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Introduction
Traumatic brain injury (TBI) is the leading cause of death 
and disability worldwide. TBI is caused largely by motor ve-
hicle accidents, violence, combat injuries, fall or sport related 
injures. Each year, many individuals suffer from TBI, those 
survived often left with disabilities ranging from long-term 
sensorimotor deficits, cognitive impairment to vegetative 
state. To date, there is no effective treatment for TBI.  

TBI consists of two distinct phases: primary and secondary 
insults. The primary insult, completed within seconds of im-
pact, is due to mechanical tissue damage. Secondary insults 
consist of a complex cascade of interrelated events including 
ischemia, excitotoxicity, and metabolic failure which result 
in further cell death and dysfunction. Currently, therapies 
are primarily focused on reducing the extent of secondary 
insult rather than repairing the damage from the primary 
injury. Clinical evidence indicates that the hippocampus is 
particularly vulnerable to the secondary insults. Hippocam-
pal injury associated learning and memory deficits are the 
hallmarks of brain trauma (Hilton, 1994). The cognitive se-
quelae are the most enduring and debilitating of TBI deficits 
because they prevent reintegration of patients into a normal 
lifestyle by impairing employment and social interaction. 
Spontaneous cognitive improvement is not uncommon but 
is greatly limited and not normally seen past the second year 
post-injury (Schmidt et al., 1999). This natural recovery, 

however, does suggest that innate mechanisms for repair and 
regeneration are present within the brain.

Despite the high frequency and severity of TBI, relatively 
little is known about the biological basis of the cognitive 
deficits associated with insults to the brain or the innate re-
pair processes that occur in the brain in response to insults. 
Consequently, no cure is available for the enduring deficits 
induced by TBI. Nevertheless, recent findings reveal that 
multipotent neural stem/progenitor cells (NS/NPCs) persist 
in selected regions of the brain throughout the lifespan of 
an animal, rendering the brain capable of generating new 
neurons and glia (Lois and varez-Buylla, 1993; Gage et al., 
1998). Furthermore, increasing evidence indicates that these 
endogenous NS/NPCs may play regenerative and reparative 
roles in response to CNS injuries or diseases. In support of 
this notion, heightened levels of cell proliferation and neu-
rogenesis have been observed in response to brain trauma or 
insults suggesting that the brain has the inherent potential to 
restore populations of damaged or destroyed neurons. This 
raises the possibility of developing therapeutic strategies 
aiming at harnessing this neurogenic capacity in order to re-
populate and repair the damaged brain. 

Adult neurogenesis in the mammalian brain 
and its function
The region of neurogenesis in the mature mammalian brain 
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is primarily confined to the subventricular zone (SVZ) sur-
rounding the lateral ventricle and the dentate gyrus (DG) 
of the hippocampus (Altman and Das, 1965; Lois and Al-
varez-Buylla, 1993). The majority of the SVZ progeny are 
neuroblasts which undergo chain migration along the rostral 
migratory stream to the olfactory bulb, where they differen-
tiate into olfactory interneurons (Doetsch and Alvarez-Buyl-
la, 1996). Another sub-population of these cells migrate into 
cortical regions for reasons yet to be identified, but evidence 
suggests they may be involved in repair or cell renewal mech-
anisms (Parent, 2002). Likewise, the newly generated cells 
of the DG migrate laterally into the granule cell layer and 
exhibit properties of fully integrated mature dentate granule 
neurons (Kempermann and Gage, 2000; van Praag et al., 
2002b). Most importantly, the newly generated DG granule 
neurons form synapses and extend axons into their correct 
target area, the CA3 region (Hastings and Gould, 1999).  

Multiple studies have quantified the degree of cytogenesis 
occurring in these regions and have clearly shown that large 
numbers of new cells are regularly produced (Lois and Alva-
rez-Buylla, 1993; Cameron and McKay, 2001). Specifically, the 
rat dentate gyrus produces ~9,000 new cells per day which 
equates to ~270,000 cells per month (Cameron and McKay, 
2001). Considering that the total granule cell population in 
the rat is 1–2 million cells, this degree of new cell addition 
is certainly large enough to affect network function. A more 
recent study has found that in the olfactory bulb almost the 
entire granule cell population in the deep layer and half of 
the super layer was replaced by new neurons over a 12-month 
period (Imayoshi et al., 2008). The same study also reported 
that in the hippocampus, the adult generated neurons com-
prised about 10% of the total number of dentate granule cells 
and they were equally present along the anterior-posterior 
axis of the DG (Imayoshi et al., 2008). However, studies have 
also found that in normal adult rodent brains, many newly 
generated neurons in the DG and non-olfactory bound SVZ 
cells have a transient existence of two weeks or less (Gould et 
al., 2001). While this interval is long enough for supportive 
glial roles; neuron formation and integration into an existing 
network takes approximately 10–14 days (Alvarez-Buylla 
and Nottebohm, 1988; Kirn et al., 1999). It must be noted, 
however, that a small population of these cells are sustained 
for months to years ( Altman and Das, 1965; Eriksson et al., 
1998; Gould et al., 2001), strongly supporting the theory 
of network integration. Furthermore, this dramatic loss of 
newly generated cells might be a recapitulation of network 
pruning seen in early mammalian development. Whether the 
limited life-span represents network pruning or merely dis-
tinct cell specific roles is yet to be understood.

In the normal hippocampus, the newly generated granular 
cells in the adult dentate gyrus (DG) can become functional 
neurons by displaying passive membrane properties, gener-
ate action potentials and functional synaptic inputs as seen 
in mature DG neurons (van Praag et al., 2002). Increasing 
evidence has also shown that adult hippocampal neurogene-
sis is involved in learning and memory function (Clelland et 
al., 2009; Deng et al., 2009). For example, mouse strains with 
genetically low levels of neurogenesis perform poorly on 
learning tasks when compared to those with higher level of 
baseline neurogenesis (Kempermann et al., 1997a; Kemper-
mann et al., 1998). Conversely, physical activity stimulates a 

robust increase in the generation of new neurons and subse-
quently enhances spatial learning and long-term potentiation 
(van Praag et al., 1999a). Additionally, diminished hippocam-
pal neurogenesis, as observed following the administration 
of anti-mitotic drugs such as methylazoxymethanol acetate 
(MAM), cytosine-β-D-arabinofuranoside (AraC), by irradi-
ation or by genetic manipulation, was associated with worse 
performance on hippocampus-dependent trace eyeblink 
conditioning (Shors et al., 2001), contextual fear condition-
ing (Shors et al., 2002; Saxe et al., 2006) and long term spatial 
memory function tests (Rola et al., 2004; Snyder et al., 2005). 
Collectively, these studies provide compelling evidence that 
adult born neurons in the hippocampus play a critical role in 
many important hippocampal-dependent functions in nor-
mal adult brain. Compared to the evident role of hippocam-
pal neurogenesis in hippocampal-dependent functions, the 
function of SVZ-olfactory neurogenesis is less certain. Thus 
far, limited studies have found that adult generated neurons 
in the olfactory bulb have a critical role in olfactory tissue 
maintenance and are involved in olfactory discrimination 
and olfactory perceptual learning functions (Gheusi et al., 
2000; Moreno et al., 2009; Kageyama et al., 2012).     

The proliferation and maturational fate of cells within the 
SVZ and DG is modulated by a number of physical and chem-
ical cues. For example, biochemical factors such as serotonin, 
glucocorticoids, ovarian steroids, and growth factors tightly 
regulate the proliferative response, suggesting that cell pro-
liferation within these regions have physiologic importance 
(Cameron and Gould, 1994; Kuhn et al., 1997; Tanapat et al., 
1999; Banasr et al., 2001). In addition, certain physical stimuli 
produce alterations in cell production suggesting a role in 
network adaptation (Gould et al., 1997; Kempermann et al., 
1997b; van Praag et al., 1999b). For example, environments 
that are cognitively and physically enriched increase cell pro-
liferation and neurogenesis in both the SVZ and DG, while 
stress reduces this type of cellular response (Kempermann et 
al., 1997b; Gould and Tanapat, 1999). Nevertheless, a func-
tional role for these new cells is dependent upon a significant 
number of cells being generated, their survival, differentiation, 
and ultimate integration into existing neuronal circuitry.  

Compared to rodent brains, the degree of adult neurogen-
esis in human brain is less clear. Similar to rodent brains, the 
SVZ and the hippocampus in human brains are the active 
neurogenic regions (Eriksson et al., 1998; Sanai et al., 2004). 
Proliferating NS/NPCs have been found in these areas from 
autopsy brain samples. Under culture conditions, cells isolated 
from the adult human brain are capable of generating both 
neurons and glia (Kukekov et al., 1999; Nunes et al., 2003; 
Murrell et al., 2013). However, despite the presence of mitot-
ic active cells in the adult human brain, the generation and 
migration of new neurons is very much limited to the early 
childhood (Curtis et al., 2012). It is not clear whether this rel-
ative resistance of neurogenesis in adult human brain is due to 
the evolutional repression induced specific regulatory mecha-
nisms or other unknown cellular and molecular mechanisms. 

Post-TBI neurogenesis and strategies to enhance 
endogenous neurogenesis following TBI
The regenerative capacity of the SVZ and DG is of particu-
lar interest with regards to TBI. As adult generated neurons 
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Figure 1 Growth factor basic fibroblast growth factor (bFGF) or epidermal growth factor (EGF) infusion enhances injury-induced cell 
proliferation in the dentate gyrus (DG) and improves cognitive function in rats following fluid percussive injury.
(A–D) Coronal sections of the ipsilateral DG taken from the following animals at 7 days post injury: sham with vehicle infusion (A), injured with 
vehicle infusion (B), injured with bFGF infusion (C) and injured with EGF infusion (D). Increased numbers of BrdU+ cells were observed in the 
injured animals with either vehicle or growth factor infusions compared to the sham (brown dots indicated by arrows). BrdU+ cells in the DG 
were clustered and mainly located in the subgranular zone. Bar = 100 µm.  (E) Stereological quantification analysis of the degree of cell prolifera-
tion in the DG. Compared to sham, injured animals with vehicle or growth infusion had significantly more proliferating cells in the granular zone 
in both ipsilateral and contralateral side (**P < 0.01). Compared to injured with vehicle infusion, injured animals which received bFGF or EGF 
infusion had significantly higher number of BrdU+ cells in the ipsilateral granular zone (#P < 0.05). (F) Graph compares Morris water maze per-
formance of injured rats infused with bFGF, EGF or vehicle to sham animals. Injured rats infused with bFGF or EGF had a significant improve-
ment of cognitive recovery as compared to injured rats with vehicle (*P < 0.01, n = 10 in each group). This cognitive recovery, as characterized by 
shorter goal latency in the water maze performance reached similar levels to that observed in sham animals through days 21–25 following injury. 
TBI: Traumatic brain injury.

from both regions have functional roles, harnessing this 
endogenous population of stem cells to repopulate the dam-
aged brain is an attractive strategy to repair and regenerate 
the injured brain.  

In the injured brain, studies from our lab and others have 
shown that TBI significantly increases cell proliferation in 
both SVZ and DG in adult mice and rats in varying TBI 
models including fluid percussive injury (Chirumamilla et 
al., 2002; Rice et al., 2003), controlled cortical impact injury 
(Dash et al., 2001; Gao et al., 2009), and diffuse weight drop 
injury (Dash et al., 2001; Chirumamilla et al., 2002). We 

have also found that the juvenile hippocampus presents a 
more robust neurogenic response following injury than the 
adult and aged brain (Sun et al., 2005). Such increased levels 
of cell proliferation, particularly generation of new neurons, 
likely contribute to the better recovery in juvenile animals 
after TBI. Furthermore, we and other have found that inju-
ry-induced newly generated granular cells integrate into the 
existing hippocampal circuitry (Emery et al., 2005; Sun et al., 
2007), and this endogenous neurogenesis is associated with 
innate cognitive recovery following injury (Sun et al., 2007). 
In human brain specimens, a recently study has found an in-
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creased number of cells expressing NS/NPCs markers in the 
perilesion cortex in the injured brain (Zheng et al., 2013). 
These studies strongly indicated the inherent attempts of the 
brain to repair and regenerate following injury.

As the innate recovery capacity is rather limited, it is im-
perative to augment this endogenous process via exogenous 
means. As mentioned, many factors have been identified to 
be able to enhance neurogenesis particularly in the hippo-
campus. Following traumatic brain injury, thus far, studies 
have found that varying types of growth factors and drugs 
can enhance neurogenesis and improve functional recovery 
of the injured brain following trauma. For example, stud-
ies from our lab have shown that direct administration of 
growth factors bFGF, or EGF through intraventricular infu-
sion can significantly enhance TBI-induced cell proliferation 
in the hippocampus and the SVZ, and drastically improve 
cognitive functional recovery of the injured adult animals 
(Figure 1; Sun et al., 2009, 2010). Other studies have found 
that infusion of S100β or VEGF can also enhance neuro-
genesis in the hippocampus and improve the functional 
recovery of animals following TBI (Kleindienst et al., 2005; 
Lee and Agoston, 2010; Thau-Zuchman et al., 2010). Several 
drugs that are currently in clinical trials for treating TBI or 
other conditions have shown effects in enhancing neurogen-
esis and cognitive function in TBI animals including statins 
(Lu et al., 2007), erythropoietin (Lu et al., 2005; Xiong et al., 
2010), progesterone (Barha et al., 2011) and anti-depressant 
imipramine (Han et al., 2011), etc. Other strategies which 
have beneficial effect for TBI such as hypothermia, environ-
ment enrichment also enhanced hippocampal neurogenesis 
in injured animals (Kovesdi et al., 2011; Bregy et al., 2012). 
Collectively, these studies suggested the therapeutic potential 
of augmenting the endogenous repair response for treating 
TBI.

Summary
The adult mammalian brain harbors mitotic active cells. 
These cells have potential to become functional neurons 
participating neural network repair. Modulating these adult 
neural stem/progenitor cell pools in the injured brain to 
treat the injured brain has significant advantages because 
it makes use of endogenous repair mechanisms to facilitate 
regeneration which are superior, both in an immunologic 
and physiological standpoint, than those which rely on exog-
enous cell replacement. 
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