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Extended-spectrum beta-lactamase- (ESBL-) producing Enterobacteriaceae are frequently detected in poultry and fresh chicken
meat. Due to the high prevalence, an impact on human colonization and the spread of antibiotic resistance into the environment
is assumed. ESBL-producing Enterobacteriaceae can be transmitted along the broiler production chain but also their persistence
is reported because of insufficient cleaning and disinfection. Processing of broiler chickens leads to a reduction of microbiological
counts on the carcasses. However, processing steps like scalding, defeathering, and evisceration are critical concerning fecal
contamination and, therefore, cross-contamination with bacterial strains. Respective intervention measures along the slaughter
processing line aim at reducing the microbiological load on broiler carcasses as well as preventing cross-contamination. Published
data on the impact of possible intervention measures against ESBL-producing Enterobacteriaceae are missing and, therefore, we
focused on processing measures concerning Enterobacteriaceae, in particular E. coli or coliform counts, during processing of
broiler chickens to identify possible hints for effective strategies to reduce these resistant bacteria. In total, 73 publications were
analyzed and data on the quantitative reductions were extracted. Most investigations concentrated on scalding, postdefeathering
washes, and improvements in the chilling process and were already published in and before 2008 (n=42, 58%). Therefore, certain
measures may be already installed in slaughterhouse facilities today.The effect on eliminating ESBL-producing Enterobacteriaceae
is questionable as there are still positive chicken meat samples found. A huge number of studies dealt with different applications
of chlorine substances which are not approved in the European Union and the reduction level did not exceed 3 log10 values.
None of the measures was able to totally eradicate Enterobacteriaceae from the broiler carcasses indicating the need to develop
interventionmeasures to prevent contamination with ESBL-producing Enterobacteriaceae and, therefore, the exposure of humans
and the further release of antibiotic resistances into the environment.

1. Introduction

Enterobacteriaceae that produce extended-spectrum beta-
lactamases (ESBLs) are a challenging problem in human and
veterinary medicine due to the limitations of the treatment
options against infections caused by these resistant bacteria.
In the beginning, ESBL-producing Enterobacteriaceae were
only linked to human infections in hospitals. Nowadays, they
are found to be widespread as intestinal gut colonizers in
healthy humans as well as in animals and were also isolated
from environmental samples like wastewater or fresh surface

waters [1–3]. As also farm animals, especially broiler chickens,
are affected by ESBL-producing E. coli (EEC), transmission
via the food production chain from animals to humans is
speculated [4, 5]. Therefore, many studies were conducted to
investigate the dissemination of these resistant bacteria in the
broiler production. EEC were found in broiler breeder chick-
ens and also in samples from broiler fattening farms even
though there was no antibiotic treatment [6–11]. Moreover,
in some studies broiler chickens were found to be already
colonized with resistant bacteria in their first days of life

Hindawi
BioMed Research International
Volume 2018, Article ID 7309346, 14 pages
https://doi.org/10.1155/2018/7309346

http://orcid.org/0000-0002-3896-3561
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://doi.org/10.1155/2018/7309346


2 BioMed Research International

[9]. Transmission investigations identified potential (pseudo-
)vertical transmission routes from (grand-)parent flocks to
their offspring where the hatcheries played an important
role in further spreading the resistant E. coli strains into the
fattening flocks [12–15]. In addition, insufficient cleaning and
disinfection procedures support the circulation of EEC on the
farms and between subsequently fattened flocks [16, 17].

Further investigations focused on the occurrence of EEC
in chicken retail meat and chicken food products. Propor-
tions of up to 90% of EEC-positive samples were reported
in some European studies [18–20]. Therefore, chicken meat
is considered as a potential source of the transmission to
humans. Insufficient kitchen hygiene in private households
or hospitals might contribute to cross-contamination or
transmission to humans [21, 22] even though the amount of
detectable EEC on chicken filet or neck skin samples seemed
to be low (range of 1 to 3.18 log10 CFU/g) [23, 24].

Processing of broiler carcasses in slaughterhouses is very
likely a critical point in the contamination of raw chicken
meat. On one hand, EEC frequently occur as intestinal colo-
nizers in broiler chickens and, therefore, fecal contamination
during evisceration of carcasses might be possible [25, 26].
On the other hand, broiler chickens are obviously visibly
contaminated on the skin and feathers with a mixture of
feces and litter before entering the slaughterhouse [27, 28].
Unfortunately, there are only limited data on the occurrence
of EEC during the processing of broiler chickens in the
slaughterhouse. In the study of Pacholewicz et al., they found
an overall reduction of EEC on broiler carcasses during
processing [29]. However, in some of the investigated batches
more than 2 log EEC per carcass could be still detected
after chilling. Therefore, intervention measures against these
resistant bacteria in slaughterhouse facilities are needed to
further reduce or even eliminate EEC frombroiler processing
plants and, therefore, also from chicken retail meat.

A lot of research was conducted to investigate interven-
tion measures against Salmonella sp. or Campylobacter sp. in
slaughterhouses [30] but to the best of our knowledge none of
the studies examined the respective interventions concerning
the usefulness to eradicate EEC. However, some studies con-
cerning Salmonella sp. or Campylobacter sp. also determined
the counts of E. coli, coliforms, or total Enterobacteriaceae
in their samples. These data might give an indication of the
effectiveness of a respective intervention against EEC in the
processing plants as Enterobacteriaceae, in particular E. coli
or coliforms, might function as indicator bacteria for EEC in
the broiler processing line [31, 32].

In this review, we therefore provide an overview on data
concerning intervention measures to quantitatively reduce
E. coli, coliforms, or Enterobacteriaceae during processing
of broiler chickens. We evaluated data from 73 original
research papers and summarized the quantitative effects of
the investigated interventions to reduce these bacteria at
the different stages of the slaughter processing line (supple-
mentary table (available here)). The studies comprise inter-
ventions to reduce/prevent the contamination of carcasses
during processing as well as to remove the contamination
that already occurred. There are also some data available
concerning certain measures directly prior to the transport

Table 1: Overview of treatments/intervention measures prior to
processing.

Measures prior to processing
Age of broilers before slaughter 42 d, 49 d, 56 d
Feed withdrawal 4 h to 16 h
Replacement finisher
Feed additives Glucose

Water additives Chlorine, MgSO
4
, allostatic

modulator

of broiler chickens to the slaughterhouse to prevent fecal
material from the fattening farms entering into the processing
line as well as those measures which refer to slaughterhouse
equipment or cleaning and disinfection procedures.

2. Intervention Measures

2.1. Prior to Processing. Despite general biosafety and biose-
curity measures as well as cleaning and disinfection strategies
in the fattening period of broiler chickens, further prepro-
cessing factors like chicken age, feed withdrawal, or water and
feed additives might lead to a reduced introduction of Enter-
obacteriaceae, in particular E. coli and coliforms, into the
slaughterhouses and therefore reduced cross-contamination
during carcass processing (Table 1).

It was found that increased age (56 days vs. 42 days) of
broiler chicken led to higher contamination of the broiler
carcasses with E. coli strains or coliforms after chilling in
chlorinated water [33]. However, detailed data earlier in
the processing line were not available and, therefore, data
might be biased. Further studies investigated the influence
of duration of feed withdrawal. In general, feed withdrawal
of 8 to 10 hours is used to reduce the fecal amount in
the gastrointestinal tract of broiler chickens and therefore a
reduced probability of fecal contamination during automated
evisceration is assumed [34, 35]. However, in four different
studies from three different countries, various outcomes were
observed [33, 36–38]. Results showed both a reduction and
an increment of the E. coli amount on the carcasses in the
different samplings suggesting insufficient effectiveness of the
feed withdrawal concerning the reduction of E. coli. Further-
more, the effect of the feed withdrawal time varied between
samples at different stations in the slaughter processing line
[37].This led to the assumption that the processing or certain
steps of processing, e.g., evisceration, have a higher impact
on the contamination rate of broiler carcasses with E. coli
than the duration time of the feed withdrawal. In addition to
feed withdrawal times, certain feed and water additives were
investigated to enhance a possible positive effect of the feed
withdrawal concerning the reduction of particular pathogens
(Table 1). Substances like specialized replacement finisher
[37], the supplementation of feed with a glucose cocktail
[39], chlorine additives [36], or magnesium sulfate [40] in
drinking water, or the supplementation of tap water with an
allostatic modulator [38] were investigated. These substances
were applied to broiler chickens prior to feed withdrawal.
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Again, various outcomes concerning a reduction of E. coli,
Enterobacteriaceae, or coliforms concentrations on broiler
carcasses were observed. Glucose feed additives and chlorine
compounds in drinking water showed reductions of Enter-
obacteriaceae or E. coli in chicken crops [36, 39]. However,
an impact on the reduction of E. coli on the broiler carcasses
during processing and concerning the prevention on cross-
contamination seemed to be ambiguous and needs further
investigations. The supplementation of drinking water with
magnesium sulfate at different levels led to a reduction of
up to 2 log10 values of the microbial cecum contents and
coliformbacteria [40].However, in these experiments neither
the effect on E. coli counts nor EEC counts were investigated
and therefore the application of magnesium sulfate needs
to be further evaluated. Overall, the investigated measures
do not provide a distinct strategy for the reduction of the
introduction of E. coli into slaughterhouse facilities. However,
positive effects of these measures on the reduction of EEC
numbers on broiler carcasses were not yet published.

2.2. During Processing. The processing of broiler chick-
ens consists of the following major steps: arrival at the
slaughterhouse, stunning, bleeding, scalding, defeathering,
evisceration, washing, chilling, and cutting/packaging. The
summarized study data include interventionmeasures during
general online slaughter procedures as well as experimental
trials in pilot processing plants or under laboratory condi-
tions for all processing steps except stunning and bleeding
(Table 2). For both these steps, no data or studies could be
identified.

2.2.1. After Arrival. Visible contamination of broiler chickens
(on feathers and skin) is of great importance concerning the
introduction of the bacteria into the slaughter facilities [27,
28]; however, there are only few studies which investigated
measures before the scalding of the broiler chickens (Table 2).

In two independent studies, experimental prescald equip-
ment was developed to brush broiler chickens before scalding
to reduce the visible contamination and to lower the amount
of fecal material and bacteria which were further introduced
into the scalding water [41, 42].The entering of fecal material
into the scalding water has an effect on the pH of the scalding
water. It decreases due to dissociation of the ammonium
urate, present in chicken feces, into uric acid and ammo-
nium hydroxide [43] and thus influences heat resistance of
Campylobacter and Salmonella [44, 45]. However, for E. coli
the pH of the scalding water seems to be less important
[46]. Both prescald brushing studies used slightly different
techniques (whole surface vs. breast, vent, and neck areas)
and reductions of up to 0.3 log10 CFU of E. coli, coliforms,
and Enterobacteriaceae on carcasses, respectively, might be
achievable. The partial brushing of the breast, vent, and neck
was not tested as an online treatment and, therefore, the effect
after scalding could not be examined [42].

A second important contamination source is internal
fecal material, which could contaminate carcasses due to
leakage from the cloacae or gastrointestinal disruptions.
Therefore, Northcutt et al. investigated in their study the

impact of a forced cloacal fecal expulsion prior to scalding
to prevent these leakages during further carcass processing
[47].They found no differences in the bacterial load between
prescaldwashed, prescald squeezed, and prescaldwashed and
squeezed carcasses but a comparison to untreated carcasses
was not done. Musgrove et al. investigated the contribution
of a cloacal plugging prior to electrocution of broilers to
reduce numbers of Enterobacteriaceae on broiler carcasses
[48]. The closure of the cloacae seemed to prevent further
fecal contamination during processing as they determined
reductions of 0.53 log10 CFU/ml per carcass rinse. In experi-
mental inoculation trials, Buhr et al. also usedmanual cloacal
plugging and vent suturing to prevent fecal leakage [49].They
found a reduction of 1.2 log10 CFU/ml breast skin rinse E. coli
compared to broiler carcasses with open vents. Nevertheless,
cloacal plugging is labor-consuming and is not yet established
as an online procedure. However, it points to the fact that
fecal leakage is a major problem in contamination of broiler
carcasses.

Even though there are only limited studies on prepro-
cessing measures, there might be a great potential in new
strategies for the quantitative reduction of the bacterial load
on broiler chickens before their processing.

2.2.2. Scalding. Scalding of carcasses is used to preliminary
loose the feathers of broiler carcasses prior to the actual
defeathering process. Two different systems of carcass scald-
ing are established: immersion scalding in water bathes and
stream/spray scalding. During immersion scalding, bacteria
are removed by the effect of high temperature and a washing
effect of the water bath. However, cross-contamination was
shown during immersion scalding [50, 51]. During steam
scalding, bacteria are only reduced via a temperature effect
but cross-contamination is expected to be less likely [52]. In
the course of the development of the slaughter processing,
different immersion scalding conditions have been estab-
lished. Hard scalding with water temperatures from 60 to
66∘C and immersion time of 45 to 90 s were typically used
in the US poultry industry whereas in Europe soft scalding
at 51 to 54∘C with immersion times for 120 to 210 s is
preferred [53]. The scalding conditions are also linked to the
preferences of consumers with regard to certain attributes
of fresh chicken meat like color of meat and skin [54]
and the form of offer, chilled or frozen. Early data from
artificial contamination trials of chicken skin with an E. coli
K12 strain indicate that scalding temperatures above 60∘C
(scalding time of 150 s) led to an increased reduction of this
strain from the contaminated chicken skin [55]. They also
concluded from their results that it seems to be difficult to
totally remove the E. coli strain from the chicken skin as it
is protected by polymers on the surface of the chicken skin.
Mulder et al. found in their artificial contamination study that
cross-contamination during scalding is very likely and that
external contamination might be of greater importance than
internal contamination [56]. Due to the need for enhanced
hygiene measures to reduce microbiological contamination
and consequently foodborne illnesses via poultry food prod-
ucts, further investigations were carried out to improve the
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effectiveness of the scalding process without leading to a
reduced meat quality and meat appearance.

Later on, countercurrent immersion scalding and addi-
tional postscald hot water sprays have been introduced [57].
However, the use of a three-tank counterflow scalder does not
lead to a microbiological improvement of the contamination
level of broiler carcasses compared to a single-tank scalder
[58] although there was a reduction of aerobic bacteria in
the last scalding tank. Berrang et al. found that the scalding
in a counterflow triple-tank scalder decreased the E. coli
counts from 4.6 log10 CFU to 2.0 log10 CFU, but controls
to other scalding techniques were not provided [59]. Further
studies showed that variations in the pH of the scalding water
[46] as well as technical developments of immersion scalders
like triple-tank scalders [60], counterflow triple tanks [61],
or an additional cold water scald [62] also had no distinct
effect on the amount of E. coli or coliforms detected on the
broiler carcasses. In contrast, the addition of copper sulfate-
based sanitizers [63] or ammonium chloride substances [64]
to the scalding water seemed to be of great advantage in
reducing the amount of E. coli or coliforms on broiler
carcasses. However, these substances are not approved for
use in European slaughterhouses as there are no chemicals
approved for use in the European Union (EU) [65]. Further
variations in the scalding temperatures for immersion and
spray scalders were not tested concerning their influence
on the microbiological status of the carcasses. It also seems
to be challenging to achieve an equal distributed scalding
temperature at the different sites of the carcasses and to
avoid a “cooked” skin appearance when using higher scalding
temperatures [52].

Further scalding techniques like spray or vapor scalding
have been tested as it was assumed that these methods would
reduce water consumption and the amount of waste water
[66] and might also reduce possible cross-contamination
[52]. A prototype of a steam-hot-water-spray scalder was
tested and showed a reduction of coliforms of approximately
0.5 log10 CFU/cm2 on carcass surface compared to a con-
ventional scalder [67]. However, there were apparently no
further data determined on the efficiency of these techniques
to reduce the microbiological load on broiler carcasses.

As the scalding process of broiler carcasses was identi-
fied as a critical point for cross-contamination events with
pathogenic foodborne bacteria [50, 51] as well as ESBL-
producing Enterobacteriaceae [24, 68], it is necessary to
improve the processing in the context of microbiological
hygiene measures.

2.2.3. Defeathering. The defeathering process aims at the
complete removal of the feathers from the broiler carcasses
while keeping the skin and carcass appearance according to
consumer preference. The defeathering machine consists of
banks with sets of motor driven discs with rubber plucking
fingers. This process also turned out to be critical concern-
ing microbiological contamination of broiler carcasses as
during defeathering the pressure may be released to the
carcasses which frequently leads to fecal leakage [51, 69–
71]. It was recently shown that also cross-contamination
with ESBL-producing Enterobacteriaceae can occur [24, 68].

Only few studies were conducted to investigate the impact of
the defeathering process on microbiological contamination.
Cason et al. found no significant difference in the numbers
of E. coli of carcasses after mechanical defeathering for 30
s and 60 s, respectively, in a laboratory processing facility
[72]. Allen et al. reported that the majority of feathers with
attached bacteria were already removed in the first 10 sec of
the defeathering process [70]. To possibly reduce themicrobi-
ological load on the carcasses directly after defeathering, hot
water immersion scald and spray washer were investigated
[41, 73, 74]. The studies found reductions between 0.2 log10
and 0.7 log10 of the E. coli load in the whole carcass rinses.
However, limitations were alterations in meat quality and
meat appearance due to high water temperatures and the
use of chlorinated water which is not approved in the EU
[65].The effects of an application of acetic acid and hydrogen
peroxide during defeathering on the microbiological quality
were only tested for total aerobic plate counts but not for E.
coli [75].

Overall, there are only few studies available/published,
which dealt with microbiological investigations during
defeathering of carcasses. Respective studies might not be
conducted or the investigations are just not available to the
public. It also seems that further development of defeathering
technology has a greater focus on processing parameters like
defeathering efficacy than on microbiological aspects.

2.2.4. Evisceration. The aim of this processing step is to
remove the total intestinal package. The whole evisceration
process is highly automated and most challenging is the
proper evisceration of highly variable sizes of broiler carcasses
without leading to fecal leakage and gastrointestinal disrup-
tions.There is limited information about the effectiveness and
possible microbiological contamination due to the technolo-
gies used for every single evisceration step. Russel et al. did
early comparisons between the Nu-Tech Evisceration System
and a conventional Streamlined Inspection System (SIS).
Evisceration with the Nu-Tech system leads to the separation
of the visceral package from the carcass for inspection
whereas with the SIS the package remains attached to the
carcass. The Nu-Tech system showed better performance
concerning the visible fecal contamination of the carcasses
but no difference in the amount of E. coli in the investigated
carcass rinses between both systems was observed [76].

Compliance with procedures to set and control equip-
ment may be also associated with presence of fecal contami-
nation [77]. This contamination occurs as a result of damage
of the intestines due to heterogeneity of carcasses within and
between flocks. Conventional equipment cannot be adjusted
per carcass; however, evisceration employees can adjust it
for a particular flock to minimize the fecal leakage. The
observed association between compliance with procedures
and occurrence of fecal contamination needs to be validated
in intervention studies.

The structure of the skin of broiler chickens is assumed to
play an important role in level of observable microbiological
contamination due to the properties of the skin surface and
the associated polymers which can protect bacteria from
removal [55, 78]. Therefore, whether the removal of the skin
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prior to evisceration can lead to reduced contamination of
the chickenmeat was investigated. Aftermanual evisceration,
they found a reduction of 0.5 log10 CFU/carcass of E. coli
and coliforms, respectively [79].However, the possible reduc-
tion of contamination with Enterobacteriaceae by removing
broiler chicken skin before evisceration was not tested as an
online operation.

2.2.5. Postevisceration Treatment. Leakage of fecal material
and contamination with bacteria occur due to improper
efficiency of the evisceration. Therefore, a high number of
investigationswere conducted to improve the removal of (vis-
ible) fecal contamination on broiler carcasses by improving
the washing technologies as well as adding various substances
to the washing water.

Early examinations on spray washing and inside-outside
(I/O) washers revealed slight reductions of Enterobacte-
riaceae on broiler carcasses due to this application [80].
Further investigations of I/O washers also found only slight
reductions of the E. coli and coliform count, respectively,
even though chlorinated water was used for the washing
process which is not approved in the EU [41, 65, 74, 80, 81].
Furthermore, it was shown that an I/Owashwith a showering
time of 5s to 6s does not completely remove visible fecal
contamination and, therefore, is less effective in reducing
E. coli, Enterobacteriaceae, or coliforms from contaminated
broiler carcasses [25]. Berrang and Baily examined a post-I/O
brush wash step and found an additional reduction of about
0.5 log10 CFU of E. coli and coliforms, respectively [41]. The
trimming of visible fecal contamination with different water
pressure resulted in a lower reduction of these bacteria [82]
and the usage of high pressure spray with chlorinated water
showed varying outcomes in the ability to reduce Enterobac-
teriaceae from broiler carcasses [83]. Studies also investigated
the efficiency of water washes to reduce the numbers of
E. coli or coliforms on broiler carcasses. Experiments were
carried out in the lab or in experimental pilot processing
plants and it turned out that using water with less than
2 ppm chlorine or potable water for the washing steps led to
reductions between 0.3 and 1.3 log10 CFUof E. coli, coliforms,
or Enterobacteriaceae [82, 84, 85].

Most of the interventions against E. coli, coliforms, or
Enterobacteriaceae on broiler carcasses by different washing
steps or technologies after the evisceration include the usage
of chlorinated water (produced, e.g., by adding sodium
hypochloride (SH), or by electrolyzing water containing
dissolved sodium chloride) which is not approved in the EU
[65]. Here, investigations in the lab or in processing plants
showed better results concerning the reduction of E. coli,
coliforms, and Enterobacteriaceae, respectively, than online
investigations in the slaughterhouse [84–87]. Furthermore, a
study concerning online postevisceration washes with chlori-
nated water resulted in higher bacterial contamination than
without chlorinatedwater [74].The samewas found in a study
concerning prechill washes [41] whereas chlorine dioxide
(ClO
2
) spraywash seems to reduceE. coli and coliform counts

about 0.4 log10 CFU, respectively [74]. Kemp et al. investi-
gated the possible usage of acidified sodium chlorite (ASC)

as an intervention against E. coli contamination on broiler
carcasses [88, 89].They conducted lab work experiments and
combined online treatments and found reductions between
0.77 and 2.28 log10 CFU.

Further substances like trisodiumphosphate (TSP), lauric
acid (LA), myristic acid (MA), or potassium hydroxide
(KOH) were also tested in further studies as candidates to
potentially reduce E. coli, coliforms, or Enterobacteriaceae
counts on broiler carcasses after the evisceration step. Out-
comes vary between 0.33 and 2.07 log10 CFU reduction
[74, 85, 90, 91]. Acetic acid (1.4 g/l and 2.8 g/l AA) and
oleic acid as a 10% washing solution were also tested in lab
experiments. They showed reductions of up to 0.93 log10
CFU of E. coli and 2.43 log10 CFU of Enterobacteriaceae,
respectively, on poultry skin samples [92, 93]. For kosher
chicken meat production, the usage of salt was evaluated
after the evisceration step of the carcasses [94]. During their
investigation, they found that kosher salt application can
reduce the E. coli and coliform counts by 2.81 and 2.31 log10
CFU, respectively.

Most of the studies dealt with washing substances which
are not approved in Europe [65] (Table 2). It turned out
that the addition of chlorine compounds does not lead to
a total removal of Enterobacteriaceae on broiler carcasses
and also more natural substances might have a potential to
reduce these bacteria on broiler carcasses during processing.
However, most investigations were done as lab work or in
pilot processing plants and the results need to be further
evaluated.

2.2.6. Chilling. The chilling process in general can lead to a
reduction of the E. coli amount on broiler carcasses of up to
3.5 log10 values [95, 96]. However, broiler carcasses are still
contaminated with E. coli, coliforms, or Enterobacteriaceae
after chilling.Thiswas also to be found formultidrug resistant
E. coli like EEC [97–99].

Chilling of broiler carcasses is done via immersion
chilling in a water tank, chilling in air, or air-spray chilling
where carcasses are sprayed with water at several points in
the chilling room. Furthermore, some slaughterhouses use a
combination of immersion and air chilling having a water
bath with cold water only in the beginning of the chilling
room. The chilling method applied depends on the scalding
temperature regime. If the scalding temperatures are very
high, the epidermis is removed and the carcasses need to
be kept wet through the process; otherwise, the appearance
of the chicken skin/meat is affected. Therefore, chilling in a
water bath is applied in combination with high temperature
scalding.

The use of a water bath during chilling—like the scalding
water bath—might also contribute to cross-contamination
between carcasses but experimental studies on air chilling
with or without chlorinated water sprays did not result in
reductions of the amount of E. coli or coliforms on the
broiler carcasses [100–105]. The use of steam or hot water in
combination with rapid cooling, chilling, or freezing seems
to reduce up to 2.83 log10 CFU of E. coli depending on
the treatment time [106]. However, there are disadvantages
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in the skin appearance and skin color [106]. Freeze chilling
of chicken meat for longer transportation was investigated
with no negative effect on the meat appearance and found to
possibly reduce up to 1 log10 CFU of Enterobacteriaceae on
the chicken meat [107]. In contrast, an experimental trial on
the survival of E. coli K12 during crust freezing resulted only
in reductions 0.3 log10 CFU [108]. Allen et al. investigated
(chlorinated) water sprays for carcass chilling but the effect in
reducing coliforms from breast skin was not more than 0.62
log10 CFU even when using 250 ppm of chlorine [100].

Immersion chilling in tap water showed reductions of
up to 1.1 log10 CFU of E. coli under laboratory conditions
compared to unchilled carcasses [109]. Chilling in water
with less than 2 ppm free chlorine residues reduced E. coli
counts by 1.34 log10 CFU [110]. In the same study, after
renewal of the chilling water after 8 h (instead of 16 h) the
reduction was determined as 1.25 log10 CFU of E. coli.
In most of the studies, the use of chlorine substances or
solutions like acidified chlorine, sodium hypochlorite (SH),
monochloramine (MON), or chlorine dioxide (ClO

2
) for the

reduction of bacterial contamination on broiler carcasses
was investigated [25, 33, 60, 74, 111–113]. On the one hand,
reductions of up to 1.4 log10 CFU of E. coli were detected.
On the other hand, also increments of the amount of E.
coli (up to 0.2 log10 CFU) were found. This might be due
to the sampling of different slaughterhouses and different
sampling conditions/methods and laboratory work. In the
study by Kameyada et al., they found that also the chilling
temperature might have an influence on the reduction of E.
coli counts on broiler carcasses [112]. To further reduce the
bacterial contamination from the carcasses and additionally
prevent cross-contamination, Dickens et al. investigated an
herbal extract as additive in the chilling water [109]. In
their laboratory, they determined reductions of 2 log10 CFU
and 2.64 log10 CFU for E. coli and coliforms, respectively.
Postchill washing or dipping steps in chlorinated water can
lead to additional reductions between 0.2 and 1.74 log10 CFU
of E. coli or coliforms on the broiler carcasses [74, 81, 87]. A
prechill or postchill application of kosher salt to the carcasses
was found to reduce E. coli counts by 1.39 log10 CFU and 1.77
log10 CFU, respectively [94].

The analysis of various published papers concerning
the microbiologic profile of broiler carcasses after chilling
highlights the need for harmonized methods and sampling
procedures. It also shows that, in concordance to the poste-
visceration wash, the adding of chlorine compounds to the
chilling water does not completely remove Enterobacteri-
aceae from the broiler carcasses assuming that methods for
preventing contamination of broiler carcasses might be of
greater importance.

2.3. Packaging. There are different technologies established
to protect raw meat from recontamination and to prevent
the growth of potential pathogenic bacteria [114]. For the
preservation of chicken meat, investigations were conducted
to improve the shelf life and to reduce bacterial contamina-
tion (Table 3). Various combinations of gaseous substances
and concentrations were tested in modified atmosphere
packaging (MAP) processes.Most commonare combinations

Table 3: Overview of packaging treatments/intervention.

Packaging Substances
Modified atmosphere
packaging (MAP)

Various combinations of O
2
, CO
2
, and

N
2

Decontamination Water extract of sumac, lauric acid
(LA), high-intensity pulsed light

Active packaging Carvacrol, cinnamaldehyde,
ovotransferrin, potassium sorbate

of the gases O
2
, CO
2
, and N

2
. Depending on the storage

time investigated in the studies, most of the tested MAP
gases showed reduced growth of E. coli or Enterobacteriaceae
compared to the storage under air conditions [107, 115–117].
High portions of CO

2
in the gaseous mixtures seemed to

better reduce the growth of E. coli on chicken meat [116, 117].
However, none of the tested MAP processes led to a total
reduction of E. coli counts on chicken meat. The shelf life
of chicken meat is not only dependent on the amount of
E. coli on the respective filets or chicken wings. Therefore,
most of the investigations on MAP also concentrate on other
bacteria like pseudomonads and other potential pathogenic
Enterobacteriaceae as well as meat appearance and consumer
preferences [54, 114, 118]. As alternatives to MAP, active
packaging has been developed which leads to an interaction
of the packaging material and the respective meat [119].
Furthermore, the packaging material can be incorporated
with different (reactive) substances to increase the shelf life
due to the interaction of material, substances, and meat.
The substances allowed for use for active packaging are also
strictly regulated in the EU [119]. The incorporation of 3%
carvacrol or 3% cinnamaldehyde into wrapping films reduced
the amount of E. coli O157:H7 on chicken breast samples of
up to 6.8 and 5.2 log10 CFU, respectively, after storage time of
72 h at 23∘C [120]. Using ovotransferrin or potassium sorbate
showed reductions of more than 2 log10 CFU of E. coli only
in combination with 5mM EDTA whereas the reduction due
to EDTA alone was higher than for both separate substances
[121]. Besides the packaging technology, the decontamination
of chicken meat with a water extract of sumac (WES) and 2%
lactic acid (LA)was investigated in a broiler wingmodel [122].
Reductions up to 2 log10 CFU of coliforms were detected
compared to a distilled water reference. Haughton et al.
determined the decontamination of chickenmeat using high-
intensity pulsed light (HIPL) and found a reduction of up
to 1.51 log10 CFU of E. coli on uncovered chicken skin [123].
However, the use of HIPL on packaged chickenmeat/skin led
to a lower reduction of the E. coli amount.

None of the investigated interventions was tested for their
efficacy against EEC. However, it seems that the reduction or
eradication of EEC needs to be done in previous steps in the
processing of broiler chickens.

2.4. Equipment/Others. Despite direct intervention measures
to reduce E. coli, coliforms, or Enterobacteriaceae on broiler
carcasses also few investigations on the reduction of bacte-
rial contaminants in the slaughterhouse environment were
conducted (Table 4).These investigations include the general
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Table 4: Overview of treatments of equipment/slaughterhouse
environment.

Equipment
Conveyor treatment
Disinfectants (peracetic acid and quaternary ammonium, sodium
hypochloride (SH), peracetic acid)
Transport crate treatment
LEDs/UV light

sanitary treatment in slaughterhouses and the disinfection of
conveyor belts and transport crates. In the study of Kašková
et al., no coliforms were detected on the sampled sites, except
for the shackling hooks, after disinfection with quaternary
ammonium compounds [124]. For the sanitizing of stainless
steel sodium hypochloride (SH) and peracetic acid were
tested under laboratory conditions [125]. From the results,
the authors did not recommend peracetic acid as a sanitizing
agent for slaughterhouse equipment. Cleaning and disinfec-
tion of conveyor belts and transport crates are critical con-
cerning cross-contamination. Hot water treatment does not
result in significant reduction of Enterobacteriaceae whereas
washing, soaking, and the additional use of disinfectants or
detergents are more effective [126–128]. Ultrasonic treatment
of conveyor belts was more effective in combination with
water temperatures around 60∘C [127]. These studies show
that the disinfection of the slaughterhouse equipment or
transport crates is a critical process and needs to be done
accurately to avoid cross-contamination and further spread
of the bacteria.

For the decontamination of chilling wash water Rowan
et al. tested a pulsed-plasma gas discharge system [129].They
found a reduction of approx. 8 log10CFUofE. coliNCTC9001
after a treatment time of 18 sec. UV irradiation and LED
light were further methods tested for the decontamination
of stainless steel and chicken skin [130, 131]. UV irradiation
showed better results concerning the reduction of E. coli on
stainless steel (up to 5.34 log10 CFU) than on chicken skin
(up to 1.28 log10 CFU) [130]. This is assumed to be due to
the rough surface of the chicken skin and the feather follicles
which protect bacteria from the UV light. The LED array
treatment did not exceed 1 log10 CFU reduction on stainless
steel and chicken skin, respectively [131]. Furthermore, the
treatment period ranged between 10 and 20min whichmight
be problematic for an installation as online treatment.

There is a high diversity in methods tested for the inac-
tivation or reduction of Enterobacteriaceae or E. coli counts
in slaughterhouses or slaughterhouse equipment. However,
most of the methods were not tested for their potential to also
reduce contamination on chicken carcasses or as an online
intervention in a slaughterhouse.

3. Summary and Conclusion

ESBL-producing Enterobacteriaceae are frequently detected
in broiler chickens and chicken meat. Due to high prevalence
of these usually multidrug resistant bacteria, an impact on
human health is assumed [4, 5]. It was recently reported

that reduced exposure to humans also led to a reduction
in the prevalence in humans [132]. The transmission along
the broiler production chain and certain cross-contamination
events have been described by various authors [12–15].
Furthermore, it has been reported that wastewater from
processing facilities contributes to the spread of multidrug
resistant bacteria into the environment [133–136]. Therefore,
interventions are needed to reduce or even eradicate these
ESBL-producing Enterobacteriaceae from the broiler pro-
duction.

Until now certain interventions were investigated against
Campylobacter sp. and/or Salmonella sp. but specific inter-
ventions against EEC were not evaluated. We, therefore,
summarized data from various studies which also investi-
gated Enterobacteriaceae counts with E. coli and coliforms
in particular as they might function as indicator bacteria for
EEC in the broiler processing line [31, 32].

Overall, we found 73 studies providing data on the quan-
titative reduction of E. coli, coliforms, or Enterobacteriaceae
along the different steps of the broiler processing line (supple-
mentary table). Reductions were measured up to 3 log10 CFU
on chicken skin or broiler carcasses; however, none of the
methods led to total eradication of those bacteria. A variety
of investigated measures provided only reductions below
1 log10 CFU or even caused an increase in the respective
bacterial counts indicating an insufficient effect againstE. coli,
coliforms, or Enterobacteriaceae contamination of broiler
carcasses and, therefore, an effect on EEC is questionable.
In addition, it seems that experimental intervention trials
provide better results than measures implemented as online
treatment. Also, the effect of measures dependent on the con-
tamination level of broiler carcasses is not well investigated.
The application of simultaneous or parallel interventions
might have an additive effect; however, respective studies for
most of the interventions are missing.

We found studies comprising interventions to prevent
fecal material from the fattening farms entering into the
processing line of the slaughterhouse (measures prior to
processing and after arrival), to reduce/prevent the contami-
nation of carcasses during processing (scalding, evisceration)
as well as to remove contamination that already occurred
(postevisceration treatment, chilling, packaging, and equip-
ment/others). It was already reported that the structure of the
chicken skin plays an important role in attachment of bacteria
and that firmly attached bacteria during plucking are more
difficult to remove [51, 55, 137]. This might suggest that there
is a need formoremeasures that prevent contamination from
occurring.

Twenty-one measures dealt with the application of var-
ious chlorine substances which are not approved in the EU
[65].The overall reduction of E. coli, coliforms, or Enterobac-
teriaceae by these substances was less than 2.3 log10 CFU,
indicating that chlorine does not remove E. coli, coliforms,
or Enterobacteriaceae from broiler carcasses to a preferable
amount. Again, taking into account the important issue of
skin structure and the bacterial attachment, it could be con-
cluded that there are general limitations to the effectiveness
of decontaminating chicken carcasses. It could be of interest
to develop more interventions preventing the introduction
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or the recontamination with Enterobacteriaceae especially
under the current EU regulations where decontamination is
not approved. From our collection, 42 studies were already
published before 2008 and, therefore, it is very likely that
some of these measures are already installed in slaugh-
terhouses. Furthermore, 58% of the studies (n=42) were
conducted in the USA and only 21% in European countries
(n=15) which highlights the need for further investigations
in the EU due to differences in the respective guidelines and
European decrees.

In the study of Pacholewicz et al., they found an overall
reduction of EEC on broiler carcasses during processing
[29]. However, they also detected differences in the reduc-
tion during processing of E. coli and EEC populations
in one slaughterhouse. Here, EEC were less reduced than
the numbers of total E. coli after defeathering and after
evisceration, respectively. Furthermore, the effect of a respec-
tive processing step on the reduction of EEC additionally
illustrated differences between two slaughterhouses [29].
This indicates that also slaughterhouses specific intervention
measures might be needed against the dissemination of EEC.
In addition, effective measures might depend on the current
equipment, procedures, and technologies used in every single
slaughterhouse, which need to be further evaluated.

Nevertheless, there is a need to eliminate as much as
possible at various stages of processing (through preventing
fecal contamination from entering a particular step) and
maintaining and/or further reducing the amount of bacteria
achieved at a respective processing step. EEC do not only
spread in the broiler production line but can also be spread
into the environment via wastewater and, therefore, con-
tribute to the transmission of antibiotic resistance factors.
Intervention measures are needed to prevent the spread
and cross-contamination of these resistant bacteria during
slaughter and finally the transmission into the environment
and the households via contaminated chicken meat.
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