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Abstract

Background and Purpose: Artificial intelligence (Al) is a technique which tries to think like humans and mimic human
behaviors. It has been considered as an alternative in a lot of human-dependent steps in radiotherapy (RT), since the human
participation is a principal uncertainty source in RT. The aim of this work is to provide a systematic summary of the current
literature on Al application for RT, and to clarify its role for RT practice in terms of clinical views.

Materials and Methods: A systematic literature search of PubMed and Google Scholar was performed to identify original
articles involving the Al applications in RT from the inception to 2022. Studies were included if they reported original data and
explored the clinical applications of Al in RT.

Results: The selected studies were categorized into three aspects of RT: organ and lesion segmentation, treatment planning and
quality assurance. For each aspect, this review discussed how these Al tools could be involved in the RT protocol.

Conclusions: Our study revealed that Al was a potential alternative for the human-dependent steps in the complex process

of RT.
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Introduction

Radiotherapy (RT) is one of the most common treatment mo-
dalities for tumor.'> The RT workflow is a complex process
consisting of several human-dependent steps that have an impact
on treatment effectiveness. Artificial intelligence (Al), a modern
technology to think like humans and mimic their actions, seems
to be a potential alternative in the following RT aspects:

(1) lesion and organ contouring,
(2) treatment planning,
(3) quality assurance (QA).

The lesion and organ contouring means to identify and
delineate the edges of lesion and organ on hundreds of two-
dimension images. In the current clinical protocol, it is mainly
done by human. It is labor-intensive and time-consuming.
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Although the automatic or semi-automatic segmentation tools
have been commercially available to release such burdens,
they can’t achieve the satisfactory performance. Taking the
atlas-based automatic segmen‘[ati0r1,3’4 a common tool, as an
example. It is an image registration-based approach. The atlas
refers to the reference images with organ contours. When
getting a new image, it would be matched with the reference
images using registration algorithms. Based on the registration
results, the organ edges on the new image are generated by
transforming the contours annotated on the reference images.
Therefore, the performance is impacted by various choices on
atlas and registration approach. Human check and correction
are still necessary. The drawback of those currently available
automatic segmentation methods is that they don’t show
human intelligence. With the development of Al, it shows the
potential of mimicking humans and of doing a good job on the
lesion and organ contouring.

The treatment planning is a human-computer interaction
process to solve an optimization problem. The purpose of the
optimization problem is a satisfactory treatment plan (ie, the
dose delivered to tumor reaches the prescription and the
normal organs’ dose is as low as possible). To achieve this
purpose, a human gives an initial optimization goal (including
the minimum dose delivered to tumor, the tolerated dose to
various normal organs, optimization weights, et al) to the
computer. The computer updates the treatment plan param-
eters, such as the linear accelerator (LINAC) gantry angles and
the multi-leaf collimator shapes, to approach this goal. During
the process, the human decides whether the treatment plan
reaches optimum and how to adjust the optimization goal to
get a better plan. It means that the quality of a treatment plan
depends on the planner experience, and hence causes quality
uncertainty. Therefore, Al, a machine to think like humans,
becomes an alternative to make such a decision.

The QA is a systematic process of determining whether an
equipment or a step meets specified requirements. RT involves
a lot of equipment, such as LINAC, simulator and laser po-
sitioning systems. RT also consists of various aspects, in-
cluding computed tomography (CT) scanning, tumor
identification and treatment plan optimization. Any error
occurring in one equipment or one aspect may cause medical
risk. QA is to reduce the likelihood of these errors. Human is
the QA operator. Thus, the human-dependent factors impact
the QA precision. Additionally, the complex QA procedures
cause a labor burden for a clinic, and crowd out these
equipment’s time for treatment. Therefore, QA needs accu-
racy, efficiency, and uniform standards urgently. Al, a
machine/robot which is capable of human intelligence, seems
a good candidate for QA.

Based on the great potential of Al in the three RT aspects, it
has been explored to increase quality, standardization, and
acceleration.”'* This article is to provide a systematic liter-
ature review on the application of Al in the above three parts,
and their promises and limitations for clinical use. The work is
organized as follows: The “Search Strategy and Selection

Criteria” section introduces the search strategy and selection
criteria. Sections “Organ and lesion segmentation”, “Treat-
ment planning” and “QA” review the Al techniques for
segmentation, treatment planning and QA respectively, and
discuss their applications for each aspect in terms of clinical
community. Sections “Limitations and Challenges” and
“Prospects for the Future” discuss the challenges and pros-
pects of Al in RT in terms of management, economics and
society. Section “Conclusion” gives a conclusion.

Search Strategy and Selection Criteria

To assemble the literature relevant to this work, the authors
searched PubMed and Google Scholar, from inception until
the end of May of 2022, for articles employing Al in RT.
Specially, we searched PubMed and Google Scholar using the
following list of queries: [“Artificial Intelligence” AND
“automatic segmentation”], [“Artificial Intelligence” AND
“automated treatment planning” AND “radiotherapy’],
[“Artificial Intelligence” AND “dose prediction”], [“Artificial
Intelligence” AND “automated optimization”], [“Artificial
Intelligence” AND “quality assurance”], [“Artificial Intelli-
gence” AND “QA”], [“Artificial Intelligence” AND “patient-
specific QA”], [“Artificial Intelligence” AND “machine-
specific QA”] and [“Artificial Intelligence” AND “progno-
sis prediction”]. “Aurtificial Intelligence” was in turn replaced
with the terms “Machine Learning”, “Deep Learning” and
“Neural Network”. These searched articles’ relevance to the
topic was further checked by the authors. The articles that
were not related to RT were excluded from this review. Ad-
ditionally, the reference lists of selected articles were hand
searched for other relevant articles.

The literature search was limited to English language
publications, original researches that were published in a
journal. Eventually, we categorized these selected articles into
three groups: (1) organ and lesion segmentation, (2) treatment
planning and (3) QA.

Organ and Lesion Segmentation

In RT, the segmentation of organs and lesion is used for in-
verse treatment planning and clinical evaluation. It reveals the
spatial relationship among organs at risk (OARs) and lesion,
and provides parameters (such as volume) to calculate clinical
goals. Therefore, the segmentation accuracy and consistency
are necessary to guarantee the plan quality and treatment
effectiveness.'"'? The automatic OAR segmentation using Al
is relatively easier than lesion delineation, since OARs in
various patients are similar, but lesion shows different in shape
and size which are individualized.

Organ Segmentation

Al-based automatic segmentation of OARs has been re-
ported,'*'® and the relevant tools are also commercially
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Figure . Automatic organ segmentation by a commercial Al tool. (A-B) Are the CT slices in head and thorax respectively. (C-D) Show the

CT images in abdomen.

available (as shown in Figure 1). Fully convolutional network
(FCN)’ is the primary type of Al for automatic segmentation.
For the OARs encompassing high contrast with their sur-
rounding tissues, such as lung, eye and bladder, they can
achieve high accuracy. Zhu et al'® reported the average Dice
similarity coefficient (DSC) of 0.95 for lung. Bladder DSC of
0.94 and eye DSC of 0.91 were reported by Zhou et al.'* The
OARSs with small volumes and fuzzy boundaries, such as optic
chiasma, pose challenges to the segmentation task. To deal with
this problem, researchers tried to find solutions by improving
their network architecture designs'® or loss functions.'® A cross-
layer spatial attention map fusion architecture'® was proposed to
enhance the network’s attention to the target area. A multi-task
learning paradigm with shape constraints'” aimed to learn well-
generalizing features. The focal loss,'® exponential logarithmic
Dice loss (ELD-Loss)'? and top-K exponential logarithmic Dice
Loss (TELD-Loss)'® were introduced to solve the imbalance
problem (ie, the imbalance among organs with various sizes, and

the imbalance between difficult-to-segment organs and easy-to-
segment organs).

Lesion Segmentation

FCN plays a main role in the task of segmenting lesion. Due to
the tumors’ diverse shapes, sizes, locations and poor contrast
with its surrounding tissues, this task is hard and relies on

delicate  network  architecture®®?'  or  multimodal
images.zo’22’23
Jin et al*® proposed a two-stream deep network fusion

framework and a progressive semantically-nested network
(PSNN) segmentation model to delineate gross target volume
(GTV) for esophageal cancer on CT and positron emission
tomography (PET). They achieved DSC of 79% and average
surface distance (ASD) of 5.7 mm. Attention mechanisms,?’
modified ResNet** and a context block”” were also adopted in
an FCN to segment different tumors.
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Figure 2. lllustration of brain tumor in CT slice and MR image. (A) Shows the medical images. (B) Shows the GTV (red line) edge on these
images. Compared to CT, brain tumor has a clearer boundary in MR. GTV is gross target volume.

Although CT is the primary image modality for lesion
segmentations in most published papers,>®” it shows blur
boundary and low contrast for certain tumors (as shown in
Figure 2). PET*®*° and magnetic resonance image
(MRI)**3! support complementary information to it. The
two imaging techniques are versatile, since the different
radiotracers used in PET can target different molecules, and
the different sequences in MRI can highlight different
tissues. To exploit the information from these multimodal
images via Al, image fusion is prerequisite. Except for the
spatial alignment of them, the data noise is also a major
factor which would negatively affect lesion segmentation
accuracy. It is because that the noise is usually an unwanted
information in images, and the Al is susceptible to it.***?
More details about data fusion and its relevant

preprocessing can be found in Wang et al.’s work®* and
Zhang et al.’s report.”’

Clinical Views and Applications on Al-Based Automatic
Segmentation

Time saving, accuracy and consistency is the purpose of
developing Al-based automatic segmentation. It has been
proved that the currently available FCN sped up the delin-
eation process, and reduced the time cost to tens of minutes or
less.>*° Geometric metrics, such as DSC,37 hausdorff dis-
tance (HD)?’ and average surface distance (ASD),***' are
seen in lots of published reports. However, a lower DSC or a
higher ASD doesn’t always reflect a bad segmentation, due to
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the inter-observer variation and different guidelines among
different institutions.> Likewise, a higher DSC doesn’t al-
ways represent a clinical acceptance. For example, GTV is the
volume which needs accurate boundary definition for treat-
ment effectiveness. A larger GTV volume presents a higher
DSC, but the automatically generated edge is unstable.*
Therefore, in clinical practice, manual check is necessary.

The dosimetric evaluations on these automated contours of
OARs proved its potential for routine clinical use. Zhu et al**
performed dosimetric evaluation on the automated delineation
of OARs for esophageal cancer, and found its clinical ac-
ceptance. Liu et al®® found that there was no significant
difference in the dose-volume parameters between manually
and automatically delineated OARs for non-small-cell lung
cancer radiotherapy.

Treatment Planning

Inverse treatment planning is an iterative optimization process
after being given a series of optimization parameters. These
parameters, including target coverage and OAR constraints,
are modified again and again for the optimal plan during
manual treatment planning. To speed up such procedure as
well as guarantee the plan quality, giving the optimal pa-
rameters as the initial ones to the treatment planning system
(TPS) can shorten the process of back-and-forth modifica-
tions. Some researchers also use Al to guide and supervise the
optimization process. These are what Al does for automated
treatment planning.

Automated Dose Map Prediction

The dose map prediction is the primary use of Al for treatment
planning. It can be categorized as dose-volume histogram
(DVH) prediction** and voxel-based dose prediction.*>*
From the predicted DVH and voxel-based dose, the optimi-
zation parameters (such as maximum dose and volume re-
ceiving a certain dose) can be derived.

Initially, the inputs of DVH prediction model were hand-
crafted features, such as OAR DVH,*’ organ volumes*® and
distance-to-target histogram (DTH).***’ The quantity and
variety of manually-selected features are limited. They are
hard to cover all DVH-related characteristics and thus are hard
to be mapped perfectly to DVH. By resorting to the automatic
feature extraction of neural network, Liu et al>® used a con-
nected residual deconvolution network to correlate the spatial
distribution of planning target volumes (PTVs) and OARs
directly to DVHs of OARs. The spatial distribution of PTVs
and OARs was a multi-channel image. In each channel, the
pixels were labelled as different digits to denote different
OARs or PTVs. Similarly, Chen et al®' used a ResNet-101-
based network to predict OAR’s DVH based on a two-channel
structure image. Cao et al>> adopted a gated recurrent unit-
based recurrent neural network (GRU-RNN) to predict DVHs
using the dosimetric information induced by individual beam.

Given that the predicted one-dimension (1D) DVH lacks
the spatial dose distribution information,”* Al is explored for
three-dimension (3D) dose distribution prediction. Its com-
mon design is shown in Figure 3. Song et al’* used a deep
neural network DeepLabv3+ to predict dose distribution for
rectal cancer, and invited four dosimetrists with different years
of experience to conduct the replanning based on the predicted
dose. Their results showed that the DeepLabv3+ prediction
doses were all clinically acceptable. Using the information of
predicted dose indeed saved an average replanning time of
13.66 min~15.76 min. Gronberg et al>> proposed a 3D dense
dilated U-Net architecture to predict 3D dose distributions for
head and neck radiation plans. They achieved an average
mean absolute difference of 2.56 Gy between the ground
truths and the predicted ones. A hierarchically densely con-
nected U-net*® was explored for automated treatment planning
on head and neck patients. It was proved effective in 3D dose
prediction with an error of less than 6.3% for all OARs’ max
doses and an error of less than 5.1% for the prescription dose.

Automated Optimization Process

Automated optimization process is using Al to simulate the
interaction between TPS and human planners. Zhang et al’’
trained a reinforcement learning (RL)-based planning bot for
pancreas SBRT plans. Their 24 test plans achieved similar
target coverage compared to clinical plans while satisfying
other dose constraints. Shen et al’® developed a hierarchical
virtual treatment planner network (HieVTPN) to operate a
TPS to generate a treatment plan. HieVTPN consisted of three
networks: Structure-Net, Parameter-Net and Action-Net.
During automated optimization, the three networks were
employed in a sequence order. Structure-Net decided which
structures needed adjustment. Parameter-Net decided what
parameters for the selected structures needed update. Action-
Net decided the specific adjustment manner for the selected
parameters. HieVTPN achieved a plan score of 8.62 + .83 (the
best score was 9) on 59 testing prostate IMRT (intensity
modulated radiation therapy) plans and a plan score of 139.07
(the best score was 150) on 5 testing prostate SBRT (ste-
reotactic body radiation therapy) plans.

Clinical Views and Applications on Al-Based
Automated Treatment Planning

The standardization and the improved quality of treatment
plan are the contributions of developing Al-based automated
treatment planning, due to the expert experience learnt by Al.
The currently available Al-based dose prediction tools can be
used as a guidance for planners to adjust plan optimization
parameters or can be added to a commercially available au-
tomated method to generate customized inputs to TPS for
personalized treatment plans. The Al-based optimization tools
can be merged into a TPS for an automated planning.
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Figure 3. An example of Al-based prediction model for dose map distribution for breast cancer. PTV is planning target volume. ROl is the

region of interest.

Table I. Overview of the Al Applications in RT Summarized in This Worl®.

Procedure Al Contributions

Promise & Limitation

Tumor and organ
contouring

Organs with high contrast achieve good
segmentation

Organs with small volumes and fuzzy boundaries
need improvements

Al indeed accelerates contouring and alleviates human
workload.**3? Most Al-based segmentations are clinically
acceptable. Final check by doctors is necessary in the current RT
routine

Tumor contouring is still challenging and relies on

multi-modal images and delicate network

structures
Treatment Automatic dose map prediction

planning

Automated optimization process

Quality assurance

(QA)

Patient-specific QA: measure the consistency
between the expected and the delivered dose

Machine-specific QA: assess devices’ performances

It can play as a reference for planner or can generate customized
inputs to TPS. It saved replanning time of tens of minutes for a
clinically acceptable plan.54

It can achieve real automation for treatment plan. Time and
computing cost, and the feasibility for a complicated plan are its
bottleneck now

Patient-specific QA prediction accuracy is around 70%.°%%? It still
stays in the stage of exploration. There is no determination on
how to involve them in clinical routine

Prognosis prediction (for future QA): Relate spatial It seems potential to reach a good prediction precision (an

dose to treatment outcomes

accuracy of 70%~88% as reported®”*%). Prognosis prediction is

not an item in the current QA list, but is promising when QA
goes into the era of assuring treatment efficacy

?Abbreviations: Al, artificial intelligence; RT, radiation treatment; TPS, treatment planning system.

Specially, after a TPS receives the initial input parameters, the
Al tools tune them until the optimization reaches a preset
maximum iteration number or reaches an acceptable con-
vergence tolerance. Its time and computing resource cost for a
plan, especially for a complex one (such as a plan for tumor in
head and neck), are the concern for its clinical application.
Furthermore, it can be a possible solution for adaptive radi-
ation therapy, since it has the potential to accelerate treatment
planning.>*

QA

QA in RT is all procedures to ensure consistency between the
medical prescription and safe fulfilment of it.>” QA involves
all aspects in the course of RT, and thus refers to a significant
workload and machine downtime. The main feasibility studies
of Al application for QA include patient- and machine-specific
QA. Prognosis prediction is also included in this section for its
potential in QA of treatment efficacy.

Patient-specific QA

Patient-specific QA measures the consistency between the
delivered dose and the expected dose. By using Al to predict
plan passing rate or whether the delivery errors exist in a plan,
the workload of measuring and analyzing dose using a
phantom can be reduced or avoided.

Interian et al°® used a convolution neural network (CNN)
to predict gamma passing rate by inputting fluence maps,
and obtained a mean absolute error of 0.70 £ 0.05. Simi-
larly, Tomori et al®' developed a 15-layer CNN to predict
gamma passing rate with the input of dose distribution,
structure volumes and monitor unit values for each field.
Nyflot et al®? adopted a deep learning approach to predict
the presence or absence of RT delivery errors from gamma
image. In their work, the mentioned RT delivery errors were
the random and systematic multi-leaf collimator (MLC)
errors. The deep learning approach achieved an accuracy of
77.3% to classify the plans with and without errors, and an
accuracy of 64.3% to label plans as containing random
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MLC errors, containing systematic MLC errors and error-
free.

Patient-specific QA test results are influenced by a lot of
factors, including the machine accuracy (eg, leaf position and
velocity, gantry angle and dose rate) and the dose calculation
precision (eg, the model used in TPS). Only several factors are
hard to correlate perfectly with the QA test results. This maybe
the reason of the low prediction accuracy in the above reports.
Involving more information as the model input is potential to
improve its performance.

Machine-specific QA

Machine-specific QA consists of assessing the performances
of all devices involved in RT, such as LINAC, CT simulator
and on-board imaging equipment.

Valdes et al®® used a support vector machine (SVM) to
identify image artifacts. Naqga et al® reported their work on
predicting gantry sag, radiation field shift and MLC offset data
by using machine learning methods. Li et al®® developed an
artificial neural network (ANN) time-series model to predict
beam symmetry, and achieved a mean square error of around
0.14. The results of ANN time-series model were better than
autoregressive moving average (ARMA) model.

Prediction on Patient Efficacy and Side Effect

Prognosis prediction is not included in the routine QA. It was
written in this section for its potential application. Current plan
evaluation metrics are 1D, such as average dose and volume
receiving a certain dose. They are derived by reducing
complex treatment data and discard spatial information. This
has proven to be a particular problem for normal tissue
complication probability (NTCP) prediction.®® By relating the
spatial dose to radiotherapy outcomes, it may improve the
prediction accuracy, and may push QA into a new era of
assuring treatment efficacy, more than just delivery quality.

Ibragimov et al®’ proposed a 3D CNN to predict hep-
atobiliary toxicity by inputting 3D dose distribution and CT
images. The prediction accuracy achieved 0.73 in terms of the
area under the receiving operator characteristic curve. Liang
et al°® built a 3D CNN to predict radiation pneumonitis grade
with the input of 3D dose. Their prediction accuracy (ie, the
area under curve, AUC) was 0.842 and was better than other
three comparative multivariate logistic regression models.
Similarly, Liang et al® correlated multi-modality data, namely
3D dose, ventilation image (VI) and functional dose (obtained
by weighting dose distribution with VI), to radiation pneu-
monitis grade. Their AUC was 0.874.

Clinical Views on the Al Application for QA

The Al approaches for QA are just in the early stage. Although
a large amount of papers, as previously detailed, have reported
their exploration in various aspects of QA, there is no

determination about how to take them into the clinical routine.
The lack of interpretability of some Al approaches, such as
deep learning, reduces the trustworthiness of their QA results.
If the actual QA tests are replaced by these Al-based QA tests
(act as virtual tests), it may increase the treatment risk. It is
opposite to the goal of performing QA in RT (ie, the treatment
safety).

Currently, the Al-based QA approaches can be used as an
early warning system for anomalous event detection, and
suggest the radiation physicists to conduct tests. As for the
elimination of some QA tests (eg, to replace patient-specific
QA test with a passing rate prediction), it needs more re-
searches on the interpretability and accuracy.

Limitations and Challenges

For now, the application of Al has been explored in a lot of
aspects in radiation treatment. Some results have been sat-
isfactory for the clinical community, such as the segmentation
of normal lung. Some research fields are still challenging, such
as tumor segmentation and automated optimization process.
These technical achievements and challenges have been
discussed detailly in the last subsection of each above section.
In this section, we discuss its limitations and challenges in
terms of management, economics and society.

The lack of regulation to use Al in the radiotherapy practice
is one of the major limitations. Al is a machine without
guarantee of 100% accuracy. Its “black box phenomenon”
reduces its trustworthiness for clinical practice. Therefore, the
human surveillance is necessary. But the surveillance details
are lacking. Such as what items need check? Who is re-
sponsible for these inspections? There is no answer to these
questions now. At its most basic, it’s the lack of unified
standards for radiation treatment practice.

The fragmented data which is used for training lowers AI’s
widespread use. The available Al products are trained using
data from several institutions. Various institutions or hospitals
execute different protocols. Thus, the fragmented data can’t
give an optimal solution for all hospitals.

The current Al may obstacle the progress of radiation
treatment. Radiotherapy, even medicine, is a discipline with
continuous development. Most current Al products are static
machines that grasp knowledge from history labelled data. Its
closed architectures limit the knowledge exploration and
extraction for physicians, since most of them have no edu-
cational background of computer science. Furthermore, if Al
replaces some human work (such as prognosis prediction), it
means that the radiation oncologists and technicians who just
graduate from school can never find the new problems and
solutions from this kind of experience. It is not good for the
progress of this discipline. To sum up, how to use Al in a best
way with addressing these concerns is essential.

The uncertain market requirement is limiting Al products’
falling into practice. At present, the Al tools are created to
mimic human, and hence it is a robot integrating knowledge
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from experienced and educated professionals. Therefore, the
Al products are unneeded for the first-class hospitals in which
a lot of experts work. It seems that the requirement of Al
assistance is urgent for the primary hospitals, but the primary
hospital is not the first choice for a cancer patient. Further-
more, the habit of seeing a doctor is face-to-face and talking to
a real person. To change a habit is difficult.

The potential unemployment is a social ramification of Al
Al may cause some jobs redundant, when it cuts cost and
reduces clinician pressure. The consequence is that a large
amount of people who do the repeated work are laid off, and
hence causes social instability.

Prospects for the Future

Although Al faces numerous unsolved problems in the field of
technology, management, economics and society, it shows
promising in the practice of radiation treatment. It frees up
clinicians from tedious work and gives more time to interact
with patients. It cuts cost and improves the quality of medical
service, and thus is potential to turns all radiation treatment
departments or centers to be first-class. The automation
brought by AI accelerates the realization of adaptive
radiotherapy.

By resorting to the feature extraction of Al, researchers can
know more about pathogenesis and other treatment-related
issues. When Al goes into a new era of concluding new
knowledge from the current era of mimicking human, it may
push the radiotherapy, even medicine, into a whole new world.

Conclusion

In recent years, Al shows promising in many fields. This work
reviews its exploration for automation in RT: OAR and tumor
segmentation, treatment planning and QA (as summarized in
Table 1). The results demonstrate the performance improve-
ment, time saving and its potential to reduce workload.
However, the Al application in RT is still in its early stage. It is
believed that Al can be more widely applied in the field of RT
by solving the problems of interpretability and accuracy
through future research. The development of Al can not only
provide prevention, diagnosis, and treatment options for tumor
patients, but also contribute to the continuous development of
precision and optimization of radiotherapy.
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