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A B S T R A C T   

The coronavirus disease 2019 (COVID-19) pandemic caused by the SARS-CoV-2 virus has affected 
over 700 million people, and caused over 7 million deaths throughout the world as of April 2024, 
and continues to affect people through seasonal waves. While over 675 million people have 
recovered from this disease globally, the lingering effects of the disease are still under study. Long 
term effects of SARS-CoV-2 infection, known as ’long COVID,’ include a wide range of symptoms 
including fatigue, chest pain, cellular damage, along with a strong innate immune response 
characterized by inflammatory cytokine production. Three years after the pandemic, data about 
long covid studies are finally emerging. More clinical studies and clinical trials are needed to 
understand and determine the factors that predispose individuals to these long-term side effects. 

In this methodology paper, our goal was to apply data driven approaches in order to explore 
the multidimensional landscape of infected lung tissue microenvironment to better understand 
complex interactions between viral infection, immune response and the lung microbiome of 
patients with (a) SARS-CoV-2 virus and (b) NL63 coronavirus. The samples were analyzed with 
several machine learning tools allowing simultaneous detection and quantification of viral RNA 
amount at genome and gene level; human gene expression and fractions of major types of immune 
cells, as well as metagenomic analysis of bacterial and viral abundance. To contrast and compare 
specific viral response to SARS-COV-2, we analyzed deep sequencing data from additional cohort 
of patients infected with NL63 strain of corona virus. 

Our correlation analysis of three types of RNA-seq based measurements in patients i.e. fraction 
of viral RNA (at genome and gene level), Human RNA (transcripts and gene level) and bacterial 
RNA (metagenomic analysis), showed significant correlation between viral load as well as level of 
specific viral gene expression with the fractions of immune cells present in lung lavage as well as 
with abundance of major fractions of lung microbiome in COVID-19 patients. 

Our methodology-based proof-of-concept study has provided novel insights into complex 
regulatory signaling interactions and correlative patterns between the viral infection, inhibition 
of innate and adaptive immune response as well as microbiome landscape of the lung tissue. 
These initial findings could provide better understanding of the diverse dynamics of immune 
response and the side effects of the SARS-CoV-2 infection and demonstrates the possibilities of the 
various types of analyses that could be performed from this type of data.   
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1. Introduction 

The coronavirus disease 2019 (COVID-19) pandemic caused by the SARS-CoV-2 virus has affected over 700 million people and 
caused over 7 million deaths throughout the world as of April 2024, and continues to affect people through seasonal waves [1]. The 
majority of individuals infected were reported to have mild disease (about 75–80 %), about 15–20 % of patients need hospitalization, 
and about 5–10 % need critical care [2,3]. The estimated percentage of asymptomatic cases varied widely depending on factors such as 
population, age, frequency of testing, and virus strain. A meta-analysis study published in JAMA Network Open found that among 29 
million individuals tested, asymptotic infections accounted for 0.25 % of the tested population and 40.50 % of the COVID positive 
population [4]. 

To date, a wide range of research articles on COVID-19 have been published including but not limited to the detection, treatment, 
prediction, and epidemiology of the disease. Researchers have also developed databases and curated data collections; and the large 
number of individuals affected lends itself to the application of various machine learning (ML) and artificial intelligence (AI) based 
algorithms in this domain. WHO had collated a research database that allows users to search through over 700, 000 articles related to 
COVID-19 published until Jan 2024 [5]. Other collections include Nature Communications’ top 25 COVID-19 articles of 2022 and 
2023, PMC COVID-19 collection and Springer Nature coronavirus collection [6–9]; and a few of the recent articles related to AI are also 
included here [10–12]. 

Although over 675 million people around the world have recovered from this disease, the long-term effects of the disease are still 
under investigation. Three years after the start of the pandemic, data from COVID-19 recovered patients showed multiple organs 
affected with a broad spectrum of manifestations. Long-term effects of SARS-CoV-2 infection, also known as ‘long COVID’ included 
fatigue, chest pain, cellular damage, and robust innate immune response with inflammatory cytokine production [2,13–15]. These 
collection of side effects are referred to as post-acute sequelae of SARS-CoV-2 infection (PASC) [16]. Large-scale efforts such as the NIH 
PASC Initiative [17] in the US and similar efforts in the UK [18] were launched with the goal to fund studies to build a biospecimen 
bank and track recovery. In 2023, NIH launched clinical trials for long COVID through the RECOVER Initiative to understand, treat, 
and prevent the condition. (https://recovercovid.org/). 

According to a recent review article published in Nature, there is a conservative estimate of over 200 documented symptoms of 
Long COVID, and at least 65 million individuals around the world suffer from this disorder. Researchers have delved into the various 
risk factors, diagnosis, treatment, long-term health outcomes, and pathophysiological mechanisms which indicate likely multiple 
causes of long COVID. There is also a call to action for further research in order to improve health outcomes [19]. Despite this, there 
remains a notable gap in our understanding of the molecular landscape of Long COVID and the complex interactions within the 
infected microenvironments. 

In this context, our methodology paper aims to address this gap by proposing a novel approach to the computational exploration of 
the multidimensional landscape of infected lung tissue microenvironment. Our goal is to better understand complex interactions 
between SARS-CoV-2 viral infection, immune response, and the lung microbiome of patients with SARS-CoV-2 or NL63 coronavirus. 
Our unique triple RNA-seq approach by exploring the interactions between pathogen, host, and microbiome has the potential to help 
researchers better understand the underlying mechanisms [20,21]. 

We would like to note that this work is not meant to be a validation study with large cohorts of patients. This computational 
exploration is meant to be a proof-of-concept article that demonstrates the possibilities of the various types of analyses that can be 
performed from this type of data. 

In this article, we present the genomic analysis of deep sequencing data from publicly available RNA samples of lung lavage of 
COVID-19 patients. Utilizing three different machine learning tools, the analysis encompasses (a) simultaneous detection and quan
tification of viral RNA amount at genome and gene level; (b) human gene expression and fractions of major types of infiltrating 
immune cells, as well as (c) metagenomic analysis of bacterial and viral abundance in lower respiratory tract. 

Furthermore, we compared and contrasted the specific immune responses to SARS-CoV-2 with the immune response to an infection 
by different coronavirus NL63. The NL63 coronavirus (HCoV-NL63) is known to cause severe lower respiratory tract infection, and 
bronchiolitis in vulnerable populations including children, the elderly and the immunocompromised [22]. To conduct this compar
ison, we applied the same computational tools and analyzed deep sequencing data from an additional cohort of patients infected with 
the NL63 strain of coronavirus. 

We believe that our multi-dimensional exploratory study could provide novel insights into the complex regulatory signaling in
teractions and correlative patterns between the viral infection, inhibition of innate and adaptive immune response as well as 
microbiome landscape of the lung tissue. These initial findings could provide a better understanding of the diverse dynamics of im
mune response and the side effects of the SARS-CoV-2 infection. 

2. Materials and methods 

Our goal was to explore the multidimensional landscape of infected lung tissue microenvironment to better understand complex 
interactions between virus, immune response and microbiome in the lungs of COVID-19 patients. By utilizing three types of machine 
learning based bioinformatics tools, we were able to detect and quantitate three different fractions of short reads from RNA-seq data 
files: fraction of viral RNA (at genome and gene level), Human RNA (transcripts and gene level) and bacterial RNA (metagenomic 
analysis). 

Our analysis pipeline is shown in Fig. 1. It includes three main sections: analysis and exploration of the viral RNA, human gene 
expression with a focus on immune cell expression signatures, and bacterial environment in the bulk RNA-seq data. 
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2.1. Datasets 

For this paper, we applied our analysis workflow to two datasets described here. One of our goals was to explore sequences of the 
SARS-CoV-2 viral genome and gene level data and compare them to other coronavirus genomes. We chose a Human NL63 coronavirus 
(HCoV-NL63) dataset as this virus is known to affect children, the elderly and the immunocompromised [22]. This virus is one of the 
many human endemic coronaviruses (hCoV) that include HCoV-229E, and NL63-CoV that are from alphacoronavirus group; and OC43 
and HKU1 that are from the betacoronavirus group [23]. This dataset allowed for direct comparison with the SARS-CoV-2 dataset and 
has been presented in the main body of the manuscript.  

(a) SARS-CoV-2 Dataset: We downloaded RNA-seq data from 5 patients affected with the SARS COV 2 virus from the NCBI SRA 
data repository PRJNA605983 (SRP249613) [24,25]. These 5 patients were from the early stage of the Wuhan seafood market 
pneumonia virus outbreak in China. The downloaded data were raw sequences in the form of FASTQ files. Total RNA was 
extracted from bronchoalveolar lavage fluid and then next generation sequencing (NGS) was performed using the Illumina 
platform. Out of the 5 samples, 4 were profiled on the Illumina HiSeq 3000 platform, and one on the Illumina HiSeq 1000 
platform.  

(b) NL63 coronavirus dataset (referred to as the NL63-CoV dataset in this paper): 

We obtained a public dataset from 5 pediatric patients with severe lower respiratory infection by NL63 coronavirus with deep 
sequencing data performed on the Illumina HiSeq platform. The downloaded data were raw sequences in the form of FASTQ files 
obtained from NCBI PRJA601331 [26,27]. In this dataset, nasopharyngeal swab samples were obtained from children with severe 
acute respiratory infection (SIRS) and then sequenced using the Illumina HiSeq 2500 platform. The researchers who submitted the 
dataset noted in their manuscript (Zhang et al. [27]) that only partial genome sequences were obtained by NGS methods from the 5 
samples [27]. 

2.2. Analysis of the viral environment in RNA-seq data 

We first compiled our viral reference genome by downloading a combined dataset of viral sequences with humans as a host from the 
NCBI collection of viral genomes [28]. We then ran our viGEN viroinformatics pipeline [29] on the samples from the SARS-CoV-2 and 
the NL63-CoV datasets. viGEN is an open source bioinformatics pipeline that allows for not only the detection and quantification of viral 
RNA, but also the analysis of variants in the viral transcripts [29]. For this paper, we applied Bowtie2 aligner [30] in the viGEN pipeline 
to quantify the viral load detected in the two datasets. Bowtie2 is an alignment algorithm that uses a combination of index–assisted 
seed alignment and single-instruction multiple-data (SIMD) based dynamic parallel processing to achieve fast, accurate and sensitive 
alignment of sequencing data [30]. We also corroborated these results with the help of an additional pipeline CENTRIFUGE [31]. We 

Fig. 1. Data analysis workflow.  
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also applied our quantification algorithm of viral RNA at the gene/CDS level, which is part of the viGEN pipeline [29]. This produced 
gene counts of viral RNA on the input datasets. 

2.3. Analysis of the human immune environment in the RNA-seq data based on gene expression data 

The raw sequences from the SARS-COV-2 and NL63-CoV RNA-seq datasets were first aligned to the human reference genome 
version hg38 using an open source RNA-seq alignment and quantification pipeline that used the RSEM-STAR aligner algorithm [32]. 
This analysis was performed in the Seven Bridges (SB) Cancer Genomics Cloud (CGC) Platform [33,34]. The output of this pipeline was 
gene and isoform level data in the form of both raw counts and transcripts per million (TPM) values. Out of the ~20,000 genes in the 
human genome, the gene quantification data in the form of TPM values were extracted for a subset of 530 immune related genes. 

We then applied our immuno-genomics pipeline to the gene quantification output. This gene matrix was input into a public online 
tool CIBERSORT [35]. CIBERSORT is a virtual flow cytometry tool that estimates the abundance of immune cell types in the samples 
using gene expression from microarrays or RNA-seq data. It is a machine learning algorithm that uses nu-linear support vector 
regression (ν-SVR) to perform deconvolution of the input mixture. N-SVR is a type of support vector machine (SVM) wherein a hy
perplane that maximally separates both classes is discovered [36]. The CIBERSORT analysis was performed with quantile normali
zation disabled and permuted 500 times. CIBERSORT uses a signature matrix of known immune cell mixtures to estimate the immune 
cell fractions of the input dataset. We used the LM22 signature matrix which was built by the software creators using a set of 547 genes 
that could accurately distinguish 22 mature human hematopoietic populations isolated from peripheral blood or in vitro culture 
conditions, including seven T cell types, naïve and memory B cells, plasma cells, NK cells, and myeloid subsets. The output of 
CIBERSORT was in the form of estimated fractions of 22 immune cell types across the input samples [36]. 

2.4. Analysis of the bacterial environment in the RNA-seq data 

Additional analysis was performed on the same RNA samples by applying the metagenomics pipeline CENTRIFUGE [31] to detect 
and quantitate the abundance of bacterial species and viruses comprising the lung microbiome. Centrifuge is a machine learning 
algorithm that uses an indexing scheme based on the Burrows-Wheeler transform (BWT) and the Ferragina-Manzini (FM) index. It was 
designed and optimized specifically for metagenomics applications [31]. We ran the Centrifuge analysis pipeline on the Seven Bridges 
CGC platform [33,34] on the input same FASTQ files from the datasets. The index file containing the reference genomes for human, 
prokaryotic genomes, and viral genomes including 106 SARS-CoV-2 complete genomes was provided by the CENTRIFUGE team on 
their website [37]. We also used the online web application Pavian [38,39] for visual analysis of results generated with Centrifuge. 

2.5. Correlation analysis 

Once the three types of results were obtained for each sample in the datasets, downstream correlation analysis was performed. This 
allowed us to explore possible interactions and regulation of viral infection with the local immunological environment in the lungs of 
infected patients, as well as, microbiome profiles measured by changes in the abundance of multiple bacterial species in the lung. The 
Pearson correlation analysis was performed in the R statistical software [40]. 

3. Results 

In this proof-of-concept paper, our goal was to explore the multidimensional landscape of infected lung tissue microenvironment to 
better understand complex interactions between virus, immune response and microbiome in the lungs of COVID-19 patients. By 
utilizing three types of bioinformatics workflows and tools, we were able to detect and quantitate three different fractions of short 
reads from RNA-seq data files: fraction of viral RNA (at genome and gene level), Human RNA (transcripts and gene level) and bacterial 
RNA (metagenomic analysis). Correlation analysis of these three types of measurements in patients has shown significant correlation 
between viral load as well as the level of specific viral gene expression with the fractions of immune cells present in lung lavage as well 
as with the abundance of major fractions of the lung microbiome. 

3.1. Section 1: Results of analysis on the SARS-CoV-2 dataset 

3.1.1. Results of analysis of the viral environment 
Supplementary File 1A shows the estimated copy number of viral genomes detected in lung lavage samples of the SARS-CoV-2 

dataset obtained using the viGEN pipeline. We can clearly see the presence of the various strains SARS-CoV-2 virus in all of the 5 
patients in this dataset. The SARS-CoV-2 virus in these samples has also been detected and corroborated using the CENTRIFUGE 
metagenomics pipeline (Supplementary File 1B). 

Supplementary File 1C shows the estimated level of viral gene expression counts in the patients from the SARS-CoV-2 dataset. The 
three prime UTR regions in the region ranging from nucleotide position 29675 to 29903 showed one of the largest abundances of viral 
gene expression with raw gene counts of more than 1000 for most patients. We also see the presence of the older SARS coronavirus 
(SARS-CoV) which was prevalent in Asia in 2003 [41]. This makes sense as these RNA-seq samples were obtained from patients in 
China. As expected, we see the presence of flu and common cold viruses including Human Coronavirus 229E and Influenza A virus 
(A/Shanghai/02/2013(H7N9)). 
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3.1.2. Results of analysis of the human immune environment 
Next, we assessed the immuno-profile of samples from the SARS-CoV-2 dataset (Fig. 2A). It shows a summary of the estimated 

fractions of 22 types of immune cells detected in lung lavage and indicates Macrophages M2, T cells CD4 naïve, Natural Killer (NK) cells 
resting and Monocytes as the most abundant types of immune cells in this dataset. 

3.1.3. Results of analysis of the bacterial environment 
The metagenomic analysis of the patients in the SARS-CoV-2 dataset (Table 1) shows the abundance of the top 20 bacterial species 

in the lung microbiome. Fig. 3 shows a Sankey diagram visualization of the bacterial species. A Sankey diagram [42] is a flow diagram 
in which the width of the arrows is proportional to the abundance (i.e. number of reads) of the bacterial species, which are collated 
together by the taxonomy of bacteria. Hence the most abundant bacterial species will be shown on the right-most side with the largest 
width. The Sankey diagrams indicated bacterial species Clostridium botulinum and Clostridium tetani to be one of the most abundant 
species in these samples. 

3.1.4. Results of correlation between genomic and immunological data 
We found a significant correlation between viral load (genomic and gene level) and the immune-profile of the patients in the SARS- 

Fig. 2. CIBERSORT output: estimated fractions of 22 types of immune cells detected in lung lavage of (A) 5 patients from the SARS-COV-2 dataset 
and (B) 5 patients from the NL63-COV-Hiseq dataset. There is one stacked bar per patient. 
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CoV-2 dataset. 
Fig. 4 (A and B) shows the summary of the statistically significant correlations between viral gene expression and immunological 

cell types for the SARS-CoV-2 dataset. The full correlation matrix is provided in Supplementary File 2A (genome level) and Supple
mentary File 2B (gene level). Fig. 4A shows the statistically significant correlation results between viral load (genome level) and 
fraction of immune cells. Results show that Macrophages M2 are positively correlated with the SARS-CoV-2 virus genome counts, while 
NK cells activated, monocytes and T cells CD4 Naïve were negatively correlated with genome counts. Fig. 4B represents statistically 
significant correlations between viral gene expression (gene level) and fraction of immune cells. Activated NK cells and monocytes 
were found to be inversely correlated with the gene counts of the 3 prime and 5 prime UTR regions respectively. Monocytes were also 
found to be inversely correlated with other regions of the SARS-CoV-2 virus genome including membrane glycoprotein, envelope 
protein, nucleocapsid phosphoprotein and more. 

3.1.5. Results of correlation between bacterial abundance with immunological cell types 
We chose a p-value cut off of 0.005 to get a short list of 70 statistically significant correlation results. Out of these 70 short listed 

results, only one was negatively correlated, while the rest of the 69 results were positively correlated. Monocytes were negatively 
correlated with Schaalia odontolytica bacterial species. NK cells activated and Eosinophils were positively correlated with the following 
families including Citrobacter, Clostridium, Delftia, Enterobacter, Lactobacillus, Paenibacillus, Phyllobacterium and Pseudomonas, Staphy
lococcus and Stenotrophomonas (Fig. 5A). The complete correlation results for this correlation analysis are available as Supplementary 
File 2C. 

3.1.6. Results of correlation between viral load (genomic level) with bacterial abundance 
We chose a p-value cut off of 0.005 to get a short list of 261 statistically significant features that were correlated between viral load 

(genomic level) and bacterial abundance. Due to the large number of results, we focused on the correlation results in the severe acute 
respiratory syndrome coronavirus 2 (SARS-CoV-2) genome. The complete correlation results for this correlation analysis are available 
as Supplementary File 2D. Of the 261 statistically significant features, only one bacterial species Schaalia odontolytica was positively 
correlated with the SARS-CoV-2 genome. The rest of the results were negatively correlated with the SARS-CoV-2 genome including 
Citrobacter, Enterobacter, Lactobacillus, Paenibacillus, and Pseudomonas. These results are summarized in Fig. 5B). 

3.2. Section 2: Results of analyses on the NL63-CoV dataset 

3.2.1. Results of analysis of the viral environment 
Supplementary File 3A shows the estimated viral genome copy numbers in 5 pediatric patients from the NL63-CoV dataset obtained 

using the viGEN pipeline. Human coronavirus NL63 virus was detected in only two of the five pediatric patients. This same result is 
corroborated using the Centrifuge pipeline (Supplementary File 3B) which showed a read count of more than 100 for the same two 
samples. The researchers who submitted the dataset noted in their manuscript (Zhang et al. [27]) that only partial genome sequences 
were obtained by NGS methods from the 5 samples [27]. We think this may have caused the non-detection of the NL63-CoV virus in 
some samples. 

Supplementary File 3C shows the NL63 viral gene/CDS counts in the NL63-CoV dataset. Some of the most abundant regions 

Table 1 
Abundance of top bacterial species in lung microbiome of patients in the SARS-CoV-2 dataset. Showing top 20 sorted based on minimum 
counts.  

Name Minimum SRR11092059 SRR11092060 SRR11092061 SRR11092062 SRR11092063 

Clostridium tetani 257477 886195 305193 257477 433532 355297 
Clostridium botulinum 218725 1499933 252669 218725 317989 264103 
Trichormus azollae 29537 31171 37568 29537 57222 46985 
Spirosoma pollinicola 19190 246664 24916 25987 24161 19190 
Prevotella oris 9083 9757 9986 9083 13242 10862 
Staphylococcus aureus 8482 1142840 46143 28001 13914 8482 
Stenotrophomonas maltophilia group 7784 1312705 116353 116221 24795 7784 
Stenotrophomonas maltophilia 7784 1312705 116353 116221 24795 7784 
Prevotella denticola 7630 7955 8340 7630 10548 8846 
Prevotella fusca 7036 7530 7895 7036 10089 8459 
Roseimicrobium sp. ORNL1 6499 6872 8053 6499 12297 10272 
Enterobacter cloacae complex 6377 698959 68035 67773 13735 6377 
Prevotella ruminicola 5829 6073 6150 5829 8186 6958 
Enterobacter kobei 4130 452826 44783 44580 8897 4130 
Pseudomonas putida group 4105 556693 51160 51556 11347 4105 
Pseudomonas putida 3667 516644 47579 47876 10105 3667 
Sphingomonas paucimobilis 1766 296679 1766 23579 13965 2448 
Enterobacter cloacae 1461 160877 15373 15426 3054 1461 
Lacrimispora saccharolytica 1140 159024 13606 13991 2903 1140 
Total Bacterial reads in the sample 984975 10726961 1358144 1328864 1353674 984975 
Total Microbial reads in the sample 1016348 10849767 1412506 1578271 1436901 1016348  
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included the CDS regions in the HCNV63gp1 and HCNV63gp2 genes that code for the replicase polyprotein 1 ab. Other dominant regions 
include a CDS region in the HCNV63gp2 gene that codes for a spike protein; and a CDS region in the HCNV63gp4 gene that codes for an 
envelope protein (small membrane protein). 

3.2.2. Results of analysis of the immune environment 
Next, we assessed the immuno-profile of samples from the NL63-CoV dataset (Fig. 2B). It indicates T cells CD4 memory as the 

dominant immune cells. 

3.2.3. Results of analysis of the bacterial environment 
The metagenomic analysis of the patients in the NL63-CoV dataset (Table 2) shows the abundance of the top 20 bacterial species in 

the nasopharyngeal microenvironment showing Streptococcus pneumoniae as one of the dominant species. Supplementary File 4 shows 
the nasopharyngeal microbiome profile of pediatric patients from the NL63-CoV dataset represented as a Sankey diagram visualization 
of the bacterial species. 

3.2.4. Results of correlation between genomic and immunological data 
We did not find many significant correlations between viral load and viral gene expression and the immune-profile of the patients in 

Fig. 3. Lung microbiome profile for the SARS-CoV-2 dataset represented as a Sankey diagram visualization of the bacterial species.  
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the NL63-CoV dataset. This may have been attributed to the challenges the owners of this dataset faced with regard to the partial 
genome sequences obtained during sequencing by NGS methods. While there was no significant correlation between viral load and 
viral gene expression and immune-profile for the NL63 coronavirus species, we did find some significant correlation with another 
similar coronavirus species, the Human Coronavirus 229E. Fig. 7 shows the summary of the statistically significant correlations be
tween viral gene expression and immunological cell types for the NL63-CoV dataset. The full correlation matrix is provided as Sup
plementary File 5A (genome level) and Supplementary File 5B (gene level). Fig. 6A represents the correlation at the genome level 
between viral load and fraction of immune cells. Fig. 6B represents the gene level correlation between viral gene expression and 
estimated fractions of immune cells. 

3.2.5. Correlation between metagenomic bacterial abundance with immunological cell types 
We chose a p-value cut off of 0.005 to get a short list of 17 statistically significant correlation results. Out of these 17 short listed 

results, 16 were negatively correlated, and one was positively correlated. B cells naïve were positively correlated with bacterial species 
Mycoplasma orale. Monocytes and Mast Cells resting were negatively correlated with many bacterial species from the following families 

Fig. 4. Summary of the statistically significant correlations between viral gene expression and immunological cell types for the SARS-CoV-2 dataset. 
(A) Viral genome level correlation between. viral load and fraction of immune cells (B). Viral gene level correlation between viral gene expression 
and fraction of immune cells. 
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Fig. 5. (A): Summary of correlation analysis between bacterial abundance with immunological cell types for the SARS-CoV-2 dataset (B): Corre
lation analysis between viral load (genomic level) with bacterial abundance in the SARS-CoV-2 dataset. 

Table 2 
List of top bacterial species dominating nasopharyngeal microenvironment microbiome of 5 NL63 patients based on maximum abundance. Showing 
top 20 sorted based on minimum counts.  

Name Minimum Max Sample1 Sample2 Sample3 Sample4 Sample5 

Streptococcus pneumoniae 5121 196870 14355 39493 196870 5121 12381 
Streptococcus mitis 4742 465843 28008 74808 465843 4742 20932 
Campylobacter concisus 3187 536664 12525 536664 50631 3255 3187 
Prevotella melaninogenica 2604 1058483 1058483 587266 395090 2604 13004 
Haemophilus influenzae 2408 33233 10396 15293 33233 2408 23473 
Streptococcus pseudopneumoniae 2265 72017 4201 9186 72017 2265 4597 
Prevotella jejuni 1770 818696 41903 552126 818696 2692 1770 
Haemophilus haemolyticus 1710 44072 14249 23371 31369 1710 44072 
Veillonella dispar 1709 360869 54288 360869 347922 1709 3706 
Streptococcus salivarius 1381 103093 1650 33522 103093 1381 3776 
Veillonella atypica 1169 470491 132008 470491 392930 1878 1169 
Neisseria meningitidis 1083 23338 12358 23338 4311 1083 2798 
Neisseria flavescens 908 293417 293417 46429 12337 1595 908 
Streptococcus gwangjuense 805 83898 5497 17502 83898 805 3638 
Streptococcus sp. 116-D4 637 48931 3913 16995 48931 637 2940 
Haemophilus sp. oral taxon 036 610 9971 2992 4245 9971 610 8280 
Fusobacterium pseudoperiodonticum 530 3451701 3451701 1120955 27430 530 596 
Prevotella intermedia 513 268641 165720 268641 99410 513 1128 
Streptococcus oralis 502 82478 11027 81068 82478 502 2354  
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Fig. 6. Summary of Statistically significant correlation between viral gene expression and immunological cell types for 4 NL63-CoV patients. (A) 
Viral genome level correlation between viral load and fraction of immune cells (B). Viral gene level correlation between viral gene expression vs 
fraction of immune cells. 

Fig. 7. Summary of correlation analysis between bacterial abundance with immunological cell types for the NL63-CoV dataset.  
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including Prevotella, Streptococcus and Veillonella (Fig. 7). The full correlation matrix results for this analysis are provided as Sup
plementary File 5B 

3.2.6. Correlation between viral load (genomic level) with metagenomic abundance 
We chose a p-value cut off of 0.05 to get a list of 15 statistically significant features that correlated viral load (genomic level) with 

metagenomic abundance. We focused on the results in the NL63 coronavirus genome. We found no bacterial species positively 
correlated with the NL63 coronavirus genome. There were a few bacterial species negatively correlated with the NL63 coronavirus 
genome including Fusobacterium, Prevotella, Streptococcus, Treponema and Veillonella (Fig. 7). The full correlation matrix results for this 
analysis are provided as Supplementary File 5D. 

4. Discussion 

Our goal was to explore the multidimensional landscape of infected lung tissue microenvironment to better understand complex 
interactions between virus, immune response and microbiome in the lungs of COVID-19 patients in comparison with NL63-CoV pa
tients. By utilizing three types of machine learning based bioinformatics tools, we were able to detect and quantitate three different 
fractions of short reads from RNA-seq data files: fraction of viral RNA (at genome and gene level), Human RNA (transcripts and gene 
level) and bacterial RNA (metagenomic analysis). 

4.1. Immune landscape and correlation analysis in the SARS-CoV-2 dataset 

Our correlation analysis of the three types of measurements in the SARS-CoV-2 dataset has shown significant correlation between 
viral load as well as the level of specific viral gene expression with the fractions of immune cells present in lung lavage as well as with 
the abundance of major fractions of the lung microbiome. 

We saw from our analysis of the SARS-CoV-2 dataset that Macrophages M2 are positively correlated with viral load (Fig. 4A). 
Macrophages are special immune cells that detect, ingest and destroy target cells. It works by stimulating the immune system through 
M1 macrophages, and can also encourage tissue repair with the help of M1 macrophages [43,44]. The macrophages located in the 
lungs include alveolar and interstitial macrophages. If these macrophages are excessively activated, they could create a ‘cytokine storm’ 
which leads to the release of pro-inflammatory factors such as interleukins, and hyper-inflammation; and causes immune cells to attack 
the organs in the body [45,46]. Such a cytokine storm was commonly found in severe COVID-19 patients with Acute respiratory 

Fig. 8. Box plot for 22 types of immune cells in (a) 5 patients from the SARS-COV-2 dataset and (b) 4 patients from the NL63-COV-Hiseq dataset 
(Sample 1 from this cohort was ignored for this box plot due to low coverage). 
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distress syndrome (ARDS) [46]. Recent publications have found that Macrophages M1 in the lung amplify and spread the COVID-19 
viral infection, while Macrophages M2 degrade the SARS-CoV-2 virus and limit the spread of infection [47]. Scientists have been 
exploring treatments that target the pathways in order to lessen the cytokine storm effect in severe COVID-19 disease and some clinical 
trials are now underway [48]. 

Another interesting result was the inverse correlation of NK cells activated with viral load (Fig. 4 A). In other words, the NK cells 
were inactivated in our analysis of the SARS-CoV-2 dataset. Natural killer (NK) cells are known to be one of the most important 
members of the innate immune response and fight against infected cells [49]. Impairment of cells and its inability to fight or kill the 
infected cells is well known in COVID [50]. Jewett et al. [51] also found a correlation between reduction of NK cells and severity of 
disease [51]. Such a depletion pattern of NK cells was also observed in patients affected with SARS virus [52]. NK cells are one of the 
most abundant types of lymphocytes in the lung, and could offer an interesting venue for COVID-19 treatments. Scientists are currently 
exploring new treatments that use genetically engineered CAR-NK cells that may not trigger a cytokine storm [50]. Clinical trials are 
ongoing (NCT04324996 and NCT04634370) and scientists are now exploring immunotherapy and enhancement-based treatments 
using NK cells to combat the disease progression and severity of COVID-19 [51,53–55]. 

Berentschot et al. studied fatigue in Long COVID patients and found severity in fatigue to be associated with stronger monocyte 
activation confirming that the study of immune dysregulation is critical in Long COVID patients [56]. 

Bacterial co-infections were not very frequent, but more commonly found in critically ill COVID-19 patients [57–59]. Bacterial 
pathogens found in the lungs of COVID-19 patients included Enterobacter species, Pseudomonas, Streptococcus pneumoniae were also 
found in our results (Fig. 6). The Enterobacteriaceae species was found to be resistant to antibiotics in some COVID-19 patients [58]. 
Although not common, such infections in COVID-19 patients were complex to treat since it was not easy to distinguish bacterial 
co-infections from viral infections of the respiratory tract. Our correlation results also showed a high correlation of these bacteria with 
immune markers including Eosinophils and activated NK cells (Fig. 5A). This matches findings from Mason et al. [60] who recom
mended studying inflammatory markers including Lymphocytes (such as NK cells, T cells, and B cells), and Neutrophils to distinguish 
the bacterial co-infections from viral infections of the respiratory tract [60]. Our results also showed a positive correlation of 
SARS-CoV-2 viral load with Schaalia odontolytica bacteria (Fig. 5B), and similar results were seen in Zhou et al. [61]. 

4.2. Immune landscape and correlation analysis in the NL63-CoV dataset 

Even though the SARS-CoV-2 and the NL63-CoV viruses were from different groups, SARS-CoV-2 virus was from group ß and NL63 
from group Alpha, they used the same angiotensin-converting enzyme 2 (ACE2) receptor for binding the spike protein for cell entry. In 
some studies, NL63 has been used as a surrogate to study the SARS-CoV-2 virus [62,63]. 

We examined the immune landscapes of the patients in the SARS-CoV-2 and NL63-CoV datasets with the help of box plots (Fig. 8A 
and B). It indicated that Macrophages M2, T cells CD4 naïve, and Natural Killer (NK) cells were the most abundant in the immune 
landscape of the SARS-CoV-2 dataset. On the other hand, we saw the dominance of mast cells and CD4 memory resting T cells in our 
analysis of the NL63-CoV dataset. Richards et al. [64] examined circulating T cells in human endemic coronaviruses (hCoV) including 
HCoV-229E, NL63-CoV, OC43 and HKU1; and theorized that the memory CD4 T-cells found in patients exposed to infection from these 
endemic strains could also influence the immune response to SARS-CoV-2 infection and vaccination [64,65]. 

4.3. Findings from analyses on both SARS-CoV-2 and NL63-CoV datasets 

In a normal tissue, T cells including CD4 and CD8 work to identify antigens from foreign pathogens. When such an event happens, 
the T cells differentiate into short lived effector T cells that work to control the foreign pathogens. In the long term, the effector T cells 
are lost, but the memory T-cells are preserved to enable long-term immune response [66]. In published articles, Effector B and T cells 
were found elevated, and associated with the long-term side effects of the disease [64] [65], [67], [68]. In the analysis of the NL63-CoV 
dataset, we saw an elevated fraction of the memory CD4 T-cells that could potentially help with the long-term immune response to the 
future SARS-CoV-2 infection [64,65]. This finding indicates that a treatment or a vaccine that could potentially mediate the T-cell 
response to produce effective memory CD4 T-cells; and control the levels of effector T-cell activity may not only provide immunity from 
the SARS-CoV-2 infection, but also help prevent the adverse side effects in Long COVID in patients affected by this virus [66,69]. 

Shaath et al. [70] examined the blood samples from COVID-19 patients admitted to the hospital intensive care unit (ICU) vs those 
not in ICU and found several mRNA based markers associated with severity of the COVID-19 disease. The authors found several 
pathways related to NK cells and interferon signaling to be downregulated in ICU COVID-19 patients. The authors recommended 
restoration of NK cells, and mediation of interferon-gamma as potential therapeutic options [70]. This work was done on blood 
samples and hence their findings are valid for a systemic immune response. These findings at the systemic level are in agreement with 
our findings indicating a similar type of immune response at the local tissue level in the lungs. 

4.4. Relevance of machine learning tools and algorithms 

As COVID-19 cases continue to rise around the world, researchers are harnessing the computational power of machine learning and 
artificial intelligence (AI) tools to not only create prediction and diagnostic tools for COVID-19 [71,72] but also improve outcomes 
[73]. In this paper, we described the application of machine learning tools to process the raw sequencing data generated by NGS 
technology, and also explore the immune, viral and bacterial landscape of the SARS-CoV-2 and NL63-CoV datasets. 

While traditional laboratory techniques allow direct detection of immune cells in the blood, it is more difficult to do for other types 
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of tissues where immune cells can be detected using a technique called flow cytometry or image cytometry methods. But both of these 
techniques are difficult and labor- and time-consuming. 

RNA-sequencing (RNA-seq) technology in conjunction with the application of machine learning based virtual flow cytometry tools 
could be considered a potential alternative. Such an in-silico process would enable researchers to not only estimate the immune cell 
environment, but also work towards new hypotheses and therapies that would mediate appropriate immune response using T cells for 
long term immunity; and help to minimize adverse side effects from the SARS-CoV-2 infection [74,75]. 

4.5. Relevance of the multi-modal RNA-seq based analysis of samples from COVID patients 

In recent news, researchers believed that reducing the intensity of the immune system response could alleviate symptoms in some 
Long COVID patients [76]. Research has also implicated the microbiome affecting inflammation [77], and changed humoral responses 
and antibody responses [78]. It indicates that the interplay of the viral infection, immune system and microbiome has to be studied in 
detail to enable new and improved treatments of long-COVID. The multimodal RNA-seq based analysis presented here provides unique 
capabilities of simultaneous analysis of these interactions in a single patient sample. 

Our exploratory study has also uncovered novel insights into complex regulatory signaling interactions and correlative patterns 
between the viral infection, inhibition of innate and adaptive immune response as well as microbiome landscape of the lung tissue. 
Many of our findings from the analysis of the immune landscape of these two datasets, along with correlation analysis have been 
corroborated in published literature. 

4.6. Challenges and limitations 

At the beginning of this multi-modal proof of concept project, we were unsure of what the data would reveal; but at the end of this 
phase, we believe our multi-model RNA-seq based approach is worth pursuing. While we recognize that our sample size is small 
compared to the vast number of affected individuals, it aligns with the nature of a proof-of-concept research. Moreover, challenges 
faced by the data generators of the NL63 dataset regarding the partial genome sequences obtained during sequencing by NGS methods, 
were reflected in the data analysis, some of which did not yield significant results. 

4.7. Future directions 

Our proof-of-concept highlights the potential for various analyses achievable with bulk RNA-seq data. Future directions include 
expanding the scope of our study to include a larger cohort of COVID-19 patients. This will increase the statistical power and facilitate 
the incorporation of additional molecular data types, and enabling a more comprehensive multi-modal analysis exploring diverse 
microenvironments. 

In published articles, elevated levels of Effector B and T cells have been consistently associated with the long-term side effects of the 
disease [64] [65], [67], [68]. These studies confirm that observing and mediating immune response, including T cell responses could 
be critical in the treatment of Long COVID. Building upon these insights, we plan to expand our multi-modal analysis to a deeper 
immune profile in the future. 

Scientists are also researching the role of autoantibodies and their possible link to the long-term side effects of Long COVID [79]. 
Autoantibodies are antibodies i.e. immune proteins that target a person’s own cells and organs, and cause autoimmune diseases such as 
Lupus [80]. Following along those lines, we plan to explore the immune proteomic landscape in the future to improve our under
standing of Long COVID. 

Furthermore, while some COVID-19 patients exhibited a return to normal immune profiles post-recovery, others displayed 
persistent alterations in immune cell populations months after clearing the SARS-CoV-2 virus [67], [81–83]. Comparing the immune 
profiles of these two groups of patients could also help shed light on the complexities of this disease. 

5. Conclusion 

In this methodology paper, we applied multiple machine learning tools to NGS data analysis of lung tissue samples from COVID-19 
patients. We explored the SARS-CoV-2 gene expression patterns and compared it with another endemic coronavirus, NL63. Finally, we 
explored the immunological landscape of the lung microenvironment from the SARS-Cov-2 and nasopharyngeal microenvironment 
from the NL63-CoV datasets. 

Our exploratory study has provided novel insights into complex regulatory signaling interactions and correlative patterns between 
the viral infection, inhibition of innate and adaptive immune response as well as microbiome landscape of the lung tissue. Many of our 
findings from the analysis of the immune landscape of these two datasets, along with correlation analysis have been corroborated in 
published literature proving that the study of the immune system warrants further analysis and exploration. 

The study of how the SARS-CoV-2 virus interacts with the immune system; and comparing and contrasting the immune system in 
patients affected by endemic viruses could offer important insights into immunoprotecting against SARS-CoV-2; and shed light on new 
therapies to combat severe COVID-19 disease. 

This proof-of-concept case study demonstrates the possibilities of the various types of analyses that can be performed from this type 
of RNA-seq data. These initial findings on a small group of samples could provide a better understanding of the diverse dynamics of 
immune response and the side effects of the SARS-CoV-2 infection but require further validation on a larger cohort of samples. 
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