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Abstract: It is established that purinergic signaling can shape a wide range of physiological functions,
including neurotransmission and neuromodulation. The purinergic system may play a role in the
pathophysiology of mood disorders, influencing neurotransmitter systems and hormonal pathways
of the hypothalamic-pituitary-adrenal axis. Treatment with mood stabilizers and antidepressants can
lead to changes in purinergic signaling. In this overview, we describe the biological background on the
possible link between the purinergic system and depression, possibly involving changes in adenosine-
and ATP-mediated signaling at P1 and P2 receptors, respectively. Furthermore, evidence on the
possible antidepressive effects of non-selective adenosine antagonist caffeine and other purinergic
modulators is reviewed. In particular, A2A and P2X7 receptors have been identified as potential
targets for depression treatment. Preclinical studies highlight that both selective A2A and P2X7
antagonists may have antidepressant effects and potentiate responses to antidepressant treatments.
Consistently, recent studies feature the possible role of the purinergic system peripheral metabolites
as possible biomarkers of depression. In particular, variations of serum uric acid, as the end product
of purinergic metabolism, have been found in depression. Although several open questions remain,
the purinergic system represents a promising research area for insights into the molecular basis
of depression.
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1. Introduction

The purine nucleoside adenosine was identified in 1929 by Drury and Szent-György [1],
who described the physiological activity of adenine compounds in the mammalian heart. The hypothesis
that adenosine-5’-triphosphate (ATP) and related nucleotides might function as neurotransmitters
was postulated during the 1970s [2,3]. It is now established that ATP and adenosine can influence
a wide range of physiological functions, including neurotransmission and neuromodulation [4,5].
Purinergic receptors were differentiated into two families, P1 and P2 receptors, activated by adenosine
and ATP, respectively [6,7]. Extracellular adenosine and ATP levels are determined by the balance
between the metabolic action of ectonucleotidases and the release from cells. The ectonucleoside
triphosphate diphosphohydrolase-1, also known as CD39, converts ATP and adenosine-diphosphate
(ADP) into adenosine-monophosphate (AMP). On the other hand, the ecto-5′-nucleotidase, also known
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as CD73, converts AMP to adenosine [8]. Adenosine can be released in the extracellular space via
equilibrative nucleoside transporters (ENTs) [9]. Under physiological conditions the release of ATP
from astrocytes, followed by the degradation into adenosine via ectonucleotidases, has been identified
as a major source of synaptic adenosine [10]. Adenosinergic signaling via the G-protein coupled
P1 receptors (A1, A2A, A2B, and A3 subtypes) [6,7,11,12] has a role in neurodevelopmental and
pathophysiological processes, such as inflammation, cell proliferation, differentiation, and neuron–glia
crosstalking [13]. The impact of adenosine on brain function is mainly dependent on the activity of A1
and A2A receptors, while limited action on central nervous system (CNS) functions has been shown
for A2B and A3 receptors [14]. A1 receptors are the most abundant and homogenously distributed
in the brain [7], with high expression levels in the cerebellum, hippocampus, cortex, and thalamus,
whereas A2A receptors are highly expressed in striatopallidal neurons, with a lower presence in other
brain regions [15,16]. The primary function of adenosine seems to be inhibitory neuromodulation,
linked with a negative feedback to excitatory activity of glutamatergic synapses [17]. Presynaptic A1
receptors inhibit the release of neurotransmitters, including glutamate, dopamine, serotonin, and
acetylcholine, while postsynaptic receptors reduce neuronal signaling by hyperpolarization and
excitability via regulation of potassium channels [16]. A2A receptors may enable adaptive responses
in the regulation of synaptic plasticity. The adenosinergic system as a whole promotes pre- and
post-synaptic modulatory effects on neurotransmission and is involved in synaptic plasticity and
neuroprotection [14]. The activity of ATP is mediated by P2 receptors, which were further divided into
two subtypes, i.e., ionotropic P2X and metabotropic P2Y receptors [18,19]. Sources for extracellular
ATP in the nervous system may include neurons, glia, endothelium, and blood [20]. Extracellular ATP
contributes to neurotransmission and neuromodulation, as well as to the regulation of microglia and
astrocyte activities [19]. Dysfunctions of purinergic signaling, at a genetic, biochemical, or functional
level, may lead to altered behaviors and mood abnormalities [21]. In particular, the purinergic system
may play a role in the pathophysiology of major depressive disorder, influencing neurotransmitter
systems and hormone pathways of the hypothalamic-pituitary-adrenal axis [13]. Components of
purinergic signaling and related metabolism of adenosine may be implicated in depressive disorders.

In this overview, we describe the biological background of the possible link between the purinergic
system and depression, summarizing epidemiological and preclinical evidence of the possible effects
of caffeine and other purinergic modulators, as well as the role of relevant biomarkers in depression.
Ultimately, this may help in clarifying the possible involvement of the purinergic system in major
depressive disorder.

2. The Adenosine Receptor Antagonist, Caffeine, and Depression

The possible role of the purinergic system and, in particular, of adenosine and P1 receptors
in depression is mainly derived from studies on the association between caffeine consumption and
related mood changes [22,23]. P1 receptors are antagonized by methylxanthines and their derivatives,
including caffeine (1,3,7-trimethylxanthine), which is a non-selective antagonist of A1 and A2A
receptors [11,24]. Caffeine studies provided insights into the possible effects of adenosine, including
the potential influence on mental health [25]. Moderate doses of caffeine may improve anxious and
depressive symptoms, whereas excessive doses may induce anxious, stimulant, and ‘mania’-like
symptoms [25]. A meta-analysis based on 11 observational studies showed protective effects of caffeine
on depression, with relevant risk decreasing by 8% for each cup/day increment in coffee intake [26].
Consistently, a wider meta-analysis showed that consumption of coffee and, partially, of tea might
decrease the risk of depression [27]. However, dose-response effects suggested a nonlinear J-shaped
relationship, with a peak of protective effect for 400 mL/day of caffeine. Additionally, results from
three large US cohorts estimated an association between higher caffeine consumption and lower risk of
suicide. The relative risk for suicide was 0.75 (0.63–0.90) for each increment of 2 cups/day of caffeinated
coffee and 0.77 (0.63–0.93) for each increment of 300 mg/day of caffeine [28]. Finally, a large cohort
study conducted in Korea on 80,173 individuals showed that regular and moderate caffeine intake was
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likely to reduce suicide risk and depression in women, despite higher consumption levels associated to
worse outcomes [29]. This study confirmed findings of previous epidemiological data showing again a
J-shaped association of caffeine with the risk of suicide [30].

3. Adenosine and Depression

Based on the potential effects on depression attributable to the non-selective A1 and A2A receptor
antagonist caffeine, the role of adenosine in depression has attracted attention. It has been shown that
fluoxetine and nortriptyline may affect the ectonucleotidase pathway in synaptosomes, suggesting that
antidepressants could modulate the extracellular adenosine levels, which would result in increased
adenosine in cerebral cortex and decreased in hippocampus [31]. On the other hand, it seems that
chronic treatment with mood stabilizers, such as lithium, used for bipolar disorder and mania, can
modulate the ectonucleotidase pathway in hippocampal synaptosomes, with a related decrease of
ATP and increase of adenosine levels [32]. A1 and A2A receptors have complementary effects and a
release of neurotransmitters seems dependent upon the balance between A1 and A2A receptors [12,13].
A non-selective activation of adenosine receptors seems to induce depressive-like symptoms in
animal models, whereas selective antagonism of A2A receptors may induce antidepressant effects [25].
It has been shown that enhanced neuronal expression of A1 receptors led to pronounced acute
and chronic resilience against depressive-like behaviors, while A1 receptor knockout mice showed
increased depressive-like behaviors and resistance to antidepressant treatments [33]. On the other
hand, male rats overexpressing A2A receptors exhibit depressive-like behaviors [34–36]. In addition,
a genetic deletion of A2A receptors may prevent chronic stress-induced behavioral, neurochemical,
and electrophysiological alterations in the hippocampus [37]. Rial and colleagues [38] hypothesized
that depression may be associated with an astrocytic hypofunction, causing a decreased activation of
inhibitory adenosine A1 receptors in neurons and, in parallel, an upregulation of synaptic adenosine
A2A receptors, which is associated with aberrant plasticity. Consistently, selective A2A antagonists
have attracted attention for their possible role in the treatment of depression. Preclinical studies
highlighted that A2A antagonists have antidepressant effects [39–42] and may potentiate responses
to antidepressant treatment [43], whereas A1 antagonists do not [44]. The A2A selective antagonist
istradefylline (KW6002), recently approved by the FDA as an add-on therapy for off episodes in adults
with Parkinson’s disease [45], may also be effective in treating depressive-like symptoms, with an
effect that is independent from monoaminergic transmission in the brain [46]. The co-administration of
istradefylline with antidepressant agents, including selective serotonin reuptake inhibitors (paroxetine
or fluoxetine) or monoamine oxidase B inhibitors (deprenyl), resulted in a significant reduction
of depressive-like behaviors [47]. However, the adenosinergic system is complex, involving the
modulation of different neurotransmitters, and neurobiological mechanisms supporting the efficacy of
A2A receptor antagonism in depression are not fully understood. Hippocampal release of serotonin,
one of the major neurotransmitters implicated in depression, seems decreased by the activation of
A1 receptors and increased by A2 receptor activation [13,48]. Chronic stress seems to significantly
reduce adenosine levels, which, at low concentrations, may activate A1 receptors, leading to a decrease
of serotonin concentration in the hypothalamus [12]. It is likely that antidepressant effects may be
only partially due to the influence on serotoninergic transmission in the brain, and explained by
the modulation of other neurotransmitters [14]. Antidepressive effects of selective A2A antagonists
may be linked to relevant interactions with dopaminergic transmission [40]. Adenosine receptor
antagonists may be able to reverse symptoms such as anergia, fatigue, and psychomotor slowing,
induced by dopamine antagonism or depletion [24]. Additional mechanisms, including the possible
involvement of A2A receptors in metabolism and neuroinflammation and the role of neurochemical
mediators of antidepressant responses, have been considered [22]. For example, it has been shown
that fluoxetine-induced upregulation of the Brain-Derived Neurotrophic Factor (BDNF), involved in
depression pathophysiology [49], may be mediated by both P1 and P2 receptor signaling [50].
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It is worth mentioning that non-pharmacological strategies for depression may also influence
adenosinergic signaling [22]. Both electroconvulsive therapy and sleep deprivation are likely to
induce short- and long-term adaptations of the adenosine neuromodulation system [22]. In particular,
a key role of A1 receptors in determining the beneficial effects of sleep deprivation on depressive-like
behaviors has been shown. Both knocking out of A1 receptors and central delivery of A1 receptor
antagonist support the hypothesis of the importance of adenosinergic signaling for sleep deprivation
antidepressant effects [51].

Finally, possible interconnections between adenosine receptors and suicide-related behaviors,
often occurring in depression, have been hypothesized, although there is no direct evidence purposively
exploring this link. It has been shown that impulsive behaviors might be driven by the inhibition of
A2A receptors, accompanied by an increased neuroblast proliferation in the hippocampus [52]. Thus,
opposite effects of A2A receptors and related adenosine metabolism have been hypothesized to explain
depression-related suicidal ideation and impulsive suicide attempts, respectively [53].

4. ATP and Depression

Along with adenosine, ATP signaling through P2 receptors may play an important role in the
neuropathological mechanisms of depression [54–56]. An early study showed that erythrocyte membrane
ATP activity was significantly lower during the depressive phase of patients than in the remission
phase [57], suggesting that ATP may be involved in depression. The combination of non-specific P2
receptor antagonists with antidepressants has been associated with significant antidepressant-like
effects in animal models [58]. It has been hypothesized that ATP released from astrocytes might
trigger the development of depressive-like behaviors [59,60]. ATP-mediated signaling through the
P2X7 receptor subtype seems to play an important role in depression [54–56]. The P2X7 receptor is a
ligand-gated cation channel localized in different CNS cells involved in the modulation of different
neurotransmitters [55]. Activation of purinergic P2X7 receptors may be involved in the pathogenesis
of depression [61], possibly linked with its proinflammatory activity [62]. It has been hypothesized
that psychological stress may influence the immune system in the CNS, via the ATP/P27X receptor
pathway [63]. Genetic deletion of P2X7 receptors has been associated with antidepressant effects.
Preclinical studies showed that P2X7 receptor knockout mice exhibited an antidepressant-like profile
and higher responsivity to the antidepressant treatment [64,65]. The antidepressant phenotype related
to genetic deletion of P2X7 receptors seems associated with changes in hippocampal monoaminergic
transmission [66]. All these findings support the hypothesis of CNS-penetrable ATP-sensitive P2X7
receptor antagonists as novel antidepressant agents [58,59,67]. Moreover, ATP-sensitive potassium
channels have been claimed to be a possible target for the treatment of depression [68–70].

5. Genetic Studies

A large number of studies have shown that common genetic variants of adenosine receptors may
have a role in mental disorders [71]. In particular for major depressive disorders, a pilot study has
shown that A1 receptor availability in several brain regions involved in emotion and mood regulation,
such as the superior frontal gyrus, the dorsolateral prefrontal cortex, the hippocampus, and the
entorhinal cortex, might be particularly prone to A2A polymorphism effects [72]. Recent research [73],
based on 1253 individuals from a cross-sectional population-based study, examined the association
between a single nucleotide polymorphism in the A2A receptor gene (rs2298383 SNP) and depression.
A TT genotype was associated with a decreased likelihood of depression as compared with the CC/CT
genotypes, after adjusting for several variables, including gender, smoking, socio-economic status,
and ethnicity. Moreover, the TT genotype was shown to be independently associated with reduced
sleep disturbances and lesser difficulty in concentrating. Contribution of adenosine related genes to
the risk of depression and related sleep disturbances, was analyzed in the Health 2000 Study based on
1423 adults from the Finnish population [74]. Selecting 117 single nucleotide polymorphisms from
13 genes, a negative association between SLC29A3 polymorphism rs12256138 and depressive disorders
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was found among women. The results suggested that abnormalities in adenosine transport due to
variation among women of the nucleoside transporter gene SLC29A3, could predispose to depression,
with genetics of mood regulation possibly varying between the sexes.

Similarly, a possible association of P2X7 gene polymorphisms with depression symptoms has
been discussed [75]. Mixed results are available from previous studies, testing P2X7 polymorphisms
in depression [76,77]. It seems that P2X7 receptor gene variants significantly increase the risk of
mood disorders [78]. A recent meta-analysis showed a significant association between the P2X7
polymorphism rs2230912 and mood disorders (major depressive and bipolar disorders), despite
pointing out the need for further studies to strengthen the evidence and clarify the applicability of the
findings for pharmacological purposes [79].

Genetic polymorphisms of purinergic receptors do not seem specific to major depressive disorders
and have been extensively studied in anxiety disorders and related symptoms [22]. These are likely to
produce a high variability in response to purinergic modulators, suggesting that future clinical trials
should differentiate subjects according to their genotype [11].

6. Purinergic Metabolism and Biomarkers

Variations of adenosine metabolism have been hypothesized to be associated with major affective
disorder. Adenosine, through adenosine deaminase (ADA) and xanthine oxidase (XO), is in turn
metabolized to inosine, hypoxanthine, xanthine, with uric acid representing the end product of
adenosine turnover (Figure 1).
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Studies in the early 1980s highlighted possible variations of adenosine metabolites, such as
xanthine and hypoxanthine, in cerebrospinal fluid (CSF), showing significant correlations with both
depressive symptoms [80,81] and monoamine metabolites [78]. About 20 years ago, Elgün and
colleagues [82] tested the function of ADA, the enzyme responsible for the conversion of adenosine to
inosine, in blood samples of 30 subjects with depression (18 with major and 12 with minor depression).
The authors found a reduction of ADA activity, possibly reflecting an impaired immune state in major
depressive disorder, with an inverse relationship between enzyme activity and severity of depression.
However, mixed results are available in this field. More recently, Herken and colleagues [83] showed
that both ADA and XO levels in subjects with major depressive disorder (N = 36) were higher than in
healthy controls (N = 20). Interestingly, ADA levels further increased, whereas XO decreased, after
8 weeks of antidepressant treatment. In addition, a significant increase of XO activity in the thalamus
and the putamen of patients with recurrent depression have been found [84]. Potential antidepressant
actions of inosine have been shown in several preclinical studies [85–88]. Kaster and colleagues [86]
showed that mice treated with inosine had higher anti-immobility effects in the forced swim and in the
tail suspension tests. Inosine transiently increases its concentration in the brain enhancing neuronal
proliferation [87]. Changes in the extracellular signal-regulated kinases (ERK) and cyclic AMP response
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element binding protein (CREB) signaling pathway in the hippocampus and prefrontal cortex were
hypothesized as the target of the antidepressant action of inosine [88].

Several studies have investigated levels of adenosine metabolites, namely uric acid, in the
peripheral blood of subjects with major depressive disorders. Uric acid is the end product of
endogenous purine metabolism. Its production and metabolism are complex processes involving
various factors that regulate hepatic production, as well as renal and gut excretion of this compound [89].
Uric acid has antioxidant effects, accounting for over half of the free radical scavenging activity, and is
influenced by diet and different drugs [90]. Low levels of uric acid in CNS may impair cell antioxidant
capacity. Uric acid may be a useful biomarker of the purinergic system, since central and peripheral
levels may be correlated [90]. Enhanced activity of adenosine on A2A receptors may be associated
with reduced adenosine turnover and lower levels of uric acid [91]. A recent systematic review and
meta-analysis [92], based on 14 studies, has shown that individuals with major depressive disorders
had levels of uric acid lower than healthy controls (Hedges’ g = −0.30; p = 0.003), as recently confirmed
by recent, additional, large cohort studies [93]. Findings supported the hypothesis that uric acid levels
may represent a state marker of depression, since the effect was significant only for studies including
drug naïve/free individuals (Hedges’ g = −0.55; p = 0.023) and serum uric acid levels were significantly
increased after antidepressant treatment [92]. Consistently, data from two independent cohort studies
estimated that high plasma levels of uric acid were associated with antidepressant medication use [94].
Another meta-analysis has shown that uric acid levels in individuals with depression were significantly
lower than in those suffering from bipolar disorder [95]. Interestingly, subjects with bipolar disorder
might have increased uric acid levels [96,97] and might benefit from drugs lowering uric acid [98].
Consistent with these findings, uric acid has been proposed as a diagnostic marker that may differentiate
‘unipolar’ and bipolar depression [99]. It is noteworthy that variations of peripheral levels of uric acid
have been correlated with several brain functions. A study based on functional magnetic resonance
imaging (fMRI) during a psychosocial stress task showed that activity within the bilateral hippocampal
complex varied with salivary uric acid levels [100], suggesting that these might modulate stress-related
hippocampal activity. In addition, preliminary voxel-wise correlation analyses showed effects of uric
acid on the alterations of white matter connectivity in subjects with major depressive disorder [101].
Purinergic system dysregulation in major depressive disorder has been pointed out by an observational
study comparing 99 individuals with depression and 253 healthy controls [102]. Data demonstrated
lower levels of both inosine and guanosine, as well as higher levels of xanthine. A recent study carried
out a metabolic profiling of plasma samples to explore the potential biomarkers of major depressive
disorder in children and adolescents [103]. Authors identified several abnormal pathways, including
purine metabolism, and highlighted that inosine might be a possible independent diagnostic biomarker
of depression, achieving an area under the receiver operating characteristic curve of 0.999 and 0.866 in
the identification of drug-naïve and drug-treated subjects with major depressive disorder, respectively.

Finally, variations in purinergic metabolites were estimated in subjects treated with antidepressants.
It has been shown that adenosine concentrations in plasma increased after citalopram administration
in subjects with major depression [104]. More recently, a significant decrease of hypoxanthine and
xanthine plasma levels after antidepressant treatment with citalopram/escitalopram was shown in 290
individuals with major depression [105].

Possible variations of peripheral markers of the purinergic system are summarized in Table 1.
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Table 1. Variations of serum/plasma purinergic metabolites and enzymatic activity in depression.

Purinergic Metabolite/Enzyme Variation

Adenosine Increase after antidepressant treatment [99,100]
Inosine Decrease in adults [97], children and adolescents [98] with depression

Hypoxanthine Decrease in children and adolescents with depression [98]
Xanthine Increase in adults with depression [97]
Uric acid Decrease in depression, increase after antidepressant treatment [87]

Adenosine Deaminase Decrease [78] or increase [79] in depression and after antidepressant treatment [79]
Xanthine Oxidase Increase in depression and decrease after antidepressant treatment [79]

7. Conclusions

Although several open questions remain, the purinergic system represents a promising research
area for insights into the molecular basis of depression, characterizing a potential target for novel
therapeutics [13,14,21]. Purinergic signaling may play a role in the pathophysiology of depression
involving the inhibition of A1 and the activation of A2A receptors, as well as P2 receptors. In particular,
A2A and P2X7 receptors have been identified as important targets for treatment of mental disorders [11,55].
Preliminary studies highlighted the possible role of purinergic system peripheral biomarkers in subjects
with depression, even though underlying biological mechanisms and effects of clinical confounders
or mediators should be clarified. Elucidating possible purinergic system variations may help to
clarify its potentially causal nature exploring the depressive illness via a “personalized” approach.
Future research should explore new approaches, such as epigenetics and proteomics, to further clarify
the role of the purinergic system in affective disorders [16]. Moreover, though several preclinical
studies analyzing P1 and P2 receptors are available, clinical trials are obviously needed to test the
antidepressant potential of purinergic modulators in humans.
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