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Introduction
Thyroid hormones have a central role in cardio-
vascular system development and homeostasis. 
Both hypothyroidism and hyperthyroidism are 
associated with characteristic cardiovascular 
changes and even subclinical dysfunction is 
known to increase cardiovascular risk.1

Heart failure (HF) is the final stage of several car-
diovascular conditions, affecting over 23 million 
people worldwide.2 HF can be divided into two 
major entities according to the ejection fraction 
(EF): HF with reduced EF (HFrEF) and HF 
with preserved EF (HFpEF). The latter is 

responsible for over 50% of all cases. Like HFrEF, 
HFpEF is associated with decreased functional 
capacity, decreased quality of life, and high mor-
tality. However, the pathophysiology of HFpEF is 
less well understood and there is as yet no proven 
therapy to improve its prognosis. Although its 
core feature was long held to be diastolic dysfunc-
tion, systemic disturbances that jeopardize cardi-
ovascular reserve may also constitute essential 
pathophysiological mechanisms.3

In this review, we discuss the cardiovascular 
effects of thyroid hormones, the pathophysiology 
of HFpEF, the prognostic impact of thyroid 
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function, and the potential of thyroid hormones 
for treatment of HFpEF.

Cardiovascular effects of thyroid hormones
Thyroid hormones modulate the cardiovascular 
system by genomic and non-genomic mecha-
nisms.4 The thyroid gland produces thyroxine 
(T4) hormone in greater quantity than triiodo-
thyronine (T3), at a ratio of 10:1. T3 is biologi-
cally more active than T4 and is considered the 
active form of thyroid hormones.5 The primary 
mechanism of action of T3 is the interaction with 
thyroid hormone receptors (TR) – a process that 
can either enhance or repress the transcription of 
specific target genes.4 There are two TR genes 
(TRα and TRβ) with specific patterns of expres-
sion in different tissues. Both genes produce dif-
ferent isoforms as a result of alternative splicing.6 
TRα1 is expressed predominantly in brain and 
heart. TRβ1 is expressed in liver, kidney, and 
skeletal muscles, and, at lower levels, in most tis-
sues including the heart. On the other hand, 
TRβ2 is expressed predominantly in brain, pitui-
tary gland, retina, and inner ear, and appears to 
be important for regulating the negative-feedback 
loop of the hypothalamus-pituitary-thyroid 
axis.4,6 About 80% of the circulating T3 is pro-
duced in peripheral tissues by conversion of T4. 
This conversion is mediated by tissue deiodi-
nases. Type 1 and type 2 deiodinases (D1 and 2, 
respectively) mainly convert T4 into T3, while 
type 3 deiodinase (D3) converts T4 and T3 into 
the functionally inactive reverse T3 (rT3) and 
3,3-diiodothyronine (T2), respectively.7,8 D3 has 
higher affinity in inactivating T3 and plays a criti-
cal role in regulating T3 availability.9 Deiodinases 
regulate both serum and intracellular tissue levels 
of thyroid hormones. Several conditions, includ-
ing chronic inflammation, neoplastic diseases, 
chronic kidney disease, myocardial ischemia, and 
HF, alter the pattern of deiodinase activity, 
increasing the conversion of T4 into rT3 and 
decreasing the availability of T3.8,10,11–13 T3 
improves systolic and diastolic myocardial func-
tion and increases heart rate. Thyroid hormones 
enhance the expression of genes encoding sarco/
endoplasmic reticulum calcium-ATPase 
(SERCA2a), fast α-isoform of myosin heavy 
chain (α-MHC), Na+/K+ ATPase, and voltage-
gated K+ channels (Kv1.5 and Kv4.2), and neg-
atively regulates the transcription of 
phospholamban (PLN) and slow β-isoformof 
myosin heavy chain (β-MHC).14 Both myosin 

heavy chains are components of the cardiac con-
tractile apparatus, and this change in expression 
pattern results in an increased velocity of contrac-
tion.15 The increase of SERCA2a and the inhibi-
tion of PLN increase the calcium available for 
systolic contraction, and improve the reuptake of 
calcium into the sarcoplasmic reticulum during 
relaxation of the heart.15 Efficient kinetics of cal-
cium is indispensable for energetically optimal 
cardiac myocyte relaxation and contraction. 
Furthermore, thyroid hormones increase the gene 
expression of the β-adrenergic receptors, enhanc-
ing the response to catecholamines, which act in 
synergy with thyroid hormones.16 Thyroid hor-
mones also protect the heart from ischemic lesion 
by decreasing coronary resistance, reducing the 
activation of the pro-apoptotic p38 MAPK sign-
aling pathway and increasing the activity of myo-
cardial PKCδ and the expression of heat shock 
proteins 27 and 70.17 In addition, thyroid hor-
mones stimulate cell growth and neo-angiogene-
sis, and decrease cardiac fibrosis by enhancing 
metalloproteinase and antifibrotic effects.17

The effects of thyroid hormones on the vascula-
ture include genomic and non-genomic mecha-
nisms. Non-genomic effects include ion channel 
modulation and regulation of specific transduc-
tion pathways. In vessels, thyroid hormones acti-
vate phosphatidylinositol 3-kinase (PI3K)/serine/
threonine-protein kinase (AKT) signaling path-
ways enhancing nitric oxide production by 
endothelial cells and activate non-genomic path-
ways that induce smooth muscle relaxation, 
thereby decreasing vascular resistance and left 
ventricular (LV) afterload.18 The decrease in sys-
temic vascular resistance, coupled with the ino-
tropic effects, leads to an increase in cardiac 
output.19

Thyroid hormones also have favorable effects on 
plasma lipid profile, which may decrease the risk 
of atherosclerosis development and progression.1 
This beneficial effect on the lipid profile is due to 
the increase of sterol regulatory element-binding 
protein-2 (SREBP-2), which regulates the expres-
sion of the LDL receptors.20

Cardiovascular manifestations in thyroid 
dysfunction
Given the known effects of thyroid hormones on 
the cardiovascular system, the association of thy-
roid dysfunction with cardiovascular changes has 
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been evaluated by many studies. These associa-
tions are better established in overt thyroid dys-
function than in subclinical dysfunction. Table 1 
summarizes the cardiovascular changes in thyroid 
dysfunction.

Subclinical hypothyroidism is defined as elevated 
TSH with normal levels of free T4. The results of 
studies evaluating the effects of subclinical hypo-
thyroidism on the cardiovascular system are 
inconsistent. Some, but not all, have shown 
increased all-cause and cardiovascular mortality, 
higher risk of coronary heart disease and HF.21–24 
Most studies suggest that the risk of adverse cardio-
vascular outcomes is higher when TSH ⩾ 10 mlU/l.22 
In the Penn Heart Failure Study, a prospective 
cohort of patients with HFrEF and HFpEF, 
TSH ⩾ 7 mlU/l was associated with an increased 
risk of a composite end point of ventricular assist 
device placement, heart transplantation, or death 
in patients.25 Subclinical hypothyroidism has 
been associated with impaired systolic and dias-
tolic cardiac function, increased carotid artery 
intima-media thickness, vascular dysfunction, 
and higher blood pressure.26–28 On the contrary, 
subclinical hypothyroidism may be associated 
with a lower risk of atrial fibrillation.29

Overt hypothyroidism is defined as high TSH 
with low free T4.1 In most studies, it has been 
associated with increased risk of HF, coronary 
artery disease, and all-cause and cardiovascular 
mortality.30,31 Overt hypothyroidism is associated 
with decreased cardiac output and contractility, 
lower heart rate, and higher systemic vascular 
resistance.30 Diastolic dysfunction is a character-
istic feature in most studies.32,33 Cardiovascular 
risk factors are amplified in patients with overt 
hypothyroidism, particularly diastolic hyperten-
sion and dyslipidemia. Most studies have also 
shown increased carotid artery intima-media 
thickness in overt hypothyroidism.34,35

Subclinical hyperthyroidism is defined by low 
TSH with normal free T4.1 It has been associated 
with a higher risk of cardiovascular disease, 
including coronary events, HF, and atrial fibril-
lation.36,37 Some studies showed an increased 
risk of all-cause and cardiovascular mortality in 
patients with subclinical hyperthyroidism, but 
others have shown no association.36,38–40 The 
strongest association of subclinical hyperthy-
roidism appears to be with atrial fibrillation. 
However, some studies suggest that this associa-
tion may only be seen when TSH < 0.1 mIU/l.36,40 

Table 1. Cardiovascular changes, comorbidities and mortality in thyroid dysfunction.

Overt 
hypothyroidism

Subclinical 
hypothyroidism

Subclinical 
hyperthyroidism

Overt 
hyperthyroidism

Systolic dysfunction ↑↑ ↑ ↓/↑ ↓/↑

Diastolic dysfunction ↑↑ ↑↑ ↓/↑ ↓/↑

Heart rate ↓↓ ↓ ↑ ↑↑

Hypertension ↑ (diastolic) ↑ (diastolic) ↑ (systolic) ↑ (systolic)

Dyslipidemia ↑↑ ↑ ↓ ↓

Heart failure ↑↑ ↑ –/↑ ↑↑

Coronary artery disease ↑↑ ↑ –/↑ –/↑

Atrial fibrillation –/↓ –/↓ ↑ ↑↑

Atherosclerosis ↑↑ ↑ –/↑ –/↑

Pulmonary hypertension – – – ↑

Cardiovascular mortality ↑ –/↑ –/↑ ↑

All-cause mortality ↑ –/↑ –/↑ ↑

↑↑: markedly increased; ↑: increased; –/↑: possibly increased; –: no effect; –/↓: possibly decreased; ↓/↑: possibly decreased or increased; ↓: 
decreased; ↓↓: markedly decreased. See text for details.
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Subclinical hyperthyroidism is also associated 
with a higher heart rate, higher frequency of pre-
mature atrial, and ventricular beats and ventricu-
lar hypertrophy,41,42 although the latter is not seen 
in all studies.43,44 Interestingly, as seen in subclin-
ical hypothyroidism, subclinical hyperthyroidism 
is also associated with increased carotid artery 
intima-media thickness.45 Regarding cardiac 
function, the possible association of subclinical 
hyperthyroidism with systolic and diastolic dys-
function is yet to be clarified, as there is evidence 
both for and against it.41,46

Overt hyperthyroidism is defined as low TSH with 
high free T4. It is associated with a hyperdynamic 
state, characterized by tachycardia, increased car-
diac preload and contractility, and diminished sys-
temic vascular resistance. In the short term, it may 
improve cardiovascular function, improving both 
systolic function and left ventricular relaxation. 
However, when sustained, it may induce high-
output HF, even in the absence of underlying 
heart disease.47 Furthermore, overt hyperthyroid-
ism is also strongly associated with atrial fibrilla-
tion.48 Overt hyperthyroidism has also been 
associated with pulmonary hypertension.49 
Finally, untreated overt hyperthyroidism has con-
sistently been associated with a higher risk of 
adverse cardiovascular events, as well as a higher 
risk of cardiovascular and all-cause mortality.21,50

Modulation of diastolic function by thyroid 
hormones
Low thyroid hormone levels are associated with 
both systolic and diastolic dysfunction. However, 
both basic and clinical studies highlight that in 
hypothyroidism the diastolic abnormalities pre-
dominate.51 In a study of patients with subclini-
cal hypothyroidism and matched controls, 
patients with subclinical hypothyroidism showed 
significant prolongation of the isovolumic relaxa-
tion time, increased A wave, and reduced E/A 
ratio (early to late ventricular filling velocities 
ratio).27 Furthermore, in a subgroup of patients 
that were reevaluated after thyroid hormone pro-
file normalization, diastolic abnormalities were 
reversed and comparable with controls.27 
Interestingly, the alterations in cardiac gene 
expression in HF is similar to the alterations 
observed in hypothyroidism.52

Thyroid hormones also enhance relaxation through 
improving bioenergetics. Treating subclinical  

hypothyroidism with levothyroxine improves car-
diac phosphocreatine to ATP ratio,53 which 
may be related to the effects of thyroid hor-
mones in cardiac mitochondrial function, 
including stimulation of cardiac mitochondrial 
biogenesis and improvement in oxidative phos-
phorylation. Moreover, vascular effects of thyroid 
hormones may contribute to enhance diastolic 
function as well.3 Experimental data also suggest 
that it may decrease myocardial stiffness as a rat 
model of propylthiouracil-induced hypothyroid-
ism showed increased LV stiffness due to 
increased collagen deposition, despite overex-
pression of the larger and more compliant (N2BA) 
isoform of titin.54 Nevertheless, the effects on titin 
are not settled. Although thyroid hormones pro-
mote an increase in N2B/N2BA isoform ratio, it 
is possible that a higher titin phosphorylation 
mediated by PKG (secondary to improved 
endothelial function) and PKA (increased sensi-
tivity to β-adrenergic stimulation) may outweigh 
the isoform shift effects on titin passive tension.

Pathophysiology of HFpEF
HFpEF is a clinical syndrome consisting of symp-
toms and signs of HF that cannot be attributed to 
other causes, despite normal LV EF on echocar-
diographic evaluation. From a pathophysiological 
point of view, it is characterized by diastolic dys-
function with abnormal relaxation and/or 
increased passive stiffness that manifests as pro-
longed isometric relaxation, slow left ventricle fill-
ing and increased diastolic stiffness.3,55 The 
myocardial stiffening in HFpEF can be ascribed 
to the giant cytoskeletal protein titin at physiolog-
ical sarcomere lengths or to the extracellular 
matrix at higher sarcomere lengths. HFpEF 
patients show both increased collagen content 
and titin-dependent stiffness, which is related to 
isoform shifts or decreased phosphorylation by 
PKA, PKG, and CAMKIIδ, though the latter 
seems to dominate.56,57 Changes in calcium kinet-
ics, including increased diastolic calcium levels,58 
are important contributors to abnormal relaxa-
tion in HFpEF. Impaired myocardial bioenerget-
ics has also been proposed as a key mechanism for 
development of HFpEF, as it impairs an effective 
relaxation.3

Recently, the focus has shifted from cardiac mech-
anisms to extra-cardiac disturbances. Arterial stiff-
ness, poor ventricular-arterial coupling, increased 
central volume, impaired vasodilation, pulmonary 
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hypertension, endothelial dysfunction, and dys-
function of other tissues, including the lungs, 
skeletal muscle, adipose tissue, and kidneys, con-
tribute to impaired cardiovascular reserve.3,59 
Indeed, systemic involvement seems crucial in 
HFpEF. Patients are typically elderly, obese, with 
hypertension and diabetes, showing increased 
mortality due to non-cardiac causes when com-
pared with HFrEF, and, therefore, warrant a 
strict control of the underlying comorbidities to 
improve cardiovascular reserve.

Abnormal thyroid function in HF
Hypothyroidism is one of the most frequent 
endocrine abnormalities in the general popula-
tion. A prevalence of 4–20% has been reported 
for the spectrum of hypothyroidism (subclinical 
or overt) in the general population.1 In HFpEF, 
the prevalence of hypothyroidism may be even 
higher as it is more common in women and the 
elderly – a group of individuals frequently diag-
nosed with HFpEF. In patients with HF (both 
HFrEF and HFpEF), non-thyroidal illness syn-
drome or low T3 syndrome is also common.25 
Upregulation of D3 is one of the main mecha-
nisms of low T3 levels in these patients. D3 over-
expression is a common inflammatory response 
seen in non-thyroidal illness syndrome. Recent 
studies evidence that D3 expression is enhanced 
in certain pathological contexts in a cell-specific 
manner.60 Therefore, D3 upregulation in cardio-
myocytes may contribute to the exacerbation of 
local cardiac hypothyroidism in association with 
decreased peripheral conversion of T4 to T3.61 
This impaired peripheral conversion may be 
explained by the decreased activity of D2, seen in 
advanced heart disease.62 The exact mechanism 
by which D3 is enhanced is not fully understood; 
some studies show this may be mediated by 
inflammatory cytokines and catecholamines, both 
increased in HF.63 This cell-specific regulation is 
important to take into account because it may be 
masked due to the maintenance of constant circu-
lating thyroid hormones concentration.9 Lower 
T3 levels have been associated with increased car-
diovascular mortality in HF, in patients with car-
diovascular disease, and in the general 
population.25,64,65 Low T3 levels have also been 
associated with higher in-hospital and 1-year 
mortality in patients hospitalized for acute decom-
pensated HF.66 In a group of 89 consecutive 
patients with HFpEF, 22% had low T3 levels and 
10% had elevated TSH. Low T3 was associated 

with markers of severity, including BNP and 
echocardiographic parameters of diastolic dys-
function.67 Changes in the gene expression asso-
ciated with HF are similar to the fetal gene 
program and resembles that observed in hypothy-
roidism.68 Therefore, local cardiac hypothyroid-
ism may reduce Ca2+ transients and induce an 
α-MHC to β-MHC shift.68 In an animal model of 
low T3 syndrome induced by chronic caloric dep-
rivation, there was a significant decrease of 
SERCA2a and α-MHC with impairment of car-
diac contraction and relaxation. T3 supplementa-
tion reverted these changes, highlighting the 
potential contribution of the low T3 syndrome to 
cardiac dysfunction.69

In patients with normal TSH, T3, and T4 serum 
levels – normal systemic thyroid function – impor-
tant changes in thyroid hormone effects may still 
be present. Several animal studies suggest that 
HF is associated with local tissue hypothyroid-
ism. Different animal models in recent years have 
shown that HFrEF and several important risk fac-
tors for HFpEF, including ischemia, hyperten-
sion, and diabetes mellitus, induce an increase in 
the expression of cardiac D3, and, consequently, 
a decrease in local cardiac T3 levels – locally 
impaired thyroid function.70 Most importantly, 
correction of cardiac hypothyroidism in animal 
models attenuated cardiac remodeling and myo-
cardial dysfunction.70 As shown by Trivieri et al., 
enhanced D2 activity in a rodent model increases 
cardiac T3 levels, improves cardiac inotropism 
and prevents deterioration of cardiac function 
after pressure overload.71 In addition, D2 upregu-
lation also reverses the expression of genes associ-
ated with pathological remodeling.71

Thyroid hormones as a therapeutic target in 
HFpEF
Given their cardiovascular effects, particularly 
concerning diastolic function, and the prognostic 
impact of thyroid function, modulation of thyroid 
hormone levels may constitute a promising thera-
peutic target in HFpEF (Figure 1). Indeed, dias-
tolic dysfunction in hypothyroidism or subclinical 
hypothyroidism is reversible with thyroid hor-
mone supplementation.27 A randomized clinical 
trial of patients with advanced HFrEF and low 
T3 levels showed improved neuroendocrine pro-
file and ventricular performance after short-term 
intravenous T3.72 In an animal model of myocar-
dial infarction-induced HF, T3 replacement to 
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euthyroid levels improved both systolic and 
diastolic functions.73 Even without primary thy-
roid disease or abnormal hormone plasma lev-
els, thyroid hormone supplementation may have 
beneficial effects. Correction of local tissue 
hypothyroidism with thyroid hormone supplemen-
tation improved diastolic function in animal mod-
els of HF.74,75 It is important to highlight that 
treatment with thyroid hormones may improve 
symptoms and morbidity in HFpEF, not only due 
to cardiac actions but also to extra-cardiac effects, 
including decreased adiposity and improved 
endothelial function, arterial compliance, and skel-
etal muscle function.76 Epicardial fat tissue has 
also been proposed as a cardiovascular risk factor, 
and it has been shown to be increased in hypothy-
roidism and in patients with HFpEF.77 Thus, the 
decrease of the epicardial fat tissue, and, possibly, 
the modulation of the profile of adipocytokines 
secreted by adipose tissue may contribute to the 
benefits of thyroid hormone supplementation.77

Thyroid hormone supplementation in HF has been 
studied mostly using HFrEF animal models.51 
Furthermore, to this date, all clinical trials supple-
menting HF patients with thyroid hormones or 
their analogues refer to HFrEF (recently reviewed 

by Razvi et al.).78 Evidence from trials in HFrEF,72 
and from trials in patients without HF, suggests a 
positive impact of thyroid hormone supplementa-
tion in diastolic function.72,79,80 However, clinical 
trials focused in HFpEF patients are necessary to 
fully understand the role of thyroid hormones as a 
potential therapeutic target for HFpEF.

The type of thyroid hormone to be used for the 
treatment of individuals with HF is an unsettled 
question. In patients with primary thyroid dys-
function, treatment with levothyroxine is the 
standard of care.81 The fact that patients with HF 
have decreased conversion of T4 into T3 suggests 
that a combination of levothyroxine and liothyro-
nine could be associated with improvement of 
cardiac T3 levels. However, at the present time, 
there are no clinical studies to confirm this 
hypothesis. In patients with HF and low T3 syn-
drome, liothyronine may be the most appropriate 
approach from a pathophysiological perspective. 
Comparisons of liothyronine with levothyroxine 
or combined levothyroxine and liothyronine ther-
apy in low T3 syndrome are also lacking.

The potential benefits of thyroid hormone sup-
plementation should be weighed against the risks 

Figure 1. Decreased thyroid hormone effects worsen pathophysiologic changes of HFpEF. HFpEF is itself 
associated with low T3 syndrome and local cardiac hypothyroidism. Correction of tissue thyroid hormone levels 
has several effects that improve diastolic function and break the vicious cycle between cardiac dysfunction and 
decreased thyroid hormone effects, representing a promising therapeutic target in HFpEF.
HFpEF, heart failure with preserved ejection fraction; MHC, myosin heavy chain; SERCA2a, sarco/endoplasmic reticulum 
calcium-ATPase; T3, triiodothyronine.
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of overtreatment. Subclinical hyperthyroidism 
has been associated with myocardial hypertrophy 
and dysfunction, and increased risk of arrhyth-
mias, mainly atrial fibrillation.1 It is also associ-
ated with increased risk of non-cardiovascular 
adverse consequences, including osteoporosis, 
anxiety, disturbances of sleep, and possibly cogni-
tive dysfunction.1 Patients treated with thyroid 
hormones should be monitored regularly, and 
dosage must be adjusted according to plasma 
hormone levels to avoid overtreatment.

The minimization of potential adverse effects 
may be a key factor for successful use of thyroid 
hormones in HFpEF. A significant part of cardio-
vascular adverse effects from thyroid hormones 
supplementation is related to an increase in sym-
pathetic activity. In order to minimize cardiovas-
cular risk, an interesting approach may be the 
co-administration of a beta blocker. This would 
decrease the risk of arrhythmias, myocardial 
hypertrophy, and tachycardia-mediated myocar-
dial dysfunction, without affecting the direct ino-
tropic effects of thyroid hormones.82

An alternative approach to enhance thyroid hor-
mone effects in patients with HFpEF, particularly 
in those with normal plasma thyroid hormones 
levels, would be the use of heart-specific TR ago-
nists. This would avoid the possible extra-cardiac 
negative impact of thyroid hormone overtreat-
ment, and would avoid the interference with the 
hypothalamus-pituitary-thyroid axis regulation. 
Although various thyromimetics that specifically 
target TRβ have been developed, no effective 
TRα-specific or heart-specific thyromimetic is 
known at this moment. DITPA (3,5-diodothy-
roproprionic acid) was also proposed as a poten-
tial thyromimetic with beneficial cardiac effects. 
DITPA has inotropic selectivity, without signifi-
cant tachycardic effect.83 However, a multicenter 
clinical trial did not show improvement of clinical 
outcomes with DITPA in HFrEF.83

The modulation of the local cardiac deiodinase 
system is also an interesting target to increase the 
myocardial concentration of T3 without undesir-
able extra-cardiac effects. As stated earlier, recent 
evidence shows that D2 and D3 are expressed in 
a dynamic balance to control intracellular T3 lev-
els and upregulation of D3 is involved in the gen-
esis of a local cardiac hypothyroid state in 
HFpEF.82,84,85 Changes in redox balance may be 
central to the upregulation of D3. Reactive 

oxygen species (ROS) are known to disrupt 
peripheral deiodinase function, increasing D3 
expression and activity, through mechanisms not 
yet fully understood.86,87 In addition, ROS pro-
duction is also implicated in the pathophysiology 
of cardiac hypertrophy and remodeling, including 
in HFpEF.84 Thus, when redox imbalance is cor-
rected, improvements in cardiac structure and 
function are expected. This was demonstrated in 
several studies using N-acetylcysteine, a precur-
sor of glutathione, in different experimental mod-
els of HF.88,89 A significant part of these effects 
may be mediated by modulation of metabolism of 
thyroid hormones. Indeed, a recent study in a 
male rat model of myocardial infarction showed 
that N-acetylcysteine is able to revert the cardiac 
hypothyroid state and improve cardiac perfor-
mance.87 Moreover, as N-acetylcysteine’s effects 
are not heart-specific, it may also interfere with 
deiodinase action, particularly D3, in other tis-
sues, contributing to the prevention or resolution 
of the non-thyroidal illness syndrome.87,90

Conclusion
Thyroid hormones have an important role in car-
diac and vascular function through genomic and 
non-genomic mechanisms. HFpEF is a clinical 
syndrome characterized by diastolic dysfunction 
and extra-cardiac disturbances, for which there is 
no proven therapy to improve its prognosis. 
Thyroid hormone axis modulation holds poten-
tial for improving the prognosis in patients with 
HFpEF. Although different therapeutic 
approaches may allow the optimization of thyroid 
hormone effects in HFpEF, it is still not clear 
which have more potential for clinical use. 
Furthermore, a more comprehensive characteri-
zation of the thyroid system in HFpEF patient 
cohorts and further pre-clinical tests in animal 
models of HFpEF are needed to hasten transla-
tion to clinical trials in a disease that has so far 
eluded conventional therapeutic approaches.
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