
TYPE Original Research

PUBLISHED 20 October 2022

DOI 10.3389/fpubh.2022.1034772

OPEN ACCESS

EDITED BY

Yu-Dong Zhang,

University of Leicester,

United Kingdom

REVIEWED BY

Jatinderkumar R. Saini,

Symbiosis Institute of Computer

Studies and Research (SICSR), India

Francisco Solano,

University of Murcia, Spain

*CORRESPONDENCE

Yaping Lu

luyaping@sinopharm.com

Liuqing Chen

chlq35@126.com

†These authors have contributed

equally to this work and share first

authorship

SPECIALTY SECTION

This article was submitted to

Digital Public Health,

a section of the journal

Frontiers in Public Health

RECEIVED 02 September 2022

ACCEPTED 30 September 2022

PUBLISHED 20 October 2022

CITATION

Wan L, Ai Z, Chen J, Jiang Q, Chen H,

Li Q, Lu Y and Chen L (2022) Detection

algorithm for pigmented skin disease

based on classifier-level and

feature-level fusion.

Front. Public Health 10:1034772.

doi: 10.3389/fpubh.2022.1034772

COPYRIGHT

© 2022 Wan, Ai, Chen, Jiang, Chen, Li,

Lu and Chen. This is an open-access

article distributed under the terms of

the Creative Commons Attribution

License (CC BY). The use, distribution

or reproduction in other forums is

permitted, provided the original

author(s) and the copyright owner(s)

are credited and that the original

publication in this journal is cited, in

accordance with accepted academic

practice. No use, distribution or

reproduction is permitted which does

not comply with these terms.

Detection algorithm for
pigmented skin disease based
on classifier-level and
feature-level fusion

Li Wan1,2†, Zhuang Ai3†, Jinbo Chen1†, Qian Jiang1,

Hongying Chen1, Qi Li3, Yaping Lu3* and Liuqing Chen1*

1Dermatology Department, Wuhan No.1 Hospital, Hubei, China, 2Dermatology Hospital of Southern

Medical University, Guangzhou, China, 3Department of Research and Development, Sinopharm

Genomics Technology Co., Ltd., Jiangsu, China

Pigmented skin disease is caused by abnormal melanocyte and melanin

production, which can be induced by genetic and environmental factors.

It is also common among the various types of skin diseases. The timely

and accurate diagnosis of pigmented skin disease is important for reducing

mortality. Patients with pigmented dermatosis are generally diagnosed by a

dermatologist through dermatoscopy. However, due to the current shortage

of experts, this approach cannot meet the needs of the population, so

a computer-aided system would help to diagnose skin lesions in remote

areas containing insu�cient experts. This paper proposes an algorithm

based on a fusion network for the detection of pigmented skin disease.

First, we preprocess the images in the acquired dataset, and then we

perform image flipping and image style transfer to augment the images to

alleviate the imbalance between the various categories in the dataset. Finally,

two feature-level fusion optimization schemes based on deep features are

compared with a classifier-level fusion scheme based on a classification

layer to e�ectively determine the best fusion strategy for satisfying the

pigmented skin disease detection requirements. Gradient-weighted Class

Activation Mapping (Grad_CAM) and Grad_CAM++ are used for visualization

purposes to verify the e�ectiveness of the proposed fusion network. The

results show that compared with those of the traditional detection algorithm

for pigmented skin disease, the accuracy and Area Under Curve (AUC) of

the method in this paper reach 92.1 and 95.3%, respectively. The evaluation

indices are greatly improved, proving the adaptability and accuracy of the

proposedmethod. The proposedmethod can assist clinicians in screening and

diagnosing pigmented skin disease and is suitable for real-world applications.
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fusion network, pigmented skin disease, attention mechanism, image style transfer,
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Frontiers in PublicHealth 01 frontiersin.org

https://www.frontiersin.org/journals/public-health
https://www.frontiersin.org/journals/public-health#editorial-board
https://www.frontiersin.org/journals/public-health#editorial-board
https://www.frontiersin.org/journals/public-health#editorial-board
https://www.frontiersin.org/journals/public-health#editorial-board
https://doi.org/10.3389/fpubh.2022.1034772
http://crossmark.crossref.org/dialog/?doi=10.3389/fpubh.2022.1034772&domain=pdf&date_stamp=2022-10-20
mailto:luyaping@sinopharm.com
mailto:chlq35@126.com
https://doi.org/10.3389/fpubh.2022.1034772
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
https://www.frontiersin.org/articles/10.3389/fpubh.2022.1034772/full
https://www.frontiersin.org/journals/public-health
https://www.frontiersin.org


Wan et al. 10.3389/fpubh.2022.1034772

1. Introduction

Skin, as the first layer of protection for the human body, has

important physiological protection functions, such as excretion,

regulating body temperature and feeling external stimuli. It

is also the largest organ in the human body. However, the

incidence of skin diseases is extremely high, and there are many

types of skin diseases, among which pigmented skin lesions are

common; most pathological areas are black, brown or other

dark colors, which is mainly due to the increase or decrease

in regional melanin caused by ultraviolet radiation or other

external factors. In 2021, skin melanoma in pigmented skin

disease accounts for 5.6% of all new cancers in the United States,

and the number of skin melanoma patients has increased at

an annual rate of ∼1.4% over the past 10 years (1). However,

melanoma that is detected early has a very high cure rate. Studies

have shown that if abnormal skin melanocyte proliferation is

found early, the survival rate is 96%. If late-stage melanoma is

detected, the survival rate is reduced to only 5% (2), and its color

is easily confused with that of other common skin pigmented

diseases, leading to misdiagnosis. The diagnosis of pigmented

skin lesions requires trained specialists, but the number of

specialist doctors is grossly inadequate compared to the number

of cases. Therefore, it is necessary to develop an algorithm for

the automatic diagnosis of pigmented skin lesions.

In recent years, deep learning has been widely used in feature

extraction, object classification and detection. Compared with

machine learning, deep learning can automatically and

efficiently extract features from medical images. Since 2012,

various deep Convolutional Neural Network (CNN) models

based on the “ImageNet” dataset have been proposed. AlexNet

(ImageNet classification with deep convolutional neural

networks), a network architecture proposed by Krizhevsky et al.

(3), was the winner of the first ImageNet Challenge classification

task in 2012; ZFNet (4) (Visualizing and understanding

convolutional networks) is a large convolutional network

based on AlexNet; VGGNET (5) (Very deep convolutional

networks for large-scale image recognition) was proposed

by Visual Geometry Group (VGG), a famous research group

at Oxford University, and won the first place in localization

and the second place in classification in that year’s ImageNet

competition. GoogleNet (6) (Going deeper with convolutions)

was proposed by the Google team and won the first place in

the ImageNet competition for the classification task; ResNet

(7) (Deep residual learning for image recognition), proposed

by Microsoft Research, won the first place in classification task

and the first place in target detection in that year’s ImageNet

competition, and the first place in target detection and image

segmentation in COCO dataset. ResNeXt (8) (Aggregated

residual transformations for deep neural networks) is a new

image classification network proposed by Kaiming He’s team

at CVPR 2017. ResNeXt is an upgraded version of ResNet;

SENET (9) (Squeeze-and-Excitation Networks) is a new

image recognition architecture announced by the self-driving

company Momenta in 2017. This structure is the first place in

the ImageNet competition in that year in the classification task;

NASNet (Learning Transferable Architectures for Scalable) is

a deep network model proposed by Zoph et al. (10) that can

automatically generate network structures without manually

designing network models; EfficientNet (11) (EfficientNet:

Rethinking model scaling for convolutional neural networks)

is proposed by Google team to obtain better performance

by deepening the model, widening the model or increasing

the resolution of the model input. These network models

have ranked highly in competitions. The prediction effects of

different network structures in various fields are inconsistent,

so researchers cannot quickly find appropriate network models.

Many scholars have thus conducted research to solve this

problem. Researchers must test the outstanding network models

one by one to find the most appropriate network model for

their scenario (12–15). This strategy wastes time and resources.

Therefore, an ensemble network can obtain an algorithmic

model that is better than the model produced by the best

individual network by setting the weights of different networks

(16–18). However, at present, most network fusion approaches

use majority voting, mean voting or the weights of the base

classifiers to obtain the output of various networks through

one-to-one testing, which cannot give full play to the various

effects of different classifiers on different tasks. Therefore, this

paper proposes a variety of fusion strategies and optimizes

the weight of each classifier through the loss function of the

network model to fully utilize the ability of each classifier for the

detection of pigmented skin diseases.

Therefore, building a pigmented skin disease detection

algorithm based on classifier-level and feature-level fusion

encounters the following problems.

(1) How to handle unbalanced pigmented skin disease datasets.

(2) How to build an effective network fusion strategy.

2. Related work

In recent years, the applications of Artificial Intelligence

(AI) in various fields have developed rapidly, especially in the

fields of medical image analysis and bioinformatics. At present,

AI is widely used in skin cancer diagnosis (19–21). From the

point of view of whether features can be extracted automatically,

the AI approaches in this area can be divided into skin cancer

classification methods based on machine learning and skin

cancer classification methods based on deep learning.

Skin cancer classification based on machine learning

generally involves manually extracting image features and

then inputting the extracted features into a machine learning

algorithm to obtain classification results (22–25). Varalakshmi

(26) first used an upsampling method called the Synthetic

Minority Oversampling Technique (SMOTE) to balance his
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dataset, greatly improving the accuracy of various machine

learning models. The accuracies of different machine learning

algorithms were then analyzed. Support Vector Machine (SVM)

algorithms with polynomial kernels provide better accuracy

than other machine learning algorithms, such as decision trees

using Gini indices and entropy, naive Bayes classifiers, extreme

gradient boosting (XGBoost) classifiers, random forests, and

logistic regression algorithms. Sabri (19) first extracted the

shapes, colors, textures and skeletons of skin image lesions,

then used the information gain method to determine the

best combination of features, and finally input this feature

combination into a commonly used machine learning algorithm

to predict the categories of legions. Vidya (27) first extracted

skin image asymmetry, border, color, and diameter information.

A Histogram of Oriented Gradients (HOG) and a Gray Level

Co-occurrence Matrix (GLCM) were used to extract texture

features. The extracted features were passed directly to classifiers

utilizing different machine learning techniques [such as an

SVM, K-Nearest Neighbors (KNN) and a naive Bayes classifier]

to classify skin lesions as benign or melanoma. Kalwa (28)

presents a smartphone application that combines image capture

capabilities with preprocessing and segmentation to extract

the Asymmetry, Border irregularity, Color variegation, and

Diameter (ABCD) features of a skin lesion. Using the feature

sets, classification of malignancy is achieved through support

vector machine classifiers.

Skin cancer classification approaches based on deep learning

usually adopt a network model for automatic feature extraction,

and thus feature extraction and classification can be completed

in the same algorithm (20, 21, 29–31). Skin cancer detection

algorithms based on deep learning can be divided into single-

classifier detection methods and fusion detection methods based

on multiple classifiers according to the number of utilized

classifiers.

Based on single-classification detection, Sevli (32) proposed

using a CNN model to classify seven different skin lesions

in the HAM10000 dataset, and the model achieved 91.51%

classification accuracy. The model linked its results to a

web application and was assessed in two stages by seven

dermatologists. Milton (12) first appropriately processed

and enhanced skin images and then carried out experiments

on various neural networks, including the progressive

NASNet (PNASNet)-5-Large, InceptionResNet V2, SENet154,

InceptionV4, etc. Finally, the PNASNet-5-Large model achieved

the best validation result of 0.76.

Regarding detection based on multiple classifiers, Pal

(33) solved the data imbalance problem in the training

dataset by setting a propagation-weighted loss from the

loss correspondence. For classifier model construction, the

pretraining weights of these models were fine-tuned (by

ResNet50, DenseNet-121, and MobileNet). Finally, the average

category prediction probabilities obtained from these trained

networks were used to determine the category labels of the

test images. Xie (34) used four pretrained ResNet50 networks

to characterize the multiscale information of skin lesions and

combined them by using adaptive weighting schemes that could

be learned during error propagation. The proposed model

achieved an average Area Under Curve (AUC) value of 86.5%

on the official ISIC-Skin 2018 validation database. Aldwgeri

(35) aimed to solve the data imbalance problem in the training

dataset and realized the equalization of each category through

flipping, rotation, shifting, and scaling techniques. The equalized

image data were then input into different pretraining models,

including VGG-Net, ResNet50, Inception V3, Xception, and

DenseNet-121. The outputs of the five pretraining models were

averaged to produce the final prediction results.

Therefore, the innovations of this paper include the

following aspects.

(1) An image style transfer algorithm is applied to the detection

of pigmented skin diseases for the purpose of image

augmentation.

(2) To prevent image augmentation noise, the required

upsampling image is applied to each class image.

(3) Attention mechanisms and common network architectures

should be combined to achieve improved detection efficiency.

(4) Two feature-level fusion optimization schemes based on deep

features and a classifier-level fusion method based on a

classification layer are proposed.

(5) Two visualization algorithms, Grad_CAM and

Grad_CAM++, are used to verify the validity of the

fusion network.

3. Detection algorithm for
pigmented skin diseases based on
classifier-level and feature-level
fusion

3.1. System architecture

This paper proposes a detection algorithm for pigmented

skin diseases based on a fusion network (Figure 1). This

approach can be divided into three modules: image

preprocessing, image augmentation, and model building

and prediction.

Image preprocessing: First, the obtained pigmented skin

disease images are normalized, and the pixel values of the images

are limited to 0–1, which can effectively reduce the number

of calculations required for the images in the neural network.

Then, the height and width of each normalized image are unified

to 450*600 (via nearest-neighbor interpolation). Finally, the

preprocessed image dataset (three-channel color images with

heights of 450 and widths of 600) for pigmented skin diseases

can be obtained. As seen from Figure 1, the proportions of

the different categories after image pretreatment are seriously
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FIGURE 1

An overview of the proposed method. (A) “Image preprocessing,” including image normalization and image resizing, is performed on an input

image before feature extraction. (B) “Image augmentation,” including operations such as image rotation and image style transfer, performs

upsampling on the input image to keep the various categories in a balanced state. (C) “Model building and prediction” carries out model training

and prediction on the input image, wherein the feature extraction part is the fusion of three base classifiers and an attention mechanism [the

convolutional block attention module (“CBAM”)], “GAP” denotes global average pooling, “Dense” is a fully connected layer, “Concat” is the fusion

of the output results of the three branches, and “Class” is the number of categories. In this article, Class is 7. “Softmax” is the activation function

of the classification output layer, “Classification” is the prediction result output layer, and the number represents the change in the characteristic

dimensionality at each stage.

unbalanced; among them, the “akiec” category occupies 66.95%

of the dataset. If no processing is performed, the neural network

will seriously prefer this category in model training.

Image augmentation: As the akiec category accounts for

66.95% of the dataset, if dataset balance needs to be achieved,

other categories need to be upsampled. First, skin images

(except those in the akiec category) are preprocessed by

turning them left and right, reversing up and down, symmetric

rotation (the calculation process is shown in Algorithm 1)

and performing image style transfer (the calculation process is

shown in Algorithm 2) to achieve a balance between the various

categories of images. As seen from Figure 1, the proportion of

each category after image augmentation is relatively balanced,

accounting for ∼14% of the whole dataset of pigmentosa skin

disease images.

Model building and prediction: The enhanced images of

pigmented skin diseases are first input into three different

base classifiers (i.e., Inception V3, InceptionResNet V2, and

Xception), and the outputs of the three base classifiers are then

fused. Finally, the fusion result is used as the pigmented skin

disease prediction result.

3.2. Image preprocessing module

3.2.1. Dataset

The dataset used in this paper is provided by Tschandl

et al. (36), and it contains 10,015 pictures of seven types of

Input: Dataset after image preprocessing : Data.

Output: training set, validation set, test set.

1: Define the list of stored images after

augmentation:Data_train_process = [].

2: The Data are divided into a training set

Data_train, a validation set Data_valid and a test

set Data_test at a 3:1:1 ratio.

3: for image → Data_train do

4: if ’image’ belongs to category ’akiec’ then

5: Continue.

6: end if

7: Add image to Data_process.

8: Rotates_l_r = Rotate image left and right.

9: Add Rotates_l_r to Data_train_process.

10: Rotates_u_d = Rotate image up and down.

11: Add Rotates_u_d to Data_train_process.

12: Rotates_s = Rotate image Symmetrical.

13: Add Rotates_s to Data_train_process.

14: end for

15: return Data_train_process, Data_valid, Data_test.

Algorithm 1. Image augmentation—rotation.

skin diseases. Cases include a representative collection of all

import diagnostic categories in the realm of pigmented lesions.

The seven types are melanocytic Nevi (nv), Melanoma (mel),

Benign Keratosis-like Lesions (solar lentigines/seborrheic

keratoses and lichen-planus-like keratoses) (bkl), Basal

Cell Carcinoma (bcc), Actinic Keratoses and Intraepithelial
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Input: Training set after image rotation:

Data_train_process.

Output: training set Data_train_augmentation.

1: Define the list of stored images after

augmentation: Data_train_augmentation = [].

2: Obtain a set of images for each category in

data_train: data_train0, data_train1, data_train2,

data_train3, data_train4, data_train5,

data_train6.

3: data_train_list = (data_train0, data_train1,

data_train2, data_train3, data_train5,

data_train6).

4: for data_train_i → data_train_list do

5: Calculate the difference between the sample

sizes of category data_train_i and category

data_train4 (akiec sample): numSub.

6: According to data_train_i and numSub, calculate

the number of images to be upsampled for each

category: numAdd.

7: if numAdd ≥ 1 then

8: for contentImage → data_train_i do

9: numAdd images are randomly selected from

data_train_i: styleImageList.

10: for styleImage → styleImageList do

11: Perform image style transfer using

the style image styleImage and contentImage: newImage.

12: Add the image newImage to

Data_train_augmentation.

13: end for

14: end for

15: else

16: numSub images are randomly selected from

data_train_i: contentImageList.

17: for contentImage → contentImageList do

18: A images are randomly selected from

data_train_i: StyleImage.

19: Perform image style transfer using the

style image styleImage and contentImage: newImage.

20: Add the image newImage to

Data_train_augmentation.

21: end for

22: end if

23: end for

24: return Data_train_augmentation.

Algorithm 2. Image augmentation—image style transfer.

Carcinoma/Bowen’s disease (akiec), Vascular lesions (angiomas,

angiokeratomas, pyogenic granulomas, and hemorrhage) (vasc),

and Dermatofibroma (df). The corresponding amounts of

image data are 327, 514, 1,099, 115, 6,705, 1,113, and 142,

respectively. The proportion of each category is shown in

Figure 2A. Typical images for each category are shown in

Figure 2B. In Figure 2A, the selected dataset of pigmented skin

diseases is severely imbalanced between categories, and the

imbalance in the dataset causes the model to completely bias

the prediction results to the side with a large sample size (18),

and the model does not have any prediction effect on the other

categories of sample classification, so a processing step for the

imbalance in the dataset is necessary.

3.2.2. Image preprocessing and augmentation

We first preprocess the acquired skin disease dataset (36) to

obtain high-quality image data. In the preprocessing step, each

image is first reduced to the specified size of 450*600, and then

each pixel of the image is normalized according to Equation

(1). In this way, the image is easy for the network to calculate.

The image preprocessing part is transformed from Figure 3A to

Figure 3B.

Xnorm =
X − Xmin

Xmax − Xmin
(1)

The dataset presents great disparities among the amounts of

image data contained in various categories. Without performing

certain processing steps, the prediction results will be greatly

affected by this unbalanced dataset. Therefore, we must

upsample the image data to obtain a balanced image dataset.

First, we carry out the following basic operations on the images

(except for those in the akiec category): left and right mirror

rotation, up and down mirror rotation, symmetric rotation, etc.;

these operations can balance the images to a certain extent. The

left and right mirror rotation operations mirror the original

image with respect to its vertical centerline. The upper and

lower mirror rotation operations mirror the original image with

respect to its horizontal centerline. Symmetric rotation is an

image transformation that flips the original image left and right

before flipping them again in the up and down directions. After

completing the basic image operations, the image data contained

in different image categories are shown in Table 1. The basic

image augmentation operation can be converted from Figure 3B

to Figure 3C.

It can be seen from Table 1 that the numbers of images in

various categories are still seriously imbalanced, so we adopt

an image style transfer algorithm (37) to upsample the images.

The image style transfer algorithm proposed by Ghiasi has

been successfully trained on a corpus of ∼80,000 paintings. In

addition, it can be generalized to previously unobserved images.

First, this paper calculates the sample size differences

between akiec and the other categories in the image dataset

according to Equation (2) and then divides each difference by the

sample size of the corresponding category to obtain the sample

size “n” that needs to be randomly added to the other categories.

The image to be upsampled is selected as the “content image,”

“n” images are randomly selected from the image samples of
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A B

FIGURE 2

Data preparation. (A) The distribution of pigmented skin diseases in the specimens. (B) Photos of the representative pigmented skin diseases in

each sampling category for clinical diagnosis.

this category as the “style images,” and the “content image”

and “n” “style images” are input into the image style transfer

model in turn to obtain “n” upsampling images generated by the

fusion of the “content image” and “style images” (the calculation

process is shown in Algorithm 2). After performing image style

transfer, the amount of data in each category is shown in

Table 1. An example diagram of image style transfer is shown

in Figures 3C–E.

Addn =
Num(Class_akiec)− Num(Class_i)

Num(Class_i)
(2)

In the equation, i represents the nv, mel, bkl, bcc, vasc, and

df categories; Num(Class_i) represents the data volume of the

selected category. IfAddn is<1, it indicates that the data volume

of this category is not very different from that of akiec. In this

paper, the number of data differences is randomly extracted for

image style transfer.

3.3. Model building and prediction
module

The base classifier of the fusion network used in this paper

can consist of Inception V3, InceptionResNet V2, and Xception.

The fusion part explores feature-level fusion based on deep

features and classifier-level fusion based on a classification layer.

Feature-level fusion based on deep features has been

proven to be an efficient fusion strategy (38–42) that can

combine features extracted from N networks into a single

feature vector containing more image information. Feature-

level fusion techniques can be divided into parallel feature-

level fusion and serial feature-level fusion based on whether

the feature dimensions output by the networks are consistent.

Three methods are available for realizing parallel feature fusion:

summing up each feature (Equation 3); averaging each feature

(Equation 4); and executing the max operation (Equation 5)

for each feature. Serial feature fusion can only realize feature

splicing (Equation 6) according to the channel dimension

because of the inconsistency of the feature output dimensions.

The classifier-level fusion method based on a classification

layer can make the features extracted from N networks remain

unchanged and perform feature splicing at the output of the

classification layer.

Ffeature_level_fusion =

∑N

i=1
Fi (3)

Ffeature_level_fusion =
1

N

∑N

i=1
Fi (4)

Ffeature_level_fusion = max(F1, F2, F3, ..., FN ) (5)

FDecision_level_fusion = Concat(F1, F2, F3, ..., FN ) (6)

When the input picture size is (Batch, 450, 600, 3), the output

dimensions of Inception V3 are (Batch, 12, 17, 2048), the output

dimensions of InceptionResNet V2 are (Batch, 12, 17, 1536), and

the output dimensions of Xception are (Batch, 14, 19, 2048). In

this paper, feature-level fusion based on deep features employs

the output fusion results of three different networks, and the
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A B C D E

FIGURE 3

Image preprocessing and image augmentation. (A) Original image. (B) Preprocessed image. (C) Image obtained after a basic rotation operation.

(D) Image randomly extracted from image category c for image style transfer. (E) Composite image obtained after image style transfer.

TABLE 1 Image number statistics during image preprocessing.

Category Number of

original images

Number of images

after basic operations

Number of images to

be added per image

Number of images after

image style transfer

nv 209 836 4 4,180

mel 329 1,316 2 3,948

bkl 703 2,812 0.5 4,291

bcc 74 296 13 4,144

akiec 4,291 4,291 0 4,291

vasc 712 2,848 0.5 4,291

df 91 364 10 4,004

dimensions of the outputs of the three models are inconsistent.

Therefore, we optimize the feature-level fusion strategy based on

deep features. In the first method, the convolution layer is used

to convert the feature map to achieve dimensional consistency.

The dimension conversion method is shown in Equations (7)

and (8), and the overall algorithm flow is shown in Figure 4A.

Wout =
Win − F + 2P

S
+ 1 (7)

Hout =
Hin − F + 2P

S
+ 1 (8)

In the equation, Win and Hin are the width and height

of the input, F is the size of the filter, P is the padding
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A

B

C D

FIGURE 4

Model building and prediction. (A) Fusion based on the convolution operation. (B) Fusion based on the padding operation. (C) Model training

process. (D) Zero-padding operation. “CBAM” is the attention mechanism, “zero padding” involves filling a circle of 0 s around the height and

width of the feature vector, “Concat” denotes feature fusion, “GAP” is a global average pooling layer, “Dense” is a fully connected layer, “COV2D”

is a convolution operation, and “Class” is the number of categories. In this article, Class is 7. “Softmax” is the activation function of the

classification output layer, and the number represents the change in the dimensions in each stage.

size, S is the step size, and Wout and Hout are the final

width and height, respectively. Win and Hin are 14 and 19,

and Wout and Hout are 12 and 17, respectively. Therefore,

according to this equation, we set F as 3, P as 0, and

S as 1. The output can realize the splicing of the three

dimensions.

In the secondmethod, in this paper, the outputs of Inception

V3 and InceptionResNet V2 are surrounded by a circle of 0s
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TABLE 2 Evaluation criteria.

Evaluation criteria Equation Meaning

Accuracy (Acc) TP+TN
TN+FP+FN+TP

The proportion of all results correctly judged by the classification model to the total sample size

Sensitivity=Recall TP
TP+FN

The proportion of correct model predictions among all the results whose true values are positive

Specificity TN
TN+FP

The proportion of correct model predictions among all the results whose true values are negative

Precision TP
TP+FP

The proportion of correct model predictions among all the results for which the predicted value of

the model is positive

F1 2∗Precision∗Recall
Precision+Recall

Harmonic mean of precision and recall

Weighted avg
∑class_num

i=1 P_i∗support_i
∑class_num

i=1 support_i
The weighted average of evaluation indicators for each category, with the weight being the proportion

of the sample size of each category in the total sample size. “support_i” represents the number of

samples in category “i,” “P_i” represents the score value of the evaluation index of category “i,” and

“class_num” represents the number of categories.

AUC Area under the receiver operating characteristic (ROC) curve

TABLE 3 The influence of the data imbalance treatment scheme on the results.

Data imbalance processing Original set Class weight Image rotation Pixel

Precision nv 0.6515 0.557 0.7368 0.7167

mel 0.7364 0.6056 0.787 0.8333

bkl 0.7014 0.7125 0.8144 0.7991

bcc 0.7692 0.5714 1 0.8

akiec 0.8957 0.8801 0.8877 0.9155

vasc 0.7083 0.6589 0.7517 0.7861

df 0.6 0.7037 0.75 0.8077

Weighted avg 0.8318 0.8064 0.8538 0.8748

Recall nv 0.6615 0.6615 0.6462 0.6615

mel 0.7864 0.8252 0.8252 0.8252

bkl 0.6727 0.7773 0.7182 0.7773

bcc 0.4348 0.6957 0.4348 0.6957

akiec 0.9545 0.9612 0.9672 0.9612

vasc 0.4574 0.6099 0.4888 0.6099

df 0.6429 0.75 0.75 0.75

Weighted avg 0.8397 0.8168 0.8597 0.8792

F1 nv 0.6565 0.688 0.6885 0.688

mel 0.7606 0.8293 0.8057 0.8293

bkl 0.6868 0.788 0.7633 0.788

bcc 0.5556 0.7442 0.6061 0.7442

akiec 0.9242 0.9378 0.9258 0.9378

vasc 0.5559 0.6869 0.5924 0.6869

df 0.6207 0.7778 0.75 0.7778

Weighted avg 0.8315 0.8023 0.8508 0.8753

to achieve dimensionality consistency with Xception. The zero-

padding operation is shown in Figure 4D. The fusion process is

shown in Figure 4B.

Classifier-level fusion is performed based on the

classification layer. This paper first fuses the last convolution

layer of each of the three different networks with the

Convolutional Block Attention Module (CBAM), then

performs global average pooling on this basis, splices a fully

connected layer to obtain the final feature vector, and performs

a simple splicing operation on the three feature vectors.

Finally, the splicing result is input into the classification

layer to output the final predicted category value, as shown

in Figure 1 in the model building stage. In this way, the

network outputs four values corresponding to Inception V3,
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TABLE 4 The influence of a single network model on evaluation metrics.

Single algorithm Inception V3 InceptionResNet Xception_No_CBAM Xception

Acc nv 0.7538 0.6769 0.6923 0.7077

mel 0.8932 0.9223 0.8544 0.8835

bkl 0.8045 0.7955 0.8091 0.8182

bcc 0.7391 0.6522 0.8696 0.7391

akiec 0.9679 0.9791 0.9754 0.9724

vasc 0.6771 0.5964 0.6233 0.6682

df 0.8928 0.8929 0.8929 0.8929

Weighted avg 0.9031 0.8987 0.9002 0.9046

F1 nv 0.7597 0.7273 0.7563 0.7541

mel 0.8762 0.9223 0.8756 0.8545

bkl 0.8290 0.8140 0.8109 0.8353

bcc 0.8293 0.7317 0.8696 0.8095

akiec 0.9495 0.9460 0.9482 0.9525

vasc 0.7438 0.7056 0.7221 0.7358

df 0.8475 0.9091 0.8772 0.9091

Weighted avg 0.9007 0.8934 0.8961 0.9018

Specificity nv 0.9923 0.9938 0.9954 0.9943

mel 0.9921 0.9958 0.9947 0.9900

bkl 0.9832 0.9804 0.977 0.9826

bcc 0.9995 0.9985 0.9985 0.9990

akiec 0.8565 0.8157 0.8338 0.8595

vasc 0.9820 0.9882 0.9871 0.9815

df 0.9970 0.9990 0.9978 0.9990

Weighted avg 0.8994 0.8727 0.8843 0.9012

AUC nv 0.9832 0.9805 0.9835 0.9843

mel 0.9938 0.9976 0.9963 0.9954

bkl 0.9787 0.9769 0.9835 0.9813

bcc 0.9910 0.9971 0.9928 0.9959

akiec 0.9802 0.9800 0.9806 0.9775

vasc 0.9651 0.9643 0.9599 0.9613

df 0.9772 0.9930 0.9988 0.9870

Weighted avg 0.9792 0.9792 0.9799 0.9776

InceptionResNet V2, Xception, and a merged output. The

loss value of the network is the sum of the loss values of the

four parts, but the final output is the overall output of the

network.

In Figures 1, 4, “CBAM” is an attention mechanism

proposed by Woo (43) in 2018. Woo applied attention to

both the channel and spatial dimensions. Similar to the

SENet[10], a CBAM can be embedded in most mainstream

networks at present. The feature extraction capability of a

networkmodel can be improved without significantly increasing

its computational complexity and number of parameters.

Therefore, this paper embeds a CBAM into the feature extraction

part to improve the feature extraction ability of the model

and facilitate the subsequent network classification ability

improvement.

Transfer learning transfers knowledge learned from

a source dataset to a target dataset. Fine-tuning is a

common technique for transfer learning. The target model

replicates all the model designs and their parameters on

the source model except the output layer, and fine-tunes

these parameters based on the target dataset. The output

layer of the target model, on the other hand, needs to

be trained from scratch. The whole process of model

building and prediction is shown in Figure 4C. First, all

the parameters of the base classifier are “frozen” to prevent

large planned changes in these parameters during the

initial network training. Subsequently all parameters of the

network model are “unfrozen” and the parameters of the

entire network are fine-tuned to achieve classification of

skin diseases.
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TABLE 5 The influence of di�erent fusion strategies on evaluation metrics.

Fusion network Concat_Conv2D Concat_Zeropadding Concat_Dense

Acc nv 0.7538 0.6923 0.8154

mel 0.8058 0.8641 0.9417

bkl 0.7955 0.8500 0.8409

bcc 0.4348 0.6957 0.8261

akiec 0.9418 0.9612 0.9828

vasc 0.6682 0.6323 0.6502

df 0.8929 0.8571 0.9286

Weighted avg 0.8757 0.8942 0.9201

F1 nv 0.7424 0.7258 0.7737

mel 0.8342 0.8812 0.9372

bkl 0.7743 0.8184 0.8768

bcc 0.5882 0.7619 0.8837

akiec 0.9383 0.9467 0.9572

vasc 0.6882 0.7050 0.7532

df 0.7812 0.8276 0.8966

Weighted avg 0.8745 0.8914 0.9170

Specificity nv 0.9907 0.9928 0.9902

mel 0.9932 0.9947 0.9963

bkl 0.9680 0.9720 0.9905

bcc 0.9995 0.9985 0.9995

akiec 0.8671 0.8595 0.8565

vasc 0.9657 0.9798 0.9904

df 0.9944 0.9970 0.9980

Weighted avg 0.9029 0.9001 0.9013

AUC nv 0.9706 0.9839 0.9912

mel 0.9801 0.9955 0.9984

bkl 0.9651 0.9754 0.9899

bcc 0.9589 0.9821 0.9923

akiec 0.9653 0.9741 0.9853

vasc 0.9227 0.9514 0.9722

df 0.9728 0.9890 0.9765

Weighted avg 0.9615 0.9734 0.9852

4. Experiment

4.1. Experimental conditions

The experimental environment includes Linux X86_64, an

Nvidia Tesla V100, and 16 GB of memory. This experiment is

based on Python version 3.7.9, TensorFlow version 2.3.0, and

Keras version 2.4.3.

4.2. Evaluation criteria

In this study, the accuracy, recall, specificity,

precision, F1, weighted AUC and AUC metrics are used

to evaluate pigmented skin disease detection methods

based on a fusion network. The model evaluation

confusion matrix and calculation equations are shown in

Table 2, respectively.

True Negatives (TNs) represent the number of cases for

which the real values are negative and the model thinks they are

negative.

False Positives (FPs) represent the number of cases for which

the real values are negative and the model thinks they are

positive.

False Negatives (FNs) represent the number of cases for

which the real values are positive and the model thinks they are

negative.

True Positives (TPs) represent the number of cases for

which the real values are positive and the model thinks they are

positive.

Frontiers in PublicHealth 11 frontiersin.org

https://doi.org/10.3389/fpubh.2022.1034772
https://www.frontiersin.org/journals/public-health
https://www.frontiersin.org


Wan et al. 10.3389/fpubh.2022.1034772

TABLE 6 The influence of fusion of two base classifiers on evaluation metrics.

Two network Inception

V3_Inception

V3

InceptionRes

Net_Inception-

ResNet

Xception_

Xception

Inception

V3_Inception-

ResNet

Inception

V3_Xception

InceptionRes-

Net_Xception

Acc nv 0.2462 0.4923 0.5231 0.7692 0.7231 0.7538

mel 0.7282 0.7087 0.7864 0.8932 0.9223 0.9417

bkl 0.5682 0.6364 0.6318 0.8500 0.8455 0.8409

bcc 0.4783 0.5217 0.3913 0.7391 0.8696 0.7391

akiec 0.8069 0.8673 0.9314 0.9851 0.9761 0.9754

vasc 0.4439 0.4350 0.4036 0.6143 0.6726 0.6054

df 0.6786 0.8214 0.8929 0.8929 0.9286 0.9286

Weighted avg 0.7124 0.7688 0.8123 0.9131 0.9151 0.9071

F1 nv 0.3596 0.5289 0.5574 0.7937 0.7520 0.7967

mel 0.6198 0.6759 0.7364 0.8846 0.8962 0.9194

bkl 0.4505 0.5501 0.6347 0.8539 0.8493 0.8565

bcc 0.4889 0.5581 0.5143 0.8095 0.9091 0.8293

akiec 0.8547 0.8851 0.9021 0.9555 0.9583 0.9471

vasc 0.4033 0.4491 0.4932 0.7366 0.7557 0.7124

df 0.7308 0.8070 0.8772 0.9091 0.8966 0.8966

Weighted avg 0.7259 0.7726 0.8027 0.9088 0.9124 0.9027

Specif-icity nv 0.9959 0.9943 0.9881 0.9943 0.9933 0.9954

mel 0.9663 0.9932 0.9811 0.9932 0.9926 0.9942

bkl 0.8822 0.9826 0.9557 0.9826 0.9821 0.9849

bcc 0.9944 0.9990 0.9985 0.9990 0.9995 0.9995

akiec 0.8353 0.8444 0.7296 0.8444 0.8761 0.8293

vasc 0.9051 0.9933 0.9708 0.9933 0.9865 0.9882

df 0.9975 0.9990 0.9980 0.9990 0.9980 0.9980

Weighted avg 0.8643 0.8926 0.8094 0.8926 0.9130 0.8823

AUC nv 0.946 0.9509 0.9427 0.9793 0.9807 0.9909

mel 0.9585 0.9772 0.9855 0.9976 0.9972 0.9977

bkl 0.8584 0.9 0.9304 0.9849 0.9798 0.9836

bcc 0.9315 0.9436 0.974 0.9975 0.9966 0.9937

akiec 0.9147 0.9239 0.9396 0.9819 0.9837 0.9818

vasc 0.8499 0.8645 0.9046 0.9682 0.9708 0.9633

df 0.9920 0.9959 0.9963 0.9823 0.9921 0.9868

Weighted avg 0.9058 0.9195 0.9383 0.9816 0.9827 0.9813

4.3. Determination of the experimental
parameters

4.3.1. Test results of a single classifier

In this paper, Inception V3 and cbam fusion are used to

test three data augmentation methods. The first (column 4 of

Table 3) class weights are calculated by adjusting the model to

include a penalty for prediction error for classes with smaller

sample sizes, and the weight parameters for each class are

calculated as follows.

Weight =
n_samples

n_classes ∗ bincount(y)
(9)

Where n_samples represents the total number of picture

samples,n_classes represents the number of categories, and

bincount(y) represents the sample size of each category in

the training set. Weight is the weight corresponding to each

category. The lower the sample size of the category, the higher

its weight.

The second uses image flipping (column 5 of Table 3) to flip

the category with a small sample size to flip the image left and

right, invert it up and down, and flip it systematically so that the

imbalance between its various categories is somewhat mitigated.

For the network model, a change in a pixel value of an image

represents that this image will then change. Therefore, the third

one (column 6 of Table 3) is based on the second one to achieve
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FIGURE 5

E�ect of the number of classifiers on the resulting network.

a complete balance between its various categories. The interval

of increasing and decreasing pixel values is first calculated by the

equation, and then a random value is randomly drawn from the

interval without put-back as the increasing or decreasing pixel

value.

Pixel =
differences

2 ∗ n_classes
(10)

Where n_classes represents the number of categories, and

differences represents the difference between this category and

the category “akiec.” Therefore, the interval of image increase

and decrease is from 1 to Pixel.

From Table 3, it can be seen that the effect of solving the

data imbalance by changing the calculationmethod of the model

loss values decreases the correct prediction rate compared to

the dataset without any change, mainly because the change of

the loss values causes the model to have some bias between the

categories during training. By changing the image flip compared

to not making any changes, the imbalance between categories

is somewhat alleviated, so the prediction accuracy is somewhat

improved, but there is still some imbalance between categories.

Based on the image flip, each image is randomly added or

subtracted a certain pixel value to get a brand new image, thus

achieving a balance between each category of the image and a

certain improvement in prediction.

Therefore, in this paper, we use the image style transfer

upsampling scheme to equalize the dataset. After completing

dataset equalization, in the single-classifier experiment, we

successively change the model module in Figure 4C into three

algorithm models: “Inception V3+CBAM,” “InceptionResNet

V2+CBAM,” “Xception,” and “Xception+CBAM.” The

algorithm test results are shown in Table 4. It can be seen

from the third to the sixth column of Table 3 and the third

column of Table 4 that the effects of the original dataset, image

preprocessing, pixel change and image style transfer on the

detection of pigmented skin lesions based on Inception V3 are

improved in order, and the accuracy of image style transfer

regarding the detection of pigmented skin lesions is 4% higher

than that of image preprocessing. It is proven that image style

transfer is effective for the detection of pigmented skin lesions.

From column 5 and column 6 of Table 4, it can be seen that the

presence or absence of the attention mechanism makes some

difference to the classification effect (Acc, F1, Specificity), thus

proving the contribution of the attention mechanism in the

classification of pigmented skin diseases. However, it can be

seen from the Acc and F1 values in the table that the detection

rate of the “akiec” category is much higher than that of the

other categories, indicating that a single model has certain

anti-interference ability limitations with respect to the images

generated by the algorithm.

4.3.2. Fusion test results of multiple classifiers

The detection effect of multinetwork fusion can generally

strengthen the generalization ability of a model, thereby

improving its detection ability. After performing dataset

equalization, we first compare different fusion methods in

terms of their final classification effects in multiple classifier

experiments, and we test the feature-level fusion approach

based on deep features and the classifier-level fusion method

based on the classification layer. All three fusion strategies use

Inception V3, InceptionResNet V2, and Xception as the three

base classifiers. The first feature-level fusion method based on

deep features reduces the dimensionality of a feature graph with

a larger output through the convolution layer to realize the

splicing of dimensions. The second feature-level fusion method

based on deep features adds feature graphs with smaller output

dimensions to larger feature graphs with the zero-padding

operation. The third classifier-level fusion method based on the

classification layer splices the outputs of the fully connected

layers of the three base classifiers.
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TABLE 7 The influence of fusion of multiple base classifiers on evaluation metrics.

Multi-network fusion Inception

V3_Inception

V3_Inception V3

InceptionResNet_

InceptionResNet_

InceptionResNet

Xception_

Xception_

Xception

Inception V3_

InceptionResNet_

Xception_

ResNet50

Acc nv 0.6308 0.7385 0.7077 0.7846

mel 0.7961 0.7573 0.8058 0.8738

bkl 0.7045 0.7318 0.7227 0.8455

bcc 0.4783 0.4783 0.4348 0.7391

akiec 0.9150 0.9493 0.9493 0.9679

vasc 0.4170 0.5112 0.4709 0.5561

df 0.8929 0.8214 0.8214 0.8571

Weighted avg 0.8158 0.8527 0.8482 0.8937

F1 nv 0.5857 0.7164 0.6765 0.7286

mel 0.7421 0.7464 0.8098 0.8738

bkl 0.6610 0.7523 0.7413 0.8176

bcc 0.6111 0.6111 0.5882 0.8500

akiec 0.9065 0.9228 0.9158 0.9492

vasc 0.4987 0.5891 0.5707 0.6667

df 0.8333 0.8679 0.8519 0.8276

Weighted avg 0.8109 0.8468 0.8403 0.8894

Specificity nv 0.9825 0.9892 0.9871 0.8860

mel 0.9811 0.9853 0.9900 0.9330

bkl 0.9473 0.9736 0.9720 0.9090

bcc 0.9990 0.9990 0.9995 0.8700

akiec 0.7900 0.7810 0.7492 0.9110

vasc 0.9680 0.9719 0.9775 0.7710

df 0.9965 0.9990 0.9985 0.9270

Weighted avg 0.8485 0.8462 0.8256 0.8953

AUC nv 0.9511 0.9769 0.9803 0.9866

mel 0.9820 0.9895 0.9900 0.9964

bkl 0.9309 0.9650 0.9611 0.9726

bcc 0.9505 0.9656 0.9826 0.9821

akiec 0.9413 0.9611 0.9495 0.9754

vasc 0.9070 0.9426 0.9082 0.9591

df 0.9838 0.9993 0.9894 0.9971

Weighted avg 0.9394 0.9620 0.9502 0.9751

Three kinds of fusion strategy evaluation indices are

shown in Table 5. According to the data supplied by the

convolution layer, the first one-dimensional characteristic figure

of dimensionality reduction is generally low. The main reason

for this is that adding a convolution layer results in many

parameters that need to be trained. The first network loss value

is large and can lead to difficult network training for reaching a

more appropriate stage. As a result, the overall parameters of the

network cannot achieve good results. If zero padding is used, the

small-dimensional feature graph is extended, and no redundant

parameter training requirement is imposed. Therefore, the

output result will be consistent with the transfer learning result.

The third method is to splice the output of the fully connected

layer, and the final prediction index is the best option. First,

the feature extraction part of the network contains the network

parameters trained by ImageNet, and the features are relatively

appropriate. Finally, only the parameters of the fully connected

layer are added; thus, the feature extraction process of the

network model does not change, and the final prediction effect

is also the best.

From the weighted average of the Acc and F1 values

in Tables 4, 5, it can be seen that the model training and
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TABLE 8 Comparison of the results obtained in this study with those in the literature.

References Method Results

Sevli (32) Custom CNNmodel The accuracy on test set reaches 91.51%

Salian et al. (44) Custom CNNmodel The test accuracy is 83.15%

Pal et al. (33) Ensemble (ResNet50, DenseNet-121, and MobileNet) The normalized multiclass accuracy is 77.5%

Xie et al. (8) multilevel deep ensemble (MLDE) model The result is an average AUC of 86.5

Aldwgeri and Abubacker

(35)

Ensemble[VGG, ResNet50, Inception-V3, Xception, and

DenseNet-121]

Multiclass accuracy of 80.1% and mean average of 0.89 AUROC

Hard voting Ensemble (Inception V3, InceptionResNet V2, and Xception) The accuracy on test set reaches 91.61%

Proposed fusion network Fusion network (Inception V3, InceptionResNet V2, and

Xception)

The accuracy and AUC on the test set reach 92.01 and 95.3%,

respectively

TABLE 9 Comparison of di�erent methods on external datasets.

Method Acc Specificity AUC

Kermany et al. (46) 0.934 0.94 0.988

Kaymak and

Serener (47)

0.971 0.984 Not mentioned

Concat_Cov2D 0.974 0.991 0.983

Concat_Zeropadding 0.975 0.992 0.983

Concat_Dense 0.987 0.996 0.991

prediction steps performed by a single classifier are better

than those of the two fusion strategies based on feature-

level fusion. The main reason for this involves the changes

in the extracted image features during feature-level fusion.

Compared with the better network feature extraction ability

of “ImageNet” training, the feature extraction ability of the

modified network exhibits a certain decline, resulting in a

decrease in the classification index based on feature-level fusion.

During feature extraction, the classifier-based fusion scheme

does not change the feature extraction capability of the original

network based on “ImageNet.” Features are learned separately

through the convolution layer of each base classifier, and the

results of the fully connected network (i.e., the classifier) of the

base classifier are fused to obtain the final predicted category

value. Based on classifier-level fusion, the output results of

multiple base classifiers are fused. The generalization ability and

anti-interference ability of the network are enhanced, and the

model classification ability is enhanced.

4.3.3. Setting the number of fusion networks

This section mainly studies how to combine base classifiers

in fusion networks to achieve the best effect for the detection of

pigmented skin lesions. This paper mainly tests the effectiveness

of combinations including three basic classifiers: Inception

V3, InceptionResNet V2, and Xception. The fusion effects

of two networks, three networks, four networks, etc. are

tested. The best fusion scheme (classifier-level fusion based

on the classification layer in Section 4.3.2) is adopted. Six

scenarios are available regarding the fusion of two networks,

as shown in the table: fusing Inception V3 with Inception V3,

InceptionResNet V2 with InceptionResNet V2, Xception with

Xception, Inception V3 with InceptionResNet V2, Inception

V3 with Xception, and InceptionResNet V2 with Xception.

Four scenarios are considered regarding the fusion of three

networks, as shown in the table: the fusion of Inception V3,

Inception V3, and Inception V3; the fusion of InceptionResNet

V2, InceptionResNet V2, and InceptionResNet V2; the fusion of

Xception, Xception, and Xception; and the fusion of Inception-

V3, Inception-ResNet-V2, and Xception. The four-network case

is a fusion of Inception V3, InceptionResNet V2, Xception,

and ResNet50. It can be seen from Table 6 and Figure 5 that if

two base classifiers are consistent in the fusion process of two

networks, the classification effect will be worse than that of using

one base classifier alone. In a fusion network, theremust be some

difference between the base classifiers; otherwise, the network

easily falls into local minima during the training process. It can

be seen from Table 6 that when two different base classifiers are

used, the classification accuracy is greatly improved compared

with that of a network containing two identical classifiers. From

the values listed in Table 6, the monitoring indices of Inception

V3_InceptionResNet, Inception V3_Xception, and Inception

V3_InceptionResNet are better than those of single Inception

V3, InceptionResNet, Xception models; It can be seen from

the data in Table 7 that the fusion effect of four networks is

not as good as that of three networks, thus proving that the

network fusion does not guarantee that a greater number of base

classifiers leads to better results. Therefore, the fusion method

based on Inception V3, InceptionResNet V2, and Xception is

finally selected as the network model in this paper.

To explore the performance of different network

combinations in the feature extraction framework, we perform

ablation experiments for each image classification configuration.

The first case utilizes combinations with the same subnetwork.
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FIGURE 6

Model visualization.

With the increase in the number of networks (columns 3, 4, 6

in Table 4, 3–5 in Table 6, and 3–5 in Table 7), the classification

performance declines. Therefore, it is not better to increase the

number of subnetwork when they are the same. The possible

reason for this finding is that overfitting easily occurs in overly

complex networks, which leads to performance degradation.

However, the classification performance shown in Table 7 is

higher than that in Table 6. The main reason for this is that

in ensemble learning, the number of general base classifiers

cannot appear to be even; otherwise, the same predicted value is

likely to occur, and random judgment may occur during model

classification. The second was for different subnetworks. With

the increase in the number of networks (columns 3, 4, 6 in

Table 4, columns 6–8 in Table 6, and columns 6 in Table 7), the

classification performance increases first and then decreases,

indicating that increasing the number of subnetworks can

improve the accuracy of pigmented skin lesion detection, but

more is not always better. The overfitting of complex networks

may also occur. Third, it can be seen from Table 6 that when

the number of networks is the same, the performance obtained

when using different subnetworks as feature extractors is better

than that achieved with identical subnetworks. These results

prove the feasibility of the proposed network.

4.4. Comparison of the experimental
results obtained by the proposed
methods

According to the test results, the comparison between this

study and similar recent studies is shown in Table 8. The dataset

listed in Table 8 is HAM10000, which was presented in the ISIC

2018 Challenge and is used in this study. From the evaluation

indices obtained on the test set, it can be seen that the data
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upsampling scheme based on image flipping and image style

transfer proposed in this paper can produce the same amount

of data in each category; In addition, network fusion schemes

based on available data can achieve higher detection efficiency

for pigmented skin lesions than hard voting fusion schemes.

4.5. Experimental expansion

In order to validate the impact of the developed fusion

network on external test data, the UCSD common retinal OCT

dataset (45) was collected with a total sample size of 108,309

images in four categories: Normal, Drusen, CNV, and DME.

The sample sizes of the four categories are 51,140, 8,616, 37,205,

and 11,348, respectively, and this paper focuses on the “limited

model,” i.e., 1,000 randomly selected images in each category,

to compare the performance using the fusion strategies. Table 9

shows that the overall accuracies of the three fusion strategies are

97.4, 97.5, and 98.7%, respectively. Compared with the model

proposed by Kermany (46), the accuracy is 93.4%, which is an

average improvement of 4% points. Overall, the three fusion

strategies proposed in this paper are effective.

4.6. Model interpretability

To verify the interpretable and explainable of the classifier-

level fusion network based on the classification layer proposed

in this paper, the visualization effect of the sample with the

highest prediction probability for each category among the test

set samples is shown in Figure 6. In this paper, Grad_CAM (48)

andGrad_CAM++ (49) are used as visualization algorithms, and

the prediction probability value of the final output category of

the test model is used to visualize the fusion of the three base

classifiers and the CBAM. To compare the visualization effects

of the Grad_CAM and Grad_CAM++ visualization algorithms

on the results of this paper and to determine the visualization

effect of the final predicted probability value of the model in

this paper for the fusion of each base classifier and the attention

mechanism, each row in Figure 6 shows that the pictures are

all derived from the same sample image. It can be seen from

the results that the visualization effects of Grad_CAM++ on

the three base classifiers are better than those of Grad_CAM.

Grad_CAM++ can display the lesion areas of pigmented skin

lesions in a good thermal map. After the image is checked

by professional clinicians, the visual part of the image can

show that the locations focused on by the model are similar

to those yielded by human experience. The visualization effect

of Xception shows that the localization area is small and that

all results are contained in the lesion area, which is superior

to the effects of the other two classifiers (Inception V3 and

InceptionResNet V2), thus proving the more interpretable and

explainable of the proposed algorithm.

5. Conclusion

A fusion network-based detection algorithm for pigmented

skin lesions is proposed in this paper. Image preprocessing and

image augmentation are carried out before inputting the given

dataset into the network, which can solve the problem of low

classification accuracy caused by the unbalanced distribution of

the original data to a large extent. In this paper, various fusion

strategies are used to verify the applicability of the algorithm

for pigmented skin lesions. Based on a network performance

comparison, we empirically find that the classification effects

of the two fusion strategies based on feature-level fusion are

not good according to their pigmented skin lesion results.

However, the proposed fusion scheme can be applied in other

application scenarios and can provide experience guidance

for the corresponding model design process. Second, our

algorithmic architecture (containing three fusion strategies)

only covers single-modal, categorization-oriented methods.

However, we also note that multimodal input data are present in

medical image analyses, and the corresponding fusion schemes

can be studied by extending the current framework (50–52). At

the same time, two visualization algorithms are used to apply the

color visualization method to make the proposed deep learning

model more interpretable and explainable, and the accuracy of

the developed algorithmwas confirmed by comparing the results

with those of related papers. In the future, we plan to test the

robustness of the proposed algorithm using a hospital database

of actual high definition images of pigmented skin diseases,

deploy the algorithm model on servers for physicians in remote

areas to diagnose pigmented skin diseases, and apply the three

fusion strategies to other more medical application scenarios to

validate the advantages of the algorithm.
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