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Abstract

Craniofacial skeletal muscle is composed of approximately 60 muscles, which have critical 

functions including food uptake, eye movements and facial expressions. Although craniofacial 

muscles have significantly different embryonic origin, most current skeletal muscle differentiation 

protocols using human induced pluripotent stem cells (iPSCs) are based on somite-derived limb 

and trunk muscle developmental pathways. Since the lack of a protocol for craniofacial muscles 

is a significant gap in the iPSC-derived muscle field, we have developed an optimized protocol 

to generate craniofacial myogenic precursor cells (cMPCs) from human iPSCs by mimicking key 

signaling pathways during craniofacial embryonic myogenesis. At each different stage, human 

iPSC-derived cMPCs mirror the transcription factor expression profiles seen in their counterparts 

during embryo development. After the bi-potential cranial pharyngeal mesoderm is established, 

cells are committed to cranial skeletal muscle lineages with inhibition of cardiac lineages and 

are purified by flow cytometry. Furthermore, identities of Ipsc-derived cMPCs are verified with 

human primary myoblasts from craniofacial muscles using RNA sequencing. These data suggest 

that our new method could provide not only in vitro research tools to study muscle specificity 

of muscular dystrophy but also abundant and reliable cellular resources for tissue engineering to 

support craniofacial reconstruction surgery.
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1. Introduction

Skeletal muscle has primary roles for movement and metabolism in the human body. While 

limb and trunk muscles regulate movement, posture and energy metabolism, craniofacial 

muscles control vision, mastication, swallowing and facial expression [1]. Diverse functions 

of skeletal muscles are influenced by embryonic origins, myogenic regulatory programs and 

functional/metabolic requirement from their location [2]. During vertebrate embryogenesis, 

skeletal muscles in the trunk and limb originate from precursor cells in segmented paraxial 

mesoderm referred to as somites [3,4]. The majority of craniofacial skeletal muscles, 

however, arise from cranial paraxial mesoderm of pharyngeal arches (or branchial arches). 

Pharyngeal arches are positioned along both sides of the neural tube and notochord [5,6] and 

give rise to cranial pharyngeal mesoderm (PM). These distinct embryologic origins of the 

craniofacial muscles, when compared to those of trunk or limb muscle, are accompanied by 

different genetic programs controlling their development. While somite-derived myogenesis 

is under the regulation of the transcription factors, PAX3 and, later, PAX7 [7], craniofacial 

myogenesis employ distinct combinations of transcription factors, TBX1, PITX2, TCF21 
and LHX2 to induce the pharyngeal arches in early stage of myogenesis [8]. However, late 

myogenesis of both craniofacial and limb muscles converges with respect to the common 

myogenic regulatory factors (MRFs), such as MYF5, MYOD and Myogenin [9]. Governed 

by myogenin, myogenic progenitors are fused to each other to generate elongated muscle 

fiber [10].

Muscle fibers found in craniofacial muscles are unique compared to limb muscle fibers. 

Generally, muscle fibers are classified by fast or slow twitch and oxidative or glycolytic 

mechanism to generate the speed and force [11], which are determined by myosin heavy 

chain (MyHC) isoforms [12]. Adult craniofacial muscles express unique MyHC isoforms 

including embryonic (Myh3), neonatal (Myh8), cardiac isoforms (Myh6 and Myh13), and 

slow tonic (Myh14) and Myh15 [13–15] in addition to common MyHC isoforms, such 

as type I (Myh7), IIa (Myh2), IIb (Myh4), and IIx (Myh1), which are usually found in 

limb skeletal muscle tissues. In addition, multiple MyHC expression in single muscle fiber 

has been observed in extraocular muscles, which are responsible for eye ball movement 

[16,17]. Unique MyHC expressions of extraocular muscle are regulated by Pitx2, a critical 

transcription factor for craniofacial, particularly eye, muscle development [18]. Another 

distinctive aspect of craniofacial muscle relates to the cellular properties of adult muscle 

stem cells, called satellite cells. Satellite cells reside under lamina of muscle fibers [19] and 

are responsible for muscle regeneration [20–22]. While both limb and craniofacial muscles 

contain satellite cells, which express Pax7, a transcription factor to specify myogenic lineage 

[23], Pax7 is not involved in embryonic development of craniofacial muscle [24,25]. In 

addition, craniofacial satellite cells express a relatively low level of Pax7 compared to limb 

satellite cells and still express embryonic transcriptional factors like Pitx2 [26,27]. Satellite 
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cells of extraocular muscles, a well-studied craniofacial muscle group, are very unique since 

they have intact regenerative capacity of their satellite cells regardless of age and disease 

status, which may explain the sparing of extraocular muscle from age and neuromuscular 

diseases [28]. Therefore, limb/trunk muscle biology would not cover distinctive aspects of 

craniofacial muscle [2], which leads us to develop in vitro craniofacial muscle research 

tools.

Since satellite cells have been implicated in the pathology of various muscular dystrophies, 

satellite cells have been proposed as a target of treatment as well as resources for cell 

therapies and disease modeling for muscular dystrophy [2,29]. Recently, induced human 

pluripotent stem cells (iPSCs) have been shown to provide myogenic progenitors for 

patient-derived muscular dystrophy models for drug screening as well as autologous 

cell-based therapies [30–33]. Muscular dystrophy is classified into 9 types according to 

mutations of responsible gene(s) and shows differential susceptibility among muscle groups 

[34]. For example, limb muscles are mainly influenced by Duchenne, Becker and limb­

girdle muscular dystrophies. In contrast, facial muscles are severely affected in myotonic, 

facioscapulohumeral and oculopharyngeal muscular dystrophies. Therefore, the mechanism 

of muscle specificity could provide effective therapeutics for affected muscles for each 

type of muscular dystrophy. Although the given muscle-specific sensitivity of muscular 

dystrophies is obvious, an in vitro system to research the difference between limb and 

craniofacial human muscle is currently lacking because most current iPSC-derived skeletal 

muscle differentiation methods have been adapted from the somite-derived trunk/limb 

muscle development pathway [33,35–37]. Moreover, most of the muscle disease modeling 

studies using human iPSCs have focused only on somite-derived muscles [33,36,37]. 

Therefore, development of Ipsc-derived craniofacial muscles could produce a valuable tool 

to investigate the mechanism of muscle-specific susceptibility in muscular dystrophy. In 

addition, iPSC-derived craniofacial muscles could serve as authentic cellular resources to 

generate craniofacial muscle tissues for craniofacial reconstruction surgery to treat patients 

with cleft lip/palate or craniofacial trauma.

Here, we describe a small molecule-based approach to induce cranial pharyngeal mesoderm 

and to efficiently differentiate craniofacial myogenic precursor cells (cMPCs) from human 

iPSCs. Our procedure mimics the regulation of the early signaling pathways during 

craniofacial muscle embryonic development. We validate the iPSC-derived cMPCs with 

several human craniofacial muscles by RNA-sequencing.

2. Materials and methods

2.1. Culture of human iPSCs

The healthy human iPSC lines (GM25256, GM23279 and GM23476) and an iPSC line 

from a patient with Duchenne muscular dystrophy (GM25313) were purchased from Coriell 

Institute (http://ccr.coriell.org/). iPSC lines were cultured in 6-well plates on Matrigel 

(Corning Life Sciences, New York, NY, Ca No. 354277), in mTeSR™1 media (Stem Cell 

Technologies, Vancouver, BC), and incubated at 37 °C under 5% CO2. The media was 

changed daily and the cells were passaged every 3 or 4 days at a 1:4 or 1:6 seeding 

density for routine culture conditions. To passage human iPSCs, the ReLeSR™ (Stem Cell 
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Technologies) was used to detach the cells from the wells. Detached cells were re-suspended 

in fresh media and distributed to new Matrigel-coated plates.

2.2. Directed differentiation of craniofacial muscle progenitor cells from human iPSCs

We used a protocol to mimic on somite derived muscle differentiation pathway [37], 

referred to as somite method (Supplementary Fig. S1A). To develop a novel protocol 

to mimic pathways during craniofacial muscle differentiation, referred to as pharyngeal 

mesoderm-derived method (PM method), we used specific small molecules to induce 

cranial pharyngeal mesoderm (Supplementary Fig. S1B). Briefly, prior to dissociation of 

iPSCs, 80%-90% confluent iPSCs were treated ROCK inhibitor Y-27632 (10 μM, Stem 

Cell Technologies) for at least 2 h to reduce dissociation-induced apoptosis. To ensure 

homogeneous differentiation of human iPSCs, the dissociation of iPSC colonies into single 

cells is necessary while still maintaining their pluripotency. Accordingly, the dissociated 

cells were transferred into Matrigel coated dishes between 15,000 and 30,000 cells/cm2 

seeding densities in mTeSR1 media supplemented with the ROCK inhibitor (Y-27632, 

10 μM). After 24 h of recovery, cells were switched to pharyngeal mesoderm induction 

media. During day 0 to day 2, the initial differentiation was induced using DMEM/F12 

(Gibco) media containing 1% ITS (Stem Cell Technologies) supplemented with CHIR99021 

(3 μM, Stem Cell Technologies) and BMP4 (25 ng/mL, R&D system, Minneapolis, MN) 

to simulate Wnt signaling during gastrulation. On day 3 of differentiation, the BMP4 

was withdrawn and DAPT (N-[N-(3,5-difluorophenacetyl)-l-alanyl]-S-phenylglycine t-butyl 

ester, 10 μM, Stem Cell Technologies) was added with growth factor recombinant basic-FGF 

(20 ng/mL, PeproTech, Rocky Hill, NJ). On day 6 of differentiation, the media was changed 

to specification media which is new DMEM/F12 (Gibco) media containing knockout serum 

replacement (KSR) media supplemented with BMP inhibitor (0.5 μM LDN 193189, Stem 

Cell Technologies), recombinant basic-FGF (20 ng/mL), recombinant IGF-1 (2 ng/mL, Stem 

Cell Technologies) and recombinant HGF (10 ng/mL, Stem Cell Technologies). To increase 

the potential of myogenic lineage, media was changed daily until day 12 with or without 

IGF-1 or HGF as indicated.

2.3. Gene expression analysis by real-time PCR

The human iPSC derived MPCs or differentiated cells were analyzed for the expression 

of progenitor markers by comparative qRT-PCR. Total RNA from human iPSC-derived 

populations was extracted using Trizol reagent (Ambion/Life Technologies, Carlsbad, 

CA) according to the manufacturer’s instructions. Isolated RNA (250 ng) was reverse 

transcribed into complementary DNA (cDNA) using random hexamers and M-MLV reverse 

transcriptase (Invitrogen, www.thermofisher.com, Waltham, MA). Amplification of cDNA 

was performed using Power SYBR® Green Master Mix (Applied Biosystems, Waltham, 

MA) and 2.5 μM of each primer. All primer sequences are listed in Supplementary Table S1. 

PCR reactions were performed for 35 cycles under the following conditions: denaturation at 

95 °C for 15 s and annealing + extension at 60 °C for 1 min. Quantitative levels for all genes 

were normalized to endogenous GAPDH expression. Fold change of gene expression was 

determined using the ΔΔCt method [38]. Experiments were repeated at least three times.
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2.4. Immunofluorescence

Immunofluorescence (IF) was performed as follows: cultured cells were fixed 

in freshly prepared 2% paraformaldehyde (Electron Microscopy Sciences, http://

www.emsdiasum.com, Hatfield, PA) for 15 min and incubated with blocking buffer (5% 

goat serum, 5% donkey serum, 0.5% BSA, 0.25% Triton-X 100 in PBS) for 1 h. Cells 

were then labeled with primary antibodies (Supplementary Table S2) or isotype controls 

overnight at 4 °C in blocking buffer. The following day, cells were washed three times 

with washing buffer (0.2% Tween-20 and PBS) and incubated with fluorescence probe­

conjugated secondary antibodies for 1 h at room temperature. For eMyHC imaging, after 

1 h incubation with biotinylated goat-anti-mouse F(ab’)2 IgG fragments (2.5 μg/ml), a 

TSA Green kit (Tyramide Signal Amplification; Perkin Elmer, www.perkinelmer.com, 

Waltham, MA) was used to enhance the immunostaining signal. Nuclei were then stained 

with 4’,6-diamidino-2-phenylindole (DAPI) and mounted on Vectashield (Vector Labs, 

www.vectorlabs.com, Burlingame, CA).

2.5. Flow cytometry and cell sorting

Human iPSC-derived MPCs from day 30 cultures were dissociated using TrypLE Express 

(Invitrogen, cat. no. 12605010) after the pretreatment of 10 μM ROCK inhibitor for at 

least 2 h. For specific cell marker analyses, cells were stained with indicated antibodies 

(Supplementary Table S2) for 30 min at 4 °C in fluorescence-activated cell sorting (FACS) 

buffer consisting of PBS with 2 mM EDTA and 0.5% BSA. Stained cells were analyzed 

using the BD FACSAria II cell sorter (Becton-Dickinson, http://www.bd.com, Franklin 

Lakes, NJ). Analyses of flow cytometry data were performed using FACS Diva (BD version 

8.0.1). Differentiated cells at D30 were purified using surface markers, HNK1, ERBB3, 

and NGFR [33]. Isolated HNK1−ERBB3+NGFR+ cells were cultured in SkGM on Matrigel­

coated plates for 3 or 5 days before cryopreservation.

2.6. Maturation of human iPSC derived craniofacial MPCs and fusion assays

To examine the effects of TGF-β signaling on human iPSC-craniofacial MPCs maturation, 

small molecule inhibitors of TGF-β signaling (SB-431542, 10 μM, Stem Cell Technologies) 

were evaluated and the effect of recombinant IGF (2 ng/mL) supplement was also evaluated. 

The human iPSC-craniofacial MPCs were differentiated for 6–18 days in N2 media or 

skeletal muscle growth media-2 (SkGM, Lonza, Allendale, NJ), with or without SB-431542 

and IGF-1 treatment. For fusion assay, cells were fixed in 2% formaldehyde in PBS for 20 

min at room temperature and immunostained with anti-MyHC antibody (1:100, A4.1025, 

Developmental Studies Hybridoma Bank) after 6 or 18 days of maturation. Myoblast 

fusion was quantified by counting myonuclei in MyHC-positive myotubes after 18 days 

of SB-431542 and IGF-1 treatment.

2.7. Isolation of human craniofacial muscles and culture of human primary myoblasts

Human primary muscles (tibialis anterior, extraocular, cricopharyngeus, masseter and 

zygomaticus muscles) were isolated by experienced otolaryngology surgeons from a donated 

subject (89 year old, Caucasian female) to Emory Body Donor Program. Isolated muscle 

chunks were minced by blades and incubated with 0.25% Trypsin for 20 min and filtered 
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to isolate mononucleated cells including satellite cells [39]. Cells were cultured on gelatin­

coated plates to expend and then sorted by surface markers (CD31−/CD45−/CD56+) using 

flow cytometry.

2.8. RNA sequencing

Total RNA was isolated using QIAamp-RNA-Blood Mini kit (Quigen) and was validated by 

Agilent Technologies 2100 bioanalyzer. mRNA molecules were purified from total RNA 

using oligo(dT)-attached magnetic beads and were fragmented into small pieces using 

divalent cations under elevated temperature. First-strand cDNA was generated using random 

hexamer-primed reverse transcription, followed by a second-strand cDNA synthesis using 

DNA Polymerase I and RNase H. The synthesized cDNA was subjected to end-repair and 

then was 3′ adenylated. Adapters were ligated to the ends of these 3’ adenylated cDNA 

fragments. The cDNA fragments with adapters were amplified by PCR. PCR products 

were purified with Ampure XP Beads (AGENCOURT) and dissolved in elusion buffer 

solution. Library was validated on the Agilent Technologies 2100 bioanalyzer. The double 

stranded PCR products were heat denatured and circularized by the splint oligo sequence. 

The single strand circle DNA (ssCir DNA) was formatted as the final library. The library 

was amplified with phi29 to make DNA nanoball (DNB) with more than 300 copies of one 

molecule. The DNBs were load into the patterned nanoarray and single end 50 (pair end 

100/150) bases reads were generated using Combinatorial Probe-Anchor Synthesis (cPAS). 

After sequencing, low quality reads, reads with adaptors, and reads with unknown bases 

were removed to obtain clean reads. Then the clean reads were mapped with reference 

genome to detect novel gene prediction, SNP and INDEL calling and gene splicing. Finally, 

differentially expressed genes between samples were identified and analyzed by clustering 

analysis and functional annotations.

2.9. Statistical analysis

Statistical analysis was performed using Prism 8.0. Results are expressed as the means ± 

SEM. Experiments were repeated at least three times unless a different number of repeats 

is stated in the legend. Statistical testing was performed using the unpaired two-tailed 

Student t-test or ANOVA analysis as stated in the figure legends. P < 0.05 was considered 

statistically significant. Methods used, P values, and sample numbers are indicated in the 

figure legends.

3. Results

3.1. Control of BMP signaling with notch inhibition induces pharyngeal mesoderm from 
human PSCs

To induce cranial paraxial mesoderm from iPSCs (Fig. 1A), we treated CHIR99021, 

glycogen synthase kinase 3 (GSK3) inhibitor, to simulate Wnt signaling during gastrulation. 

In cranial muscle differentiation method group, referred to as pharyngeal mesoderm 

(PM) method, we briefly treated BMP4 during the initial induction steps for more rapid 

and efficient pharyngeal mesoderm induction [40] contrast by using LDN193189, BMP 

inhibitor to induce paraxial mesoderm for trunk/limb muscle differentiation method, referred 

to as somite method [37]. After mesoderm induction, we confirmed the loss of the 
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human pluripotent marker POU5F1 (known as OCT4) in both of methods (Fig. 1B) and 

observed that cells were flattened and generated aggregates (white dotted circle) 2 days 

post-differentiation using both methods (Fig. 1C). We validated induction of paraxial 

mesoderm to derive myogenic lineage, by increased mRNA expression of MSGN1, a 

paraxial mesoderm marker, and MESP1, a pharyngeal mesoderm marker, in PM method 

at day 3 (Fig. 1B). We also examined protein expression of intracellular MESP1, a 

transcription factor for pharyngeal mesoderm, at day 3 (Fig. 1D). From day 3 to day 6, 

we used gamma-secretase inhibitor II, DAPT, to inhibit Notch signaling for PM method to 

induce bi-potential pharyngeal mesoderm, which is able to differentiate into myogenic or 

cardiogenic progenitors [41]. In addition, FGF2 was used to not only promote progenitor 

cell proliferation, but also to suppress premature expression of myogenic regulatory factors 

(MRFs) [42]. The key transcriptional factor for somite-derived myogenesis, PAX3, was 

upregulated in somite method at day 6, but not in PM method, which implies PM method 

is generating non-somite derived myogenic cells. Indeed, we discovered significantly 

upregulated expressions of key upstream genes at cranial skeletal muscle formation, such as 

PITX2 and TCF21, only in PM method at day 3 or 6 (Fig. 1B). In addition, the expressions 

of NKX 2.5, LHX2, and ISL1, co-transcriptional regulators for craniofacial myogenic 

lineage and second heart field related cardiogenic lineage, were also significantly observed 

only in the PM method, consistent with process of pharyngeal mesoderm formation during 

embryogenesis [43]. We confirmed the protein expression of PDGFRα, a surface marker of 

pharyngeal mesoderm, at day 6 in cells using PM method (Fig. 1D). These results suggest 

that our protocol induced cranial pharyngeal mesoderm.

3.2. Specification of cMPCs fate depressing cardiac lineage and purification

Pharyngeal mesoderm has bipotential to generate craniofacial muscles as well as cardiac 

progenitors for second heart field. We designed specification media, which not only 

enhances skeletal myogenic lineage by adding IGF-1 and HGF but also inhibits cardiogenic 

lineage from day 6 to day 12 (Fig. 2A). Since inhibition of BMP signaling or ROCK 

signaling has been known to suppress cardiac lineage from PM [44], we tested BMP 

inhibitor, LDN193189 or ROCK inhibitor, Y-27632 or combination of both inhibitors 

for suppression of cardiac lineage. Comparable with dual inhibition, the treatment of 

LDN193189 alone resulted in significantly lower mRNA expression of cardiac muscle 

development related genes, such as GATA4 and TBX5, the first heart field (FHF) markers, 

and ISL1, the second heart field (SHF) marker (Fig. 2B). The treatment of Y-27632 

alone showed no significant effect on heart development-related genes. In contrast, the 

mRNA expression of TBX1, a craniofacial myogenic marker, was significantly higher in 

LDN193189 alone-treated group compared to control and dual inhibited group. Thus, the 

inhibition of BMP pathway appears to be sufficient to block the FHF cardiac lineage (Fig. 

2C).

To select and enrich cranial skeletal muscle progenitor cells with high myogenic potential 

from bipotent cranial/cardiac pharyngeal MPCs, we applied a previously reported sorting 

strategy that removed HNK1+ cells (a neuroectodermal marker) [45,46] and selected for 

skeletal muscle-specific receptors ERBB3 and nerve growth factor receptor (NGFR; also 

known as CD271) [33]. The FACS analysis showed that HNK1 expressing cells were rarely 
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detected in both somite and PM methods (< 3.8 ± 1.3% and < 1.1 ± 0.1%, respectively), 

indicating that the majority of the cells were not neuroectodermal progenies (Supplementary 

Table S3). In HNK1− cell populations, the majority of the cells generated by both methods 

expressed ERBB3 and NGFR double positive (> 84.7 ± 0.9% and 79.7 ± 1.2% for somite 

and PM methods, respectively), reflecting the efficiency of both differentiation protocols 

to generate highly myogenic progenitor cells. To validate our approach, we confirmed 

that HNK1−ERBB3+NGFR+ cell population highly expressed (> 99%) myogenic factor 5 

(Myf5), a key marker for early skeletal myogenic precursors, in somite and cranial derived 

muscle differentiation methods (Fig. 2D). However, the HNK1−ERBB3−NGFR− population 

did not contain Myf5+ cells. This result clearly indicates that HNK1−ERBB3+NGFR+ 

populations represent Myf5 positive MPCs which have skeletal myogenic potential. To 

assess the reproducibility of this protocol across human iPSC lines, another cell line 

(GM23279) was used. This cell line has also been shown to efficiently and homogeneously 

generate ERBB3+NGFR+ cells (96.2 ± 0.7%) in HNK1− cell populations using PM method 

(Supplementary Table S3). These experiments also attest that the effect of our novel PM 

method is cell line-independent. Taken together, the cell sorting strategy using surface 

marker proteins HNK1−ERBB3+NGFR+ was efficient to isolate human PSC-cMPCs with 

high myogenic potential.

3.3. Characterization of cMPCs

We have demonstrated that our PM method generates Myf5 positive myogenic progenitor 

cells from human iPSCs (Fig. 2D). To investigate further, we next tested whether these 

HNK1−ERBB3+NGFR+ sorted cMPCs could keep their identity and expand properly during 

differentiation (Fig. 3A). After sorting, the cultures were grown in N2 or Skgm media, 

which supports both the proliferation and expansion of cMPCs (Supplementary Fig. S2A). 

The mRNA expression of TBX1, ISL1, PITX2 TCF21 and MYOR, which are the hallmarks 

of pharyngeal and craniofacial muscles, were significantly higher in PM method compared 

to somite method at day 28 after differentiation (Fig. 3B). However, the mRNA expression 

of PAX7 was significantly higher in somite method than that in PM method at this 

stage. Supporting our previous analysis, immunostaining further showed that all of the PM 

method-derived cells from normal (GM25256, GM23476) and muscular dystrophy patient 

(GM23513)-derived human iPSCs expressed embryonic MyHC (eMyHC) and TBX1 (Fig. 

3C) at day 28 after differentiation, which shows its identity as the progenitor of craniofacial 

muscles. We have also observed expressions of Myogenin, PAX7 and ISL1 at day 28 after 

differentiation (Supplementary Fig. S2B). At day 44 post differentiation, the cMPCs also 

showed the weak expression of adult MyHC (MyHC IIA and MyHC IIB) (Supplementary 

Fig. S2C). Taken together, these results demonstrate that the human iPSC-cMPCs induced 

by our PM method showed representative characteristics of craniofacial MPCs.

3.4. Maturation of cMPCs in vitro

To promote terminal differentiation and maturation of the craniofacial myogenic 

cultures (Fig. 4A), we examined whether IGF-1 and TGF-β receptor type I kinase 

inhibitor (TGF-βi or SB431542) combined treatment boosts myotube formation of 

HNK1−ERBB3+NGFR+cells synergistically. After 6 days of treatment, the use of Skgm 

supplemented with IGF-1 and TGF-βi (SB431542) induced more mature myotubes 
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compared to the Skgm alone or single IGF-1 or TGF-βi treatment (Supplementary Fig. 

S3A). These data demonstrate that inhibition of TGF-β with supplement of IGF during 

cMPC differentiation can produce mature myotubes in vitro. After 18 days of double 

treatment, cells were fused to each other to generate long-multinucleated myotubes 

(Supplementary Fig. S3B) expressing h-Dystrophin and embryonic and late fetal MyHCs 

(Fig. 4B), which is consistent with the previous report of trunk/limb muscle generations 

by Hicks et al. [33]. TGF-βi and IGF-1 treated myotubes displayed clearly organized 

sarcomeres and Z-disk patterning (Fig. 4C, white arrow in MYH1 staining with white 

pseudo-color for better presentation of the striation of matured myotubes). By contrast, 

untreated control myotubes showed limited organization. As another measure of maturation, 

we quantified muscle cell fusion with double treatment of IGF-1 and SB431542 (IGF + 

SB) by the number of nuclei within MyHC-positive myotubes (Fig. 4D). Nuclear number 

analysis revealed that the mature myotubes containing 5–14 nuclei were significantly 

increased in IGF + SB treated cells compared with control cells, suggesting that IGF and 

TGF-β signaling is involved in muscle cell fusion to promote matured myotube formation. 

We confirmed that IGF + SB treatments consistently induced mature myotubes with striation 

in several lines of iPSC-derived muscle cells, which were differentiated using PM methods 

(Fig. 4E). These data suggest that TGF-βi and IGF-1 promotes human PSC craniofacial 

myotube maturation.

3.5. Verification of human iPSC-PM-derived MPC and muscles

Since RNA sequencing analysis have been used a powerful tool to verify cell identity 

including iPSC-derived muscle cells [33], we performed RNA sequencing of iPSC-derived 

MPCs compared to human primary myoblasts. Human primary myoblasts were isolated 

from several craniofacial muscles, expanded and then sorted by surface proteins (CD31−/

CD45−/CD56+). Pearson correlation map by RNA-seq analysis revealed that iPSC-PM­

derived MPCs showed close correlations (Spearman ρ = 0.86–0.9) to myoblasts isolated 

from 4 different craniofacial muscles. Interestingly, iPSC-PM MPCs showed the lowest 

correlation with primary myoblasts from somite-derived limb muscles (tibialis anterior, 

TA). In contrast, iPSC-somite-derived MPCs showed the lowest correlation with extraocular 

myoblasts (Fig. 5A). Using principal component analysis (PCA), we observed the cluster 

of cricopharyngeus, masseter, and zygomaticus myoblasts, which showed distance to TA 

(limb muscle) and extraocular myoblasts. Although iPSC-somite-MPC and iPSC-PM-MPC 

presented differences in the PCA map, those differences were smaller than the distance 

between the cluster of craniofacial myoblasts and TA myoblasts. Also, we observed major 

differences between the iPSC-derived MPCs and primary myoblasts (Fig. 5B).

To investigate whether PM and somite methods induce the expression of craniofacial and 

limb specific genes respectively, we identified 1480 and 397 genes that were exclusively 

upregulated in iPSC-PM-derived MPCs and iPSC-somite-derived MPCs, respectively, by 

differentially expressed gene (DEG) analysis (Fig. 5C). The iPSC-PM-MPCs showed 

significantly up-regulated expression of PITX2, TBX1, and ISL1, which are strongly 

enriched for pharyngeal mesoderm development and craniofacial muscle differentiation, 

compared to somite method-derived MPCs. On the other hand, the iPSC-PM-MPCs showed 

significantly down-regulated expression in PAX3, which is a key early developmental 
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regulator for somite-derived cell fates and has been shown to be suppressed during 

craniofacial differentiation process (Fig. 5D). These differences reflect the different 

regulatory programs during myogenesis of each MPCs. To study whether PM and somite 

method induced iPSC-MPC contain specific genes of adult myoblasts of craniofacial and 

limb muscles, respectively, we identified exclusively up-regulated genes from RNA-seq 

data. Fig. 5E shows the strategy to select the enriched gene sets of primary TA myoblasts 

(118 genes) compared to the primary craniofacial myoblasts. Fig. 5F presents commonly 

up-regulated genes (157 genes) in all primary craniofacial myoblasts compared to primary 

TA myoblasts. We then analyzed whether those limb and craniofacial myoblast specific 

genes are found in exclusive gene set of PM and somite method induced iPSC-MPC 

(Fig. 5G). However, iPSC-PM-MPCs and iPSC-somite-MPCs exclusive transcriptome did 

not show the preference of craniofacial and limb myoblast specific gene expression, 

respectively. Taken together, though iPSC-PM-MPCs express critical transcription factors 

for craniofacial myogenic development, these cells are still premature to express adult 

craniofacial myoblasts exclusive genes.

4. Discussion

Human PSCs can self-renew and possess the potential to differentiate into skeletal muscles 

[33,36,37], and therefore represent a theoretically unlimited source of healthy myogenic 

progenitors and mature skeletal muscles. As such, they could provide valuable resources 

for regenerative medicine. To date, however, the major approach to differentiate skeletal 

muscle progenitors from PSCs has been only focused on the developmental pathways of 

somite-derived trunk and limb muscle rather than those of craniofacial muscles. This study 

demonstrates a novel and robust method for the generation of craniofacial skeletal myogenic 

progenitors from human iPSCs via small molecule modulations during embryo development 

(Fig. 6).

In our method, bone morphogenetic protein (BMP) signaling affects cells in two phases 

conversely: activation of BMP signaling is initially required in the earliest phase during 

induction step; while at later stages, inhibition of BMP signaling is required for 

specification. To induce the paraxial mesoderm from iPSCs for the differentiation of somite­

derived muscles, several research groups have controlled two signaling pathways; activation 

of WNT signaling pathway by GSK3β inhibitor, CHIR99021, to promote mesodermal 

differentiation [47–50], and inhibition of BMP by BMP inhibitor, LDN193189, to prevent 

drifting to non-muscle lineage [37,51–53]. To facilitate the robust formation of cranial 

paraxial mesoderm, we also used GSK3β inhibitor (CHIR99021) to activate Wnt signaling 

to induce mesodermal differentiation and adapted BMP4 to drive lineage to cardiac/cranial 

pharyngeal mesoderm [54,55]. This early step for the contrast regulation of BMP signaling 

represents a major difference between the somite- and the PM-derived muscle differentiation 

protocols. However, in the later step, we inhibited BMP signaling in specification step to 

‘lock’ these cells into the skeletal muscle lineage and to ‘block’ cardiogenic commitments 

from bipotent cardiac/cranial PM (CPM). In vertebrates, the progenitors of CPM are 

transcriptionally primed to activate two distinct fates; specific cardiac muscle precursors, 

referred to as the first heart field (FHF) and pharyngeal MPCs. The pharyngeal MPCs can 

committed to craniofacial skeletal muscle progenitors and second heart field (SHF) which 
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contributes to the outflow tract, right ventricle, and a majority of the atria [56]. These 

common progenitors activate overlapping transcription factors, such as Pituitary homeobox 

2 (PITX2) and T-box gene (TBX1), in early developmental signaling cascades before 

lineage decision [6,57]. Divergent fates of CPM are affected by BMP4 or BMP7 [6,58]. 

Specifically, Chan et al. demonstrated that BMPs promotes cardiac lineage, while Rho 

kinase inhibition enhances myogenic lineage [44]. Thus, our protocol uses differential BMP 

regulation to mimic PM-derived muscle cell development, such as BMP4 to induce PM at 

an early step and LDN 193189 (BMP inhibitor) to inhibit cardiac commitment from CPM 

at a later step. However, Rho kinase inhibition (Y-27632) did not efficiently induce skeletal 

myogenic lineage in our protocol, which may imply different cell sources (mouse embryonic 

stem cell lines vs. human iPSCs) as well as differentiation methods (cells from embryoid 

body vs. cells from monolayered culture) between laboratories.

One of the key questions in mammalian developmental study is the proper activation 

timing of gene regulatory program during organogenesis when the progenitor becomes 

specified to differentiate into their commitment lineages. Compared to the somite-derived 

muscles, activation of myogenesis in the head depends on different upstream factors and 

also responds differently to signaling pathways. In our PM method, we found that PAX3, 

a major upstream regulator of somite-derived myogenesis [7], is not expressed during early 

stage of CPM formation. Instead, our PM-method is capable of producing the colonies 

expressing MESP1, which acts as an essential early upstream regulator for the bipotent 

CPM formation during craniofacial skeletal myogenesis [59,60] and SHF development [61]. 

Also, we found that our PM-method showed the involvement of PITX2 and TBX1 genes 

which cross-regulate each other and activate the same target genes during the specification 

of progenitor cells that give rise to craniofacial muscles [8,57]. PITX2 plays a critical role 

in specifying the first pharyngeal arch muscles and EOM [62]. PITX is not only required 

but is also sufficient to activate the T-box gene, TBX1, which is a transcription factor 

expressed in the pre-myoblast in the first and second branchial arches [8]. In TBX1 mutants, 

pharyngeal muscles are frequently hypoplastic and asymmetric, whereas EOMs are spared 

due to presence of PITX2 [63]. The expression of the basic helix-loop-helix repressors 

TCF21 (Capsulin) or MYOR (Msc) are also observed in our PM-method. In TCF21/MYOR 

double mutants, the masseter, pterygoid, and temporalis muscles are missing by the failure 

of activation of MYF5, which is the first MRFs for initiating early skeletal myogenic fate, 

in the progenitors that gives rise to facial muscles [64]. Our sorting strategy using the 

HNK1−ERBB3+NGFR+ subpopulations enriched for MYF5 positive progenitor cells from 

human iPSC-cMPCs. The majority (at least 85%) of generated cells by our PM-method are 

double positive subsets (ERBB3+NGFR+) regardless of PSC lines we tested. This result is 

consistent with a previous study that reported skeletal myogenic potential could be measured 

by antibody against ERBB and NGFR in the somite-derived myogenic progenitors from 

human PSC differentiation cultures [33].

Although iPSC-derived cells enable scientists to study the molecular mechanisms of disease 

in relevant human cell types including those that are inaccessible as primary tissue samples, 

a lack of maturity in the iPSC-derived cells is a well-recognized problem. We analyzed the 

maturation capacity of our in vitro PM-method derived cMPCs using TGF-β inhibitor with 

IGF-1 treatment. In mouse development, it is well known that the myoblasts at different 
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developmental stages respond differently to TGF-β signaling [65]. In fact, embryonic 

myogenesis is accelerated in the presence of TGF-β, but fetal myogenesis is strongly 

inhibited by TGF-β. The iPSC-derived myogenic progenitor cells have the phenotype of 

late fetal myoblasts and TGF-βi might be a major driver of human PSC maturation towards 

secondary or tertiary myogenesis [33,66].

Despite the iPSC-PM-MPCs retain a distinct set of upstream transcriptomes, particularly 

TBX1, PITX2 and ISL1 compared to the iPSC-somite-MPCs, the iPSC-derived MPCs are 

distinguished from primary myoblasts as shown by principal component analysis (PCA) 

plots and profiling of craniofacial and limb myoblast exclusive genes comparing DEG of 

iPSC-PM-MPCs and iPSC-somite-MPCs (Fig. 5). This results are in line with other reports 

of other iPSC-derived progenitor cells, such as iPSC-derived skeletal muscles [33], neurons 

[67], cardiomyocytes [68], and hepatocytes [69] which are immature and resemble fetal 

cells, not adult cells. However, the higher similarity of iPSC-cMPCs to cricopharyngeus 

(gene expression correlation Spearman ρ = 0.89) and masseter (ρ = 0.90) myoblasts may 

reflect a priming of our PM protocol to generate pharyngeal arches-derived fetal myoblasts 

from CPM. Given slightly different embryonic origins of each craniofacial muscles, for 

example, masseter muscles from 1st and 2nd pharyngeal arches and pharyngeal muscles 

from 3rd and 4th pharyngeal arches, our protocol has limitation in generating specific 

craniofacial muscles. Since our protocol produces PM-derived muscle without focusing of 

each pharyngeal arch developmental program, our current protocol might produce a mixture 

of several craniofacial muscle subgroups given heterogeneous embryonic origins within 

pharyngeal mesoderm. For more indepth comparative research and clinical application in the 

future, single cell RNA sequencing of iPSC-PM-MPC is highly desired to confirm whether 

iPSC-PM-MPC is heterogenous and, if heterogenous, whether it is mapped with slightly 

different origins of pharyngeal arches-derived as craniofacial myoblasts.

Though recent attempts to generate of bi-potential cranial cardio/pharyngeal mesoderm­

derived muscles from human embryonic stem cells (ESCs) have been reported, 

bioengineering applications of those muscles are still limited due to MESP1 transgene 

injection to drive CPM [44] and lack of terminal muscle differentiation results [70]. Thus, 

our PM method overcomes current limitations to produce PM-derived muscles by utilizing 

small molecules to mimic developmental pathways and by inducing fully differentiated 

multinucleated myotubes with mature contracting units. To our knowledge, we are the 

first group to report comparative RNA-sequencing transcriptional profiling of human iPSC­

derived craniofacial muscle cells with various human primary craniofacial muscle cells.

5. Conclusions

This work describes an in vitro method for generating craniofacial muscle lineage from 

human PSCs to produce multinucleated skeletal muscle fibers recapitulating the embryo 

development in the head. Our results show that combined small-molecule regulation 

of endogenous signals provides an efficient and non-genetic induction to control the 

craniofacial myogenic fate from human PSCs. This new generation of iPSC-cMPCs can 

be considered a promising source for cell-based transplantation therapy and may lead to 

study for drug discovery to combat skeletal muscle wasting disease in the future.
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Fig. 1. Induction of cranial pharyngeal mesoderm (CPM) from human iPSCs using BMP 
activation and Notch inhibition within 6 days.
(A) Protocol day 0 to day 6 for mesoderm induction. (B) Relative mRNA expression levels 

of cranial mesoderm marker genes at day 3 and day 6. Mean ± SEM; n = 3 for each group. 

Data were analyzed by 1-way ANOVA. Asterisks indicate statistical significance (*P < 0.05, 

**P < 0.01, and ***P < 0.001). (C) Morphological changes during CPM induction from 

human iPSCs. Scale bars = 330 μm. (D). MESP1+ and PDGFRα+ protein expressed colonies 

at day 3 and day 6, respectively. White dotted boxes indicate a higher magnification. Scale 

bars = 330 μm.
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Fig. 2. Specification and enrichment of craniofacial myogenic progenitor cells (cMPCs) using 
dual inhibition of BMP and Rho kinase (ROCK) signaling and sorting strategy.
(A) Protocol day 6 to day 12 for myogenic progenitor cell (MPC) specification. (B) 

Treatment of BMP inhibitor and ROCK inhibitors. LDN (LDN193189, a BMP inhibitor) 

suppresses cardiac muscle marker genes (GATA4 and TBX5 for first heart field and ISL1 
for second heart field) and enhances a craniofacial muscle marker gene (TBX1) at day 8. 

Y indicates Y-27632, a Rho kinase inhibitor. Data represent the mean ± SEM; n = 3 for 

each group. Data were analyzed by 1-way ANOVA. Asterisks indicate statistical significance 

(*P < 0.05, **P < 0.01, and ***P < 0.001). (C) BMP signaling determines lineage fate 

from bipotent cardiac/cranial pharyngeal mesoderm (PM). (D) Sorting of MPC at day 

Kim et al. Page 19

Biomaterials. Author manuscript; available in PMC 2021 July 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



12. Representative flow cytometry plots show gating strategy HNK1−ERBB3+NGFR+ for 

sorting of MYF5+ MPCs.
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Fig. 3. Characterization of HNK1−ERBB3+NGFR+ sorted craniofacial myogenic progenitor cells 
(cMPCs).
. (A) Protocol day 12 to day 35 for MPC differentiation. (B) Relative mRNA expression of 

craniofacial muscle specific marker genes in sorted craniofacial MPCs. Mean ± SEM; n = 3 

for each group. Data were analyzed by t-tests. Asterisks indicate statistical significance (*p 

< 0.05 and **P < 0.01). (C) Immunostaining of craniofacial muscle differentiation marker 

proteins (embryonic MyHC and TBX1) in sorted craniofacial MPCs derived from normal 

human iPSCs (GM25256 and GM23476) and an iPSC line from a Duchenne muscular 

dystrophy (DMD) patient (GM25313). Scale bars = 70 μm.
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Fig. 4. Inhibition of TGF-β signaling with IGF treatment for enhancing the maturation of 
craniofacial myogenic progenitor cells (cMPCs) in vitro.
(A) Protocol after day 35 for MPC maturation. (B) Immunostaining of myosin heavy chain 

(MYH3 and MYH1) and human dystrophin (H-Dystrophin) with or without treatment of 

IGF-1 and TGF-β inhibitors (SB431542) in matured iPSC-cMPCs (HNK1−ERBB3+NGFR+ 

cells) for 18 days. Green fluorescence indicates proteins by immunostaining and blue 

fluorescence is DAPI staining. Scale bars = 130 μm. (C) Pseudo-color images represent 

striation (white arrow) in matured iPSC-cMPCs (HNK1−ERBB3+NGFR+ cells). White 

pseudo-color indicates late fetal MyHC (MYH1) and green pseudo-color indicates DAPI 

staining. Scale bars = 130 μm. (D) Quantified percentage of nuclei present in MyHC­

positive myotubes with the indicated number of nuclei after 18 days of maturation in 

HNK1−ERBB3+NGFR+ sorted craniofacial MPCs with or without IGF-1 and SB431542 

treatment. Data represent the mean ± SEM; n = 3 for each groups. Data were analyzed 

by 2-way ANOVA. Asterisks indicate statistical significance (**P < 0.01 and ***P < 

0.001). (E) Immunostaining of myosin heavy chain (MYH1) in matured craniofacial 
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MPCs (HNK1−ERBB3+NGFR+ cells) derived from normal human iPSCs (GM23476 

and GM23279) and an iPSC line from Duchenne muscular dystrophy (DMD) patient 

(GM25313). Bottom panel showed represent striations (white arrow) in matured iPSC­

cMPCs. Scale bars = 130 μm.
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Fig. 5. RNA-seq analyses of iPSC-derived myogenic progenitor cells (MPCs) compared to 
primary myoblasts.
(A) Pearson correlation analysis between transcriptome of myoblasts from extraocular (EO), 

zygomaticus (Zygo), masseter (Mas), circropharyngeus (CP) and tibialis anterior (TA) 

muscles. Numbers in the box indicates the correlation number, ρ between samples. (B) 

PCA plot of variant genes in iPSC-derived MPCs and primary myoblast groups. (C) Venn 

diagram showing the number of commonly or differentially expressed genes in somite and 

PM method-derived MPCs from human iPSCs. (D) Volcano plot showing differentially 

expressed genes (DEGs, cut off > 2 fold) in the iPSCs-derived MPCs using somite or PM 

method. X axis represents log2 transformed fold change and Y axis represents negative log10 

false discovery rate. Red points indicate the upregulated craniofacial muscle development 

related genes (PITX2, TBX1, ILS1) and a blue point represent the downregulated limb 

muscle development related gene (PAX3) in PM method-derived MPCs. (E) Venn diagram 

showing the number of exclusively expressed genes in somite-derived primary myoblast 

(TA) compared to PM-derived primary craniofacial muscles (EO, Zygo, Mas, and CP 

myoblasts). (F) Venn diagram showing the number of commonly up-regulated genes in 

primary craniofacial myoblasts (EO, Zygo, Mas, and CP myoblasts) compared to limb 

myoblasts (TA). (G) Total Venn diagram indicating the overlap of DEGs across four 

comparisons. (For interpretation of the references to color in this figure legend, the reader is 

referred to the Web version of this article.)
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Fig. 6. Scheme of differentiation and enrichment of craniofacial skeletal myotubes from human 
iPSCs.
Our PM method mimicked the critical signaling pathways to induce cranial/cardiac 

pharyngeal mesoderm (CPM) from iPSCs by using small molecules. After the bi-potential 

CPM was established, cells were committed to cranial skeletal muscle lineages with 

inhibition of cardiac lineages. We purified HNK1−ERBB3+NGFR+ cMPCs using flow 

cytometry and confirmed that sorted cells expressed myogenic factor 5 (MYF5), a key 

marker for early skeletal myogenic precursors. To facilitate differentiation into mature 

myotubes, cells were treated with transforming growth factor-β (TGF-β) inhibitor and IGF.
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