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Abstract
Purpose Canonical Wnt/ β-catenin pathway is one mechanism being activated in platinum-resistant epithelial ovarian cancer 
(EOC). Detecting potential targets for Wnt pathway modulation as a putative future therapeutic approach was the aim of 
this study.
Methods Biological effects of different Wnt modulators (SB216763, XAV939 and triptolide) on the EOC cell lines A2780 
and its platinum-resistant clone A2780cis were investigated via multiple functional tests. Immunohistochemistry (IHC) was 
carried out to compare the expression levels of Wnt marker proteins (β-catenin, snail/ slug, E-cadherin) in patient specimens 
and to correlate them with lifetime data.
Results We could show that activated Wnt signaling of the platinum-resistant EOC cell line A2780cis can be reversed by 
Wnt manipulators through SB216763 or XAV939. All Wnt manipulators tested consecutively decreased cell proliferation 
and cell viability. Apoptosis of A2780 and A2780cis was enhanced by triptolide in a dose-dependent manner, whereas cell 
migration was inhibited by SB216763 and triptolide. IHC analyses elucidated significantly different expression patterns for 
Wnt markers in the serous subtype. Herein, higher plasmatic snail/ slug expression is associated with improved progression-
free (PFS) and overall survival (OS).
Conclusion According to the described effects on EOC biology, all three Wnt manipulators seem to have the potential to 
augment the impact of a platinum-based chemotherapy in EOC. This is promising as a dominance of this pathway was 
confirmed in serous histology.
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PFS  Progression-free survival
TCF  T-cell factor
TMA  Tissue microarray
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Introduction

Epithelial ovarian cancer (EOC) is the leading cause of 
death from gynecologic malignancies and the seventh most 
common cancer in women worldwide (International Agency 
for Research on Cancer 2020). With a relative five-year sur-
vival rate of 41% across all Federation of Gynecology and 
Obstetrics (FIGO) stages, survival is poor. Diagnosis is usu-
ally made in advanced FIGO stage III and IV in 75% of the 
patients (Jayson et al. 2014). In case of relapse, EOC will 
develop platinum-resistance over time and is driven by a 
range of heterogeneous primary and acquired mechanisms 
in different signaling cascades (Freimund et al. 2018; Rabik 
and Dolan 2007).

One of them is considered to be the canonical Wnt/ 
β-catenin pathway (Fig. 1) (Barghout et al. 2015; Nagaraj 
et al. 2015), which is essential for the development and 
integrity of all multicellular organisms (Wiese et al. 2018) 
but dysregulation of the pathway has the potential to pro-
mote various diseases including EOC (Arend et al. 2013; 
Nusse and Clevers 2017; Shang et al. 2017). Except for 
endometrioid ovarian cancer (OC), mutations in canonical 
Wnt signaling in EOC are rarely seen (Kim et al. 2008), 

so that in contrast a general activation of the cascade has 
been considered to promote tumor progression (Dubeau 
2008; Gatcliffe et al. 2008). However, conflicting results 
indicate a possible inhibitory role for tumor progression 
from time to time (Bodnar et al. 2014; Seagle et al. 2016).

It has been described that inhibition of canonical Wnt 
signaling can re-sensitize platinum-resistant EOC cells 
to platinum, which, therefore, represents a promising tar-
get for therapeutic approaches. The general knockdown 
of β-catenin, a key regulator in canonical Wnt signaling 
being located in the nucleus, reinduced chemosensitivity 
to platinum in cisplatin-resistant OC cells in vitro (Naga-
raj et al. 2015). Additional, inhibitors of the Wnt signal-
ing cascade exhibited potential to re-sensitize EOC cells 
to platinum: iCG-001/ PRI-724 (Nagaraj et  al. 2015), 
CCT036477 (Barghout et  al. 2015), WNT974 (Boone 
et al. 2016) or triptolide (Rivard et al. 2014; Westfall et al. 
2008). However, their effects have not been independently 
proven and their possible clinical implications have not 
been systematically followed.

Within this study, the clinical and prognostic signifi-
cance of Wnt signaling markers have been investigated 
to elucidate and confirm specific targets for Wnt pathway 
modulations with consecutive therapeutic perspectives. 
Besides the investigation of the protein expression of 
Wnt markers, the Wnt modulators SB216763, XAV939 
and triptolide were applied to investigate their effects on 
the cell biology of the EOC cell line A2780 and its plat-
inum-resistant clone A2780cis and to test the ability for 

Fig. 1  Canonical Wnt signaling pathway: In absence of Wnt ligand 
(left), the destruction complex, consisting of GSK-3β, adenomatous 
polyposis coli (APC) and axin, hyperphosphorylates β-catenin, which 
marks it for ubiquitination (Ub) and proteasomal degradation. Bind-
ing of Wnt ligand (right) to a frizzled (FZD)/lipoprotein receptor-
related protein (LRP) receptor complex leads to the phosphorylation 
of dishevelled (Dsh) inactivating GSK-3β and preventing the phos-
phorylation of β-catenin. Non-phosphorylated β-catenin shifts into 
the nucleus and forms a complex with T-cell factor (TCF)/lymphoid 
enhancer factor (LEF) activating transcription of Wnt target genes. 

Furthermore, the expression of zinc-finger transcription factors snail 
and slug is upregulated. They bind to E-boxes in E-cadherins pro-
moter region and prevent its transcription. Suppresion of E-cadherin 
offers more available cytoplasmic β-catenin and induces a self-driven 
positive feedback loop. In conclusion, by losing E-cadherin as an 
adhesion molecule cells undergo EMT (Arend et  al. 2013; Gasior 
et  al. 2017; Gatcliffe et  al. 2008). The three inhibitors (SB216763, 
XAV939 triptolide) used in this study, are shown in their typical 
domain
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putative therapeutic approaches by increasing sensitivity 
to platinum.

Methods

Experiments on cultured cells

Cell culture

The EOC cell line A2780 and its platinum-resistant clone 
A2780cis (European Collection of Authenticated Cell 
Cultures, Salisbury, UK) were cultured in Roswell Park 
Memorial Institute 1640 medium with GlutaMAX (Gibco, 
Gaithersburg, MD, USA) supplemented with 10% fetal 
bovine serum (Biochrom, Berlin, Germany) at 37 °C in 
the presence of 5%  CO2 in cell culture flasks. A2780cis 
cells were treated with 1 µM carboplatin at each change 
of medium to maintain resistance. No antibiotics or anti-
mycotics were used.

Wnt modulators

XAV939 is a small molecule inhibitor of Wnt signaling path-
way. It acts through binding and inhibiting tankyrase’s cata-
lytic poly ADP ribose polymerase (PARP) domain, which 
usually destabilizes axin as part of the destruction complex 
(Chen et al. 2009; Wu et al. 2016) (Fig. 1). Wu et al. showed 
the resensitization to chemotherapy of colon cancer cells 
through XAV939 treatment (Wu et al. 2016). Furthermore, 
in human ovarian cancer cells, this tankyrase inhibitor was 
able to overcome chemoresistance driven through overex-
pression of long non-coding RNA (Li et al. 2016).

SB216763 is an inhibitor of the glycogen synthase kinase 
3β (GSK-3β) and following this, in contrast to XAV939, an 
activator of the Wnt/ β-catenin pathway (Naujok et al. 2014) 
(Fig. 1). Indeed, inhibition of the GSK-3β was also shown to 
inhibit cancer cell proliferation (Cao et al. 2006; Schulz et al. 
2018), maybe attributable to several recent studies describ-
ing the GSK-3β as a tumor promoter besides its typical role 
in Wnt pathway. So far, the serine-threonine kinase has mul-
tiple functions in different regulatory mechanisms or path-
ways and act as a chameleon in cancer’s context (Domoto 
et al. 2016; Patel and Woodgett 2008).

We also included triptolide, a diterpenoid triexpoxide 
with multiple actions in eucaryotes, in our study. Its anti-
neoplastic impact was already shown for different solid 
tumors, for example, breast, bladder, stomach or ovary 
(Shao et al. 2014; Yang et al. 2003). Specific molecular 
mechanisms are still under debate. One is the degradation 
of β-catenin (Fig. 1) as shown in breast cancer cells (Shao 
et al. 2014).

Cell proliferation and viability assay

5 × 103 cells/well (A2780 and A2780cis) were seeded in 
96-well plates overnight and afterwards incubated with 
different concentrations of SB216763 (12.5 µM, 25 µM, 
50 µM, 100 µM) (Sigma-Aldrich, Taufkirchen, Germany), 
XAV939 (6.25  µM, 12.5  µM, 25  µM, 50  µM) (Sigma-
Aldrich) and triptolide (6.25 nM, 12.5 nM, 25 nM, 50 nM) 
(Sigma-Aldrich).

S-phase-dependent synthesis of DNA during the cell 
cycle and, therefore, cellular proliferation was analyzed with 
thymidine analog 5-bromo-2′-deoxyuridine (BrdU) enzyme-
linked immunosorbent assay (ELISA) after 72 h. Cell via-
bility was determined using a 3-(4,5-dimethylthiazol-2-yl)-
2,5-diphenyltetrazolium bromide (MTT) (Sigma-Aldrich) 
colorimetric assay after 48 h and 72 h. The procedures of 
both techniques were already reported by our colleagues 
(Geiger et al. 2016; Zhu et al. 2018).

Controls of untreated cells (for incubation with triptolide), 
cells treated with 2‰ (for incubation with SB216763) and 
5‰ (for incubation with XAV939) dimethyl sulfoxide 
(DMSO) were carried out. For the evaluation the control 
without DMSO was set 100%.

M30 CytoDEATH apoptosis assay

The M30 CytoDeath apoptosis assay is used for determina-
tion of early apoptosis. A specific epitope of cytokeratin 
18, which is presented after cleavage by caspases during 
apoptosis, is detected. OC cells were grown on microscope 
slides to subconfluency, incubated for 48 h in the presence 
of triptolide at different concentrations (6.25 nM, 12.5 nM, 
25 nM, 50 nM and without as control), fixed and stored 
at − 20 °C. After thawing, washing and incubation with 
M30 CytoDEATH antibody (Alexis, San Diego, CA, USA) 
(Table 1) overnight immunocytochemical evaluation using 
ZytoChem-Plus HRP Polymer-Kit (Zytomed Systems, Ber-
lin, Germany) and 3,3′-diaminobenzidine as chromogenic 
substrate (DAB) (Carl Roth, Karlsruhe, Germany) followed. 
Images were captured with a microscope including a digital 
camera system (Leica, Wetzlar, Germany).

Cell death detection ELISA

Cell death was quantified with the sandwich-enzyme-immu-
noassay-method of Cell Death Detection  ELISAPLUS-Kit 
(Roche, Basel, Switzerland) according to the manufacturer’s 
protocol. Following induced cell death, mouse monoclonal 
antibodies bind against cytoplasmic histone-associated 
DNA-fragments (mono- and oligonucleosomes). In brief, 
5 × 104 cells/well were grown overnight in 96-well culture 
plates and then incubated with 6.25 nM, 12.5 nM, 25 nM 
and 50 nM of triptolide for 24 h. Details on the further 
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procedure can be found in Geiger et al. (Geiger et al. 2016). 
The apoptotic index is presented as an enrichment factor, 
which is calculated as absorbance of sample cells divided 
by absorbance of control cells without triptolide (enrichment 
factor = 1.0).

Wound healing assay

The assays were performed according to the protocol in Zhu 
et al. (2018). After the standardized scratching on A2780 
and A2780cis monolayers, we added 100 µM SB216763, 
50 µM XAV939 or 50 nM triptolide. Controls were carried 
out in parallel to cell proliferation and viability assay. After-
wards, cell migration was documented by measuring the 
wounds area after 0 (wound area = 100%), 24, 48 and 72 h.

Immunocytochemistry (ICC) to illustrate ß‑catenin shift

Subcellular localization of ß-catenin while adding Wnt sign-
aling manipulators was investigated by ICC. After A2780 
and A2780cis cells grew on microscope slides to subconflu-
ency, they were incubated with 100 µM SB216763 or 50 µM 
XAV939 for 72 h. The slides were fixed putting them into 
phosphate-buffered saline (Gibco) for 5 min and methanol 
for 5 min, followed by freezing at − 20 °C. Manufactured 
slides were treated with anti-β-catenin IgG (Diagnostic Bio-
Systems, Pleasanton, CA, USA) (Table 1) overnight in a 
moist chamber. Thereafter Vectastain Elite rabbit-IgG-Kit 
(Vector Laboratories, Burlingame, CA, USA) was used to 
detect and visualize ß-catenin by the ABC-method with 
3-amino-9-ethylcarbazole (AEC) as chromogenic substrate. 
Slides were counterstained with hemalaun. The images were 
captured using a microscope including a digital camera sys-
tem (Carl Zeiss, Jena, Germany). Controls of cells treated 
with 2‰ (for incubation with SB216763) and 5‰ (for incu-
bation with XAV939) DMSO were carried out.

Statistical analysis of cell culture experiments

Statistical analysis was performed with GraphPad Prism 8 
(GraphPad Software, La Jolla, CA, USA). Significant dif-
ferences to controls were determined by one-way ANOVA 

followed by Dunnett’s multiple comparisons test or two-way 
ANOVA followed by Sidak’s multiple comparisons test. A 
probability of p < 0.05 was considered significant. The col-
umns in each graph show the mean of relative values in % or 
as an enrichment factor. Therefore, the presentation of error 
bars is not applicable in our study.

Experiments on human tissue samples

Patient cohort and ethics approval

Specimens represent a cohort of 153 patients with EOC 
(serous [n = 109], endometrioid [n = 21], clear cell [n = 11], 
mucinous [n = 12]) who underwent radical cytoreductive 
surgery in our department between 1990 and 2002. Histo-
pathological diagnoses were established by a specialized 
gynecologic pathologist with staging and grading according 
to TNM and FIGO (WHO) classification. 75.2% of patients 
presented with advanced disease (FIGO IIB-IV), while only 
24.8% were diagnosed in early disease (FIGO I-IIA). Except 
for patients in stage FIGO IA with low-grade histology, all 
patients received adjuvant platinum-based chemotherapy. 
Lifetime data (birth, primary OC diagnosis, relapse, death) 
from EOC patients were taken from our patient charts, the 
Munich Cancer Registry and aftercare calendars. Median 
age at primary diagnosis was 59.0 years with a 95% confi-
dence interval (CI) of 57.0–61.0 years. 28 relapses and 101 
deaths were documented. A summary of patient character-
istics can be found in Table 2. Our study has been approved 
by the ethics committee of Ludwig Maximilian University 
of Munich (reference number 138/03) and was carried out 
in compliance with the guidelines of the Helsinki Declara-
tion of 1964 (last revision October 2018). All participants 
gave their written informed consent. Samples and clinical 
information were anonymized for statistical workup.

Tissue microarray (TMA)

Out of representative regions of the paraffin-embedded 
tumor samples biopsies 0.6 mm in diameter were taken and 
arrayed into a recipient paraffin block (30 × 20 × 10mm) 
using a microtissue arrayer (Beecher Instruments, Sun 

Table 1  Antibodies used in 
this study: Stated are only 
antibodies, not part of a 
laboratory kit

Antigen Antibody Dilution Detection system Chro-
mogenic 
substrate

β-catenin Anti-β-catenin (rabbit IgG) 1:600 Vectastain Elite rabbit-IgG-Kit AEC
1:300 ZytoChem-Plus HRP Polymer-Kit DAB

E-cadherin Anti-E-cadherin (mouse IgG) 1:100 ZytoChem-Plus HRP Polymer-Kit DAB
M30 Anti-M30 (mouse IgG) 1:50 ZytoChem-Plus HRP Polymer-Kit DAB
Snail/ slug Anti-snail/ slug (rabbit IgG) 1:800 ZytoChem-Plus HRP Polymer-Kit DAB
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Prairie, WI, USA). Every tumor sample was used for three 
biopsies, resulting in 459 TMAs in total. Afterwards, sec-
tions of 5 µm were prepared and transferred to microscope 
slides. To determine whether there was enough representa-
tive tumor tissue left, a haematoxylin and eosin stain was 
done.

Immunohistochemistry (IHC) for TMAs

IHC was performed using a combination of pressure cooker 
heating and the ZytoChem-Plus HRP Polymer-Kit with 
DAB as chromogenic substrate according to a previous 
publication by our lab (Scholz et al. 2012). The primary 
antibodies in our immunohistochemical staining were anti-
β-catenin IgG, anti-E-cadherin IgG (Merck, Darmstadt, Ger-
many) and anti-snail/ slug IgG (Abcam, Cambridge, UK) 
(Table 1). Evaluation, imaging and storing was done with 
an AxioScope microscope (Carl Zeiss), an AxioCam digital 
camera system (Carl Zeiss) and the AxioVision software 

(Carl Zeiss). Immunohistochemical staining was assessed 
semiquantitatively, according to Remmele and Steger (Rem-
mele and Stegner 1987) using the IHC score (mean ± SEM). 
Expression of Wnt signaling markers was captured in differ-
ent subcellular locations (β-catenin: membrane and plasma, 
snail/ slug: plasma, E-cadherin: membrane and plasma).

Statistical analysis of tissue sample experiments

Mean values of the three representative IHC scores of every 
probe were calculated for further analysis. GraphPad Prism 8 
was used for the comparison of immunoquantitation between 
histological subtypes, FIGO stages and platinum-response 
(< 6 months to primary surgery)/ -sensitive (≥ 6 month to 
primary surgery) with Mann–Whitney-U test (mean ± SEM). 
Furthermore, expression-dependent differences in overall 
survival (OS) (median ± SEM) and progression-free sur-
vival (PFS) (median ± SEM) were tested by chi-square sta-
tistic of the Log-Rank test (Mantel-Cox) in Kaplan–Meier 

Table 2  Patient characteristics: shown are the categorization for histological subtype, grading and FIGO stage of the specimens from the cohort 
of 153 patients with EOC and a summary of their according lifetime data

Histology and stage

Category n %

Subtype and grading Serous Low-grade 24 15.7
High-grade 80 52.3
Not classified 5 3.3
Total 109 71.3

Endometrioid G1 6 3.9
G2 5 3.3
G3 8 5.2
Not classified 2 1.3
Total 21 13.7

Clear cell G3 9 5.9
Not classified 2 1.3
Total 11 7.2

Mucinous G1 6 3.9
G2 6 3.9
G3 0 0.0
Not classified 0 0.0
Total 12 7.8

FIGO I 35 22.9
II 12 7.8
III 103 67.3
IV 3 2.0

Lifetime data

Median (years) 95% CI (years)

Age at diagnosis 59.0 56.0–60.0
OS 3.6 2.0–5.3
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curves with SPSS Statistics 25 (IBM, Chicago, IL, USA). 
P-values < 0.05 were considered to be statistically significant 
for further analyses.

Results

In vitro experiments with cultured cell lines

Activated Wnt signaling in platinum‑resistant EOC cells can 
be reversed by Wnt manipulators

ICC of ß-catenin was performed to indicate activation of the 
canonical Wnt pathway according to its nuclear localization. 
A significant (p < 0.05 or p < 0.001) shift from ß-catenin 
staining from the nucleus to the membrane was noted fol-
lowing SB216763 (100 µM) and XAV939 (50 µM) treat-
ment in comparison to controls for both cell lines A2780 

and A2780cis. The biggest impact presented XAV939 treat-
ment in A2780cis, where the cell proportion with nuclear 
ß-catenin localization decreased from 99.1% (control with 
5‰ DMSO) to 25.2% (p < 0.001) (Fig. 2).

Wnt manipulators and their effect on proliferation

To evaluate the effect on proliferation of EOC cell lines 
following treatment with Wnt manipulators, BrdU assay 
was carried out. Since the inhibition of cell proliferation 
showed a dose-dependent positive correlation for triptolide 
but not for SB216763 or XAV939 (Supp. 1a), we compared 
the highest concentrations of each inhibitor against its con-
trol. Controls for triptolide without DMSO were set 100.0%. 
After 72  h, triptolide (50  nM) displayed a significant 
(p < 0.001) impairment of proliferation in A2780 (17.1%) 
and A2780cis (8.9%). While XAV939 (50 µM) showed 
no influence in both cell lines, SB216763 (100 µM) also 

Fig. 2  ß-catenin shift after treatment with different Wnt signaling 
manipulators in A2780 and A2780cis: a In A2780 and A2780cis the 
proportion of cells with nuclear localization of ß-catenin was signifi-
cantly decreased through the addition of 100 µM SB216763 or 50 µM 
XAV939 compared to controls (n = 3 per column, mean, *p < 0.05/ 
***p < 0.001 by Sidak’s multiple comparisons test). b Representative 

images of A2780 and A2780cis after treatment with 50 µM XAV939 
compared to controls with 5‰ DMSO. ß-catenin is red-colored. 
While in controls ß-catenin is mainly localized in the nucleus, addi-
tion of the Wnt inhibitor XAV939 leads to a shift towards the cell 
membrane
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significantly (p < 0.05) inhibited proliferation in A2780cis 
(84.5%) (Fig. 3a).

Impaired cell viability by Wnt manipulators

Cell viability was examined with the MTT assay. In accord-
ance with the BrdU assay, a dose dependence for the con-
centrations tested, was found only for triptolide (Supp. 1b). 
But in contrast to cell proliferation assay, metabolic activ-
ity decreased for all three inhibitors in platinum-sensitive 
(SB216763: 72.0%, XAV939: 65.2%, triptolide: 4.7%) 
and -resistant cells (SB216763: 61.2%, XAV939: 57.3%, 
triptolide: 6.4%) in MTT assay. Except for SB216763 and 
XAV939 in A2780cis, these findings were highly signifi-
cant (p < 0.01 or p < 0.001) at the selected concentrations of 
100 µM SB216763, 50 µM XAV939 and 50 nM triptolide 

(Fig.  3b). While triptolide already led to significantly 
reduced metabolic activity after 48 h, this effect was seen 
for the other agents not before 72 h.

Enhanced apoptosis by triptolide in a dose‑dependent 
manner

To determine a Wnt inhibition induced early apoptosis, trip-
tolide was chosen for M30 CytoDEATH apoptosis assay due 
to its strong impact in the previous experiments. Following 
48 h of treatment with 6.25 nM, 12.5 nM, 25 nM or 50 nM 
triptolide, the percentage of apoptotic cells (M30 CytoDE-
ATH positive) increased significantly (p < 0.01 or p < 0.001) 
in a dose-dependent manner up to 95.4% for A2780 and to 
53.1% for A2780cis, respectively. Controls with 0‰ DMSO 
showed 100.0% M30 CytoDEATH negative cells (Fig. 4a).

Fig. 3  BrdU cell proliferation and MTT cell viability assay for differ-
ent Wnt signaling manipulators (100 µM SB216763, 50 µM XAV939, 
50 nM triptolide) in A2780 and A2780cis after 72 h: a In the BrdU 
assay only triptolide displayed a significant impairment of prolifera-
tion in A2780 and A2780cis, whereas SB216763 revealed a signifi-
cant reduction of cell proliferation in A2780cis and XAV939 showed 
no influence (n = 9 per column, mean, *p < 0.05/ ***p < 0.001 by 

Dunnett’s multiple comparisons test, controls with 0‰ DMSO were 
set 100%). b In the MTT assay all three inhibitors in platinum-sensi-
tive and -resistant cells reduced metabolic activity with different lev-
els of significance (n = 9 per column, mean, **p < 0.01/ ***p < 0.001 
by Dunnett’s multiple comparisons test, controls with 0‰ DMSO 
were set 100%)
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Fig. 4  CytoDEATH apoptosis 
assay after 48 h and Cell death 
detection ELISA after 24 h for 
different triptolide concentra-
tions in A2780 and A2780cis: 
a Apoptosis of cell lines A2780 
and A2780cis was enhanced by 
triptolide in a dose-dependent 
manner. The percental rate of 
apoptic cells (M30 CytoDE-
ATH positive) significantly 
increased in both cell lines 
with rising concentrations. 
Meanwhile, M30 CytoDEATH 
negative cells rapidly decreased 
(n = 3 per column, mean, 
**p < 0.01/ ***p < 0.001 by 
Dunnett’s multiple comparisons 
test). According to documented 
concentrations representative 
microphotographs of EOC cells 
with an apoptic cell propor-
tion in intense brown after 
DAB treatment are added. b 
Incubation for 24 h with dif-
ferent triptolide concentrations 
revealed a dose-dependent rise 
of absorbance up to a maxi-
mum at 50 nM, which confirms 
enhancement of apoptosis by 
triptolide (n = 6 per column, 
mean, ***p < 0.001 by Dun-
nett’s multiple comparisons test, 
controls without DMSO were 
set 1)
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Moreover, histone-associated DNA-fragments, produced 
as a result of apoptosis, were quantified using a cell death 
detection ELISA. Incubation for 24 h with identical trip-
tolide concentrations showed a highly significant (p < 0.001) 
dose-dependent rise of absorbance up to 8.9-times in A2780 
and 2.7-times in A2780cis at 50 nM (Fig. 4b), confirming 
apoptosis’ dose-dependence from triptolide in both cell 
lines.

Cell migration is inhibited by SB216763 and triptolide

Migration capacity of OC cells was monitored within vitro 
wound healing assays with 100  µM SB216763, 50  µM 
XAV939 or 50 nM triptolide. In A2780, SB216763 and 
triptolide led to a significant reduction in wound healing 
after 48 and 72 h (p < 0.01 or p < 0.001) (Fig. 5a). After 
72 h, the remaining wound area for SB216763 was 95.9% 
(Fig. 5b) and 59.5% confluent for triptolide compared to 
0.0% in both controls. Treatment with XAV939 whereas did 
not affect migration ability in A2780 and A2780cis. In the 
platinum-resistant cell line, we saw the identical but slightly 
lower impact of SB216763 (Fig. 5b) and triptolide. Follow-
ing treatment with 50 nM triptolide after 72 h the remain-
ing wound area was 37.8% compared to 3.3% in the control 
(Fig. 5a).

Results on human tissue samples

Markers for Wnt signaling with different expression 
patterns in serous compared to other subtypes

To understand the role of Wnt pathway in the clinical 
context, immunoquantitative comparisons of Wnt sign-
aling markers among four histological subtypes (serous, 
endometrioid, clear cell, mucinous) were performed. IHC 
score revealed multiple significant expression differences 
especially of serous histology compared to other subtypes 
(Table 3). Membranous and plasmatic ß-catenin expression 
was significantly higher (p < 0.001) in endometrioid (mem-
brane: 10.2 ± 0.4, plasma: 10.0 ± 0.4), clear cell (membrane: 
10.1 ± 0.5, plasma: 10.2 ± 0.4) and mucinous (membrane: 
11.2 ± 0.4, plasma: 10.4 ± 0.8) type compared to serous 
(membrane: 7.6 ± 0.2, plasma: 6.4 ± 0.2) histology. Moreo-
ver, in comparison to serous subtype, expression of plas-
matic snail/ slug (8.8 ± 0.2) and membranous E-cadherin 
(7.6 ± 0.3) was significantly lower in endometrioid (snail/ 
slug: 7.2 ± 0.5 [p < 0.05], E-cadherin: 4.7 ± 0.9 [p < 0.001]) 
and clear cell (snail/ slug: 5.4 ± 0.5 [p < 0.001], E-cadherin: 
5.0 ± 1.0 [p < 0.05]) histology. Representative stainings are 
displayed in Fig. 7b.

Fig. 5  Wound healing assay for different Wnt signaling manipulators 
in A2780 and A2780cis: a Cell migration in A2780 and A2780cis 
was significantly reduced through the addition of 100 µM SB216763 
or 50 nM triptolide after 48 and 72 h compared to controls. Treatment 
with XAV939 did not affect migration ability at all (n = 3 per column, 
mean, *p < 0.05/ **p < 0.01/ ***p < 0.001 by Sidak’s multiple com-

parisons test, wound area after 0 h was set 100%). b Representative 
images of the wound area in A2780 and A2780cis 72  h after treat-
ment with 100 µM SB216763 compared to controls with 2‰ DMSO. 
While controls showed a confluent monolayer of cells, in SB216763 
treated cells a remaining wound area is visible
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ß‑catenin and E‑cadherin show significant expression 
differences with regard to FIGO stage

Comparing expression of Wnt markers with regard to FIGO 
stage, significantly higher expression of ß-catenin (mem-
brane) (9.2 ± 0.4 to 7.9 ± 0.2 [p < 0.01]), ß-catenin (plasma) 
(8.8 ± 0.4 to 6.7 ± 0.3 [p < 0.001]) and E-cadherin (plasma) 
(7.7 ± 0.5 to 6.8 ± 0.3 [p < 0.05]) were noted for FIGO stage 
I-II compared to FIGO stage III-IV (Fig. 6).

No significant expression differences were identified for 
Wnt markers in platinum-resistant compared to platinum-
sensitive patients (data not shown).

Higher plasmatic snail/ slug expression is associated 
with significantly longer PFS in serous OC

Prognostic impact of Wnt pathway markers on OS and PFS 
were tested for the whole cohort and for each subtype. For 
serous subtype, a significantly longer PFS was noted for 

higher plasmatic expression of snail/ slug (plasma) expres-
sion with a cut-off IHC score of seven or beneath (33.6 ± 4.8 
to 15.6 ± 2.4 months [p = 0.001]). A similar trend was noted 
for OS, although this difference did not reach statistical 
significance (50.4 ± 13.2 to 27.6 ± 3.6 months [p = 0.058]) 
(Fig. 7).

Discussion

Development of platinum-resistance is one of the major 
challenges in the clinical management of EOC. Despite 
recent advances with the inclusion of targeted therapies 
to standard treatment as the anti-angiogenic bevacizumab 
(Burger et al. 2011; Perren et al. 2011) or PARP inhibitors 
(Coleman et al. 2017; Ledermann et al. 2012, 2014; Mirza 
et al. 2016; Pujade-Lauraine et al. 2017), no real improve-
ments to overcome resistance to platinum in the clinical 
course have been achieved so far. Since different studies 

Table 3  Comparison of IHC 
scores of Wnt signaling 
markers between histological 
subtypes: IHC scores in TMAs 
for β-catenin, snail/ slug 
and E-cadherin in different 
subcellular locations were 
compared between four different 
types of EOC (serous [n = 109], 
endometrioid [n = 21], clear cell 
[n = 11], mucinous [n = 12])

Analysis revealed significant (mean ± SEM, *p < 0.05/ ***p < 0.001 by Mann–Whitney-U test) and non-
significant results (n.s.)

Serous vs.  endometrioid Serous vs.  clear cell Serous vs.  mucinous

β-Catenin (membrane) 7.6 ± 0.2 10.2 ± 0.4 7.6 ± 0.2 10.1 ± 0.5 7.6 ± 0.2 11.2 ± 0.4
< *** < *** < *** < *** < *** < ***

β-Catenin (plasma) 6.4 ± 0.2 10.0 ± 0.4 6.4 ± 0.2 10.2 ± 0.4 6.4 ± 0.2 10.4 ± 0.8
 < ***  < ***  < *** < *** < *** < ***

snail/ slug (plasma) 8.8 ± 0.2 7.2 ± 0.5 8.8 ± 0.2 5.4 ± 0.5 8.8 ± 0.2 6.9 ± 1.1
 > *  > * > *** > *** n.s n.s

E-Cadherin (membrane) 7.6 ± 0.3 4.7 ± 0.9 7.6 ± 0.3 5.0 ± 1.0 7.6 ± 0.3 7.4 ± 1.1
 > ***  > *** > *  > * n.s n.s

E-Cadherin (plasma) 7.4 ± 0.2 8.0 ± 0.7 7.4 ± 0.2 5.4 ± 0.9 7.4 ± 0.2 8.5 ± 0.9
n.s n.s > * > * n.s n.s

Fig. 6  Comparison of IHC 
scores of Wnt signaling markers 
dependent on FIGO stages: 
Analyzing expression of Wnt 
signaling markers dependent on 
FIGO stages (n = 153) revealed 
significant differences for 
β-catenin and E-cadherin in two 
different locations (membrane 
and plasma) (mean ± SEM, 
*p < 0.05/ **p < 0.01/ 
***p < 0.001 by Mann–Whit-
ney-U test)
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suggest that manipulation of the Wnt pathway may have an 
impact on tumor progression (Barghout et al. 2015; Boone 
et al. 2016; Cao et al. 2006; Li et al. 2016; Nagaraj et al. 
2015; Rivard et al. 2014; Westfall et al. 2008), we identified 
three molecules as promising examples for manipulators of 

the Wnt pathway to investigate the opportunity of resensiti-
zation of EOC cells to platinum.

During application of SB216763, XAV939 and triptolide 
to EOC cell lines A2780 and A2780cis in functional tests 
in vitro, only triptolide exhibited a continuous effect on cell 

Fig. 7  PFS depending on 
plasmatic snail/ slug IHC scores 
in serous EOC and repre-
sentative microphotographies: 
a The Kaplan–Meier curves 
demonstrate PFS and OS as a 
function of plasmatic snail/ slug 
expression in serous OC cases. 
Green lines (IHC score > 7, 
PFS = 33.6 ± 4.8 months, 
OS = 50.4 ± 13.2 months) show 
a significant benefit in PFS 
and a trend in OS compared 
to the red line (IHC score ≤ 7, 
PFS = 15.6 ± 2.4 months, 
OS = 27.6 ± 3.6 months) 
(median ± SEM, p = 0.001/ 
p = 0.058 by chi-square statistic 
of the Log-Rank test [Mantel-
Cox]). b Plasmatic snail/ slug 
accumulation in serous subtype 
is marked in brown after DAB 
treatment. While the left micro-
photography shows a higher 
expression (IHC score > 7), on 
the right photography a lower 
expression (IHC score ≤ 7) is 
shown
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biology with a significant reduction of cell proliferation and 
cell viability as well as induction of apoptosis. Our results 
confirm the existing in vitro and in vivo studies in OC cells 
(Rivard et al. 2014; Westfall et al. 2008): triptolide is able to 
reduce ovarian tumor cell progress applied as a single agent 
or compared with carboplatin. But in contrast to earlier stud-
ies, we directly used triptolide but no prodrug.

The inhibitor of canonical Wnt signaling XAV939 led to 
significantly impaired cell viability matching with a study 
from Li et al., in which the importance of long non-coding 
RNA HOTAIR for Wnt signaling driven chemoresistence 
of OC cells was demonstrated and XAV939 was able to 
partially block this effect (Li et al. 2016). Furthermore, in 
colorectal cancer cells XAV939 significantly increased the 
apoptotic cell fraction alone or in combination with 5-fluo-
rouracil and cisplatin (Wu et al. 2016). Indeed, experiments 
on XAV939′s direct impact on both platinum-resistant and 
-sensitive EOC cells were missing by now, as well as for 
SB216763.

Interestingly, treatment with this GSK-3β inhibitor and 
thus Wnt activator presented similar results as for XAV939 
treatment. In addition, SB216763 treatment resulted in a 
significant reduction of cell proliferation in A2780cis. Our 
results are consistent with the work of Cao et al. and Schulz 
et al., who detected GSK-3β as a driving force in tumor cell 
progression in EOC (Cao et al. 2006) and squamous cell 
carcinomas of the head and neck (Schulz et al. 2018). These 
results confirm that GSK-3β necessarily influences func-
tional tests on EOC cells via other pathways besides Wnt, 
like a NF-κB-dependent pathway (Ougolkov et al. 2005) 
or a modulation by the tumor microenvironment (Fridman 
et al. 2014; Giraldo et al. 2019). Furthermore, the diversity 
of Wnt’s target gene panel (Arend et al. 2013; Talbot et al. 
2012) also offers options for inhibitory functions of Wnt in 
tumor progression.

Another finding of this study was the ability of all 
three drugs tested, to inhibit cell migration. Significance 
was seen for triptolide in both cell lines as well as for 
SB216763 in A2780. Epithelial-mesenchymal transition 
(EMT) is a key mechanism in cell migration and Wnt 
signaling is one of EMT’s major pathways (Talbot et al. 
2012). In OC, the inhibition of EMT by treatment with 
a Wnt repressor (salinomycin) has been proved already 
(Li et al. 2017), but to our knowledge this is the first data 
set on a platinum-resistant cell line. Concordant with the 
putative bipolarity of GSK-3β in tumor biology, results on 
the transcriptional profile of various EMT related genes in 
response to SB216763 were summarized as a dysregulated 
EMT without any clear direction by the authors of this 
study (Schulz et al. 2018).

Summarizing the functional tests mentioned above 
SB216763, XAV939 and triptolide effect both platinum-sen-
sitive and -resistant cells. The results provide the opportunity 

to potentiate the impact of a platinum-based chemotherapy 
but were not able to show a fully resensitization of EOC 
cells to carboplatin. This confirms findings on other Wnt 
inhibitors in OC (Barghout et al. 2015; Boone et al. 2016; 
Nagaraj et al. 2015; Rivard et al. 2014; Westfall et al. 2008) 
and opens promising perspectives for clinical management 
of platinum-resistant patients.

Of course, varieties in significance levels throughout 
the functional tests are a limitation of this study and most 
likely caused by relatively small sample sizes. Nevertheless, 
this was not the primary aim of our work and needs further 
examinations. Moreover, the cell line A2780 mainly repre-
sents features of the endometrioid subtype (Anglesio et al. 
2013; Köbel et al. 2008) and is thus not able to act as a reli-
able model for all histological subtypes of EOC. However, 
especially in OC research it is a well-established cell model, 
representing the typical contrast of platinum-resistant and 
-sensible cells.

To improve the understanding of Wnt signaling’s diverse 
role in OC progress, we aimed to detect the localization of 
β-catenin (membrane versus nucleus) after SB216763 or 
XAV939 treatment in both cell lines. In parallel to the func-
tional tests, both drugs led to an immunohistochemical shift 
of β-catenin from the nucleus (Wnt signaling activated) to 
the membrane (Wnt signaling inactivated), which finally 
contrasts the general role of SB216763 as an activator of 
the pathway (Naujok et al. 2014). Our results are in line 
with a diverse role of GSK-3β in cancer’s context (Patel and 
Woodgett 2008) and may support a general dysregulation 
of Wnt and EMT in some cancers (Schulz et al. 2018). Cer-
tainly, the phosphorylation pattern is one approach to explain 
this bipolarity. In general, the kinase is inactivated through 
phosphorylation at serine residue nine (GSK-3β[pS9]) or 
activated through phosphorylation at tyrosine residue 216 
(GSK-3β[pY216]) (Domoto et al. 2016; Fang et al. 2002). 
Paradoxically, a completely deregulated activity of GSK-3β 
according to modifications in the differential phosphoryla-
tion of S9 and Y216 residues was seen in gastrointestinal 
cancers (Mai et al. 2009) and glioblastoma (Miyashita et al. 
2009) compared to "healthy" cells. The present results sup-
port this thesis in OC for the first time.

To correlate the in vivo examinations with the impact of 
Wnt marker proteins on the clinical course of OC, a homog-
enously treated cohort of formalin-fixed paraffin-embedded 
tissue from EOC patients was examined. In a comparison 
between the histologic subtypes, the serous subtype is usu-
ally thought to have the highest activity of Wnt signaling 
(Lee et al. 2003), as it is dominated by the high-grade carci-
nomas with their poor prognosis (Jayson et al. 2014; Köbel 
et al. 2008). Our study supports this observation, since the 
small fraction of extranuclear β-catenin in serous subtype 
compared to the others as well as in FIGO stage III-IV com-
pared to FIGO stage I-II.
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E-cadherin, a molecule mediating cell–cell adhesion, 
is usually regarded as an invasion suppressor. However, 
especially EOC cells additionally undergo a mesenchy-
mal-epithelial transition. Thus, in contrast to other cancers 
(Berx and van Roy 2009), E-cadherin is mostly elevated. 
The higher E-cadherin expression in lower stages could be 
confirmed as previously described (Arend et al. 2013; Bod-
nar et al. 2014), but we detected a significant difference in 
E-cadherin expression between the different subtypes.

Snail/ slug is a transcription factor, localized in the 
plasma of the cell when Wnt signaling is inactivated (Kim 
et al. 2012). Interestingly, it is the only Wnt marker tested 
with a clear correlation to PFS or OS: in our study an ele-
vated expression of snail/ slug in the serous subtype is sig-
nificantly associated with longer PFS and shows a positive 
trend for OS. The transcription factor snail/ slug is well-
known for its tumor-promoting influence as a driver in EMT. 
Induced autophagy of this protein led to control of EMT 
and metastasis in a HeLa cell model (Zada et al. 2019) and 
knockdown of it suppresses ovarian tumor growth (Baldwin 
et al. 2014). In lung carcinoma cells this positive influence 
on tumor progress was clearly correlated to translocation 
into the nucleus (Perumal et al. 2019). Since current scien-
tific data for snail/ slug’s role are homogenous among each 
other and with our results, inhibition of snail/ slug or at least 
persistent shift towards plasma might be a promising base 
for prognostic approaches in the future.

Conclusion

Functional tests investigating the impact of the Wnt manipu-
lators SB216763, XAV939 and triptolide on the OC cell 
lines A2780 and A2780cis detected significant effects on 
both platinum-sensitive and -resistant cells. With this, all 
three manipulators provide the opportunity to emphasize the 
impact of a platinum-based chemotherapy. While specific 
results of the substances were heterogenous, the inhibitory 
impact of triptolide itself on OC tumor progression and 
its promoting impact on apoptosis has to be highlighted. 
Repression of EMT markers by Wnt inhibition was shown 
for the first time in the context of platinum-resistant OC 
cell lines. Our analysis on the existing EOC patient cohort 
confirmed a potential role of the Wnt pathway in serous OC 
cases, which is of note as it is the most common histologi-
cal subgroup of OC. Together with the different expression 
levels of β-catenin and E-cadherin between FIGO stages and 
the impact of the expression levels for snail/ slug on progno-
sis, this study enables perspectives for clinical management 
of platinum-resistant patients through manipulation of the 
Wnt/ β-catenin pathway.
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