-

Table 3. Effects of 5-HT receptor agonists/antagonists in the gut

Class Compound Effect

5-HT3 receptor 
   antagonist

Ondansetron
Granisetron

Slower small bowel transit
Decreased intestinal secretion

Alosetron Inhibition of colonic response 
   to feeding

Cilansetron Slower colonic transit
5-HT3 receptor 
   agonist

MKC-733 Slower emptying of liquids
Faster small bowel transit
Stimulation of interdigestive 
   phase 3

5-HT4 receptor 
   agonist

Tegaserod
Prucalopride

Faster gastric emptying
Enhanced gastric 
   accommodation

Renzapride Faster small bowel and 
   colonic transit

Cisapride Enhanced intestinal secretion
5-HT1 receptor 
   agonist

Sumatriptan Enhanced gastric 
   accommodation

Buspirone Slower gastric emptying
R-137696 Stimulation of interdigestive 

   phase 3

5-HT, 5-hydroxytryptamine.



Peripheral serotonin is the obesity hormone

93Diabetes Metab J 2016;40:89-98http://e-dmj.org

stream molecule of placental lactogen that mediates the adap-
tation of β-cells to pregnancy [10]. In response to the lactogens 
produced during pregnancy, the expression of Tph1 rises 
sharply in pancreatic β-cells, resulting in massive production 
of 5-HT in β-cells [10]. Islet 5-HT acts in an autocrine/para-
crine manner through the 5-HT3 receptor to increase the glu-
cose responsiveness of β-cells and thereby increases the overall 
islet glucose-stimulated insulin secretion (GSIS) [51,52]. In 
addition, the expression of the 5-HT2B receptor increases 
during mid-gestation to stimulate β-cell proliferation and in-
crease the β-cell mass, whereas  5-HT1D receptor expression 
increases at the end of gestation to reduce the β-cell mass [10].
  5-HT also regulates insulin secretion in a diet-induced insu-
lin-resistant state. The β-cell-specific Tph1 KO mice and Htr3a 
KO mice developed glucose intolerance compared to WT mice 
after exposure to an HFD. The GSIS was impaired in islets iso-
lated from HFD-fed Htr3a KO and β-cell-specific Tph1 KO 
mice, and 5-HT treatment improved the insulin secretion from 
the islets of β-cell-specific Tph1 KO mice, but not from the 
Htr3a KO islets [51]. In addition, 5-HT production has been 
observed in the embryonic pancreas. In particular, TPH1 ex-
pression is upregulated in newborn β-cells during the perinatal 
period while β-cells are actively proliferating [53]. Given that 
β-cells produce 5-HT under two physiological conditions of 
β-cell proliferation, the perinatal period and pregnancy, 5-HT 
is thought to be an important regulator of β-cell proliferation 
as well as insulin secretion [10,51,52,54]. 

Adipose tissues 
The biological functions of peripheral 5-HT in the regulation 
of energy homeostasis have been extensively studied using 
chemical agonists and antagonists since the 1960s. By taking 
advantage of mouse genetic studies, it has become possible to 
better understand the precise roles of 5-HT in energy metabo-
lism. SERT KO mice exhibit an obese phenotype although they 
are expected to be slim due to the anorexigenic effects of cen-
tral 5-HT [55]. Body weight is reduced in Tph1 and Tph2 dou-
ble KO mice, as well as Tph1 KO mice [27,28]. However, the 
body weights of gut-specific Tph1 KO mice are comparable to 
those of WT control mice [8]. These data suggest that 5-HT, 
other than GDS, may play a role in regulating systemic energy 
homeostasis. Recently, two independent studies have high-
lighted the role of adipocyte-derived 5-HT in energy storage in 
the white adipose tissue (WAT) and energy expenditure in the 
BAT [11,46]. In a diet-induced mouse model of obesity, the 

Tph1 expression and tissue 5-HT concentrations were elevated 
in adipose tissues [11,46]. Tph1 KO mice were protected from 
obesity and the related metabolic dysfunctions [46]. Tph1 KO 
mice gained significantly less weight and had lower adiposity 
when fed an HFD. The glycemic control is also improved in 
Tph1 KO mice, although the glucose uptake was similar in the 
muscle, liver and heart, indicating that the BAT make a major 
contribution to the increase in the basal metabolic rate [46]. 
Indeed, energy expenditure was enhanced in Tph1 KO mice 
when they were fed an HFD. The BAT activity increased in a 
Ucp1-dependent manner in Tph1 KO mice. The obesogenic 
actions of peripheral 5-HT were also confirmed using a periph-
eral TPH inhibitor (LP-533401) [11,46]. Furthermore, a cell 
autonomous effect of 5-HT in adipose tissue has been shown in 
adipocyte-specific Tph1 KO mice [11]. The adipocyte-specific 
Tph1 KO induced Ucp1 and Dio2 expression in the BAT and 
subcutaneous WAT [11]. 
  Regarding brown fat thermogenesis, the 5-HT3 receptor 
plays a major role in diet-induced thermogenesis [11]. Diet-in-
duced thermogenesis was robustly increased in the BAT of 
Htr3a KO mice fed a HFD [11]. In addition to the role of 5-HT 
in the BAT, in vitro experiments using 3T3-L1 adipocytes pro-
vided a hint about the role of 5-HT in adipogenesis [11,56]. It 
was known that 5-HT can increase the lipid accumulation in 
human and mouse fat cells [57]. It was also known that 5-HT2A 
receptor expression is increased in the hypertrophied 3T3L1 
adipocytes and WAT of db/db mice, and the activation of the 
5-HT2A receptor reduces adiponectin expression in hypertro-
phied 3T3L1 adipocytes [58]. Treatment with a 5-HT2A recep-
tor antagonist increased the lipid accumulation and circulating 
adiponectin levels [11,59]. An antagonist for the 5-HT2A re-
ceptor inhibited adipogenesis [56]. Thus, 5-HT increases ener-
gy storage in the WAT through 5-HT2A receptor and inhibits 
energy expenditure in the BAT through 5-HT3 receptor. Taken 
together, these recent findings suggest that 5-HT negatively 
regulates the sensitivity of BAT to β-adrenergic stimulation.

GENETICS OF 5-HT AND OBESITY

To understand the genetic basis of obesity, many genome-wide 
association studies (GWAS) have been conducted. Several 
GWAS revealed genetic associations between the serotonergic 
system and obesity. The first association between TPH1 and 
obesity was identified through a GWAS in Koreans [60]. A ge-
netic variant of TPH1 (rs623580) was associated with the body 
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mass index in a GWAS comprising 8,842 subjects (P=0.0047), 
and single nucleotide polymorphisms (SNPs) of TPH1 were 
significantly associated with weight gain during pregnancy in 
women with gestational diabetes mellitus. Several GWAS re-
vealed associations between SNPs of the 5-HT receptors and 
obesity (Table 4) [60-67]. SNPs of HTR2A had strong associa-
tions with obesity in both European and Asian ethnic groups 
[61-63,67]. SNPs in the promoter (rs6311, -1438 [G/A]) and 
intron (rs2070040, 2416 [C/T]) were associated with metabol-
ic syndrome in a study of 934 European subjects. Central obe-
sity (a high waist circumference) showed a significant associa-
tion with the -1438 GG genotype (odds ratio [OR], 1.57; P= 
0.003), and the -1438 GG and 2416 TT genotypes were associ-
ated with an increased risk of metabolic syndrome (OR, 1.71; 
P=0.016) [62]. In 478 healthy Chinese subjects, 12 SNPs in 
seven genes (MAOB, SLC18A1, HTR2A, HTR2C, HTR3B, 
HTR4, and HTR7) were significantly associated with the body 
mass index [67]. These genetic studies indicate that the identi-
fication of serotonergic system defects can be used for risk 
prediction and to develop individualized treatments for obesi-
ty and metabolic syndrome.

CONCLUSIONS

The human body has two separate serotonergic systems: the 

central 5-HT and peripheral 5-HT systems (Fig. 1). With re-
gard to the central 5-HT system, increasing the 5-HT signal-
ing has been utilized therapeutically to reduce body weight by 
reducing appetite. In 2010, the U.S. Food and Drug Adminis-
tration approved a new selective 5-HT2C receptor agonist 
(Belviq, lorcaserin hydrochloride) for use in the treatment of 
obesity [26]. This drug was also approved by the Ministry of 
Food and Drug Substances in Korea. In peripheral tissues, 
suppressing 5-HT signaling might represent a new target for 
anti-obesity treatment by increasing energy expenditure and 
improving insulin resistance [11,46]. Systemic TPH1 inhibi-
tors and a peripheral TPH1 inhibitor (LP-533401) have al-
ready been patented for treating diabetes and obesity [68,69]. 
However, there have not yet been any clinical trials using these 
drugs to treat obesity. Recent GWAS results support the clini-
cal importance of serotonergic regulation in human metabo-
lism, but most of these studies have small sample sizes and 
have not been validated. Therefore, to enhance our under-
standing of the role of 5-HT in metabolism and to provide ef-
fective therapeutic applications of 5-HT, more clinical studies 
are needed on drugs that can regulate the serotonergic system, 
and genetic studies are needed to investigate the associations 
between 5-HT and metabolic diseases. 

Table 4. The results of genome-wide association studies on the serotonergic system and obesity

Study Ethnicity Sample size, n SNP ID Gene Chromosome Allele Association

Kwak et al. (2012) [60] Korean 8,842 rs623580 TPH1 11 A/T BMI and WC

Rosmond et al.(2002) [61] Swedish 284 rs6311 HTR2A 13 C/T BMI, WHR

Halder et al. (2007) [62] European 934 rs6311
rs2070040

HTR2A
HTR2A

13
13

C/T 
A/G

Central obesity, 
   metabolic syndrome

Li et al. (2014) [63] European 1,982 rs912127 HTR2A 13 A/G BMI

American rs1745837 HTR2A 13 C/T

Opgen-Rhein et al. (2010) [64] German 128 rs498207 HTR2C X C/T Weight gain

Suviolahti et al. (2003) [65] Finnish, 2,104 rs2011162 SLC6A14 X C/G BMI

Swedish rs2071877 SLC6A14 X C/T

Corpeleijn et al. (2010) [66] European 722 rs2011162 SLC6A14 X C/G BMI, fat oxidation in 
   women

Chen et al. (2013) [67] Chinese 478 rs1018079 SLC18A1 8 A/G BMI

rs11214769 HTR3B 11 A/G

rs2224721 HTR2A 13 A/C

rs4911871 HTR2C X A/G

SNP, single nucleotide polymorphism; BMI, body mass index; WC, waist circumference; WHR, waist to hip ratio.
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