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Spinal cord injury (SCI) not only affects the quality of life of patients but also poses
a heavy burden on their families. Therefore, it is essential to prevent the occurrence
of SCI; for unpreventable SCI, it is critical to develop effective treatments. In recent
years, various major breakthroughs have been made in cell therapy to protect and
regenerate the damaged spinal cord via various mechanisms such as immune regulation,
paracrine signaling, extracellular matrix (ECM) modification, and lost cell replacement.
Nevertheless, many recent studies have shown that the cell therapy has many
disadvantages, such as tumorigenicity, low survival rate, and immune rejection. Because
of these disadvantages, the clinical application of cell therapy is limited. In recent years,
the role of exosomes in various diseases and their therapeutic potential have attracted
much attention. The same is true for exosomal noncoding RNAs (ncRNAs), which do
not encode proteins but affect transcriptional and translational processes by targeting
specific mRNAs. This review focuses on the mechanism of action of exosomes obtained
from different cell sources in the treatment of SCI and the regulatory role and therapeutic
potential of exosomal ncRNAs. This review also discusses the future opportunities and
challenges, proposing that exosomes and exosomal ncRNAs might be promising tools
for the treatment of SCI.
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Abbreviations: SCI, spinal cord injury; ECM, extracellular matrix; ncRNAs, noncoding RNAs; iPSC, induced pluripotent
stem cells; MSCs, mesenchymal stem cells; NSCs, neural stem cells; OPCs, oligodendrocyte progenitor cells; SCs, schwann
cells; OECs, olfactory ensheathing cells; BSCB, blood-spinal cord barrier; CSPGs, chondroitin sulfate proteoglycans;
PTPσ, Protein Tyrosine Phosphatase Sigma; EVs, extracellular vesicles; ESE, early sorting endosomes; LSEs, late sorting
endosomes; ESCRT, endosomal-sorting complex necessary for transport; MVBs, multivesicular bodies; ILVs, intraluminal
vesicles; MHC, major histocompatibility complex; HSP, heat shock proteins; HUVECs, human umbilical vein endothelial
cells; BMSCs-Exos, bone marrow mesenchymal stem cells-derived exosomes; NF-κB, nuclear factor kappa-B; hpMSCs-
Exos, human placental stem cell-derived exosomes; NPCs, nerve progenitor cells;WJMSCs-EVs, Wharton’s jelly stem
cell-derived extracellular vesicles; hucMSCs-Exos, human umbilical cord stem cell-derived exosomes; EF-MSCs-Exos,
epidural adipose-derived exosomes; NSCs/NPCs-Exos, neural stem/progenitor cell-derived exosomes; SCMECs, spinal cord
microvascular endothelial cells; VEGF-A, vascular endothelial growth factor A; SKP-SCs-Exos, skin schwann cells-derived
exosomes; SCDEs, SC-derived exosomes; TLR2, toll-like receptor 2; PMs, peripheral macrophages; PMs-Exos, peripheral
macrophage-derived exosomes;noncoding small RNAs, microRNAs; lncRNAs, long ncRNAs; circRNAs, circular RNAs;
miRNAs, microRNAs; PTENP1, phosphatase and tension protein homologous pseudogene 1; PTEN, phosphatase and
tension protein homolog; ADSCs, adipose-derived stem cells; Exos, exosomes; BMDMs, bone marrow-derived macrophages;
HNESCs, human neuroepithelial stem cells; DCs, dendritic cells.
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INTRODUCTION

According to the etiology, spinal cord injury (SCI) can be
divided into traumatic and nontraumatic. Traumatic SCI is often
caused by severe damage to the spinal cord due to external
physical impacts (for example, car accidents, falls, sports-related
injuries, or violence). Nontraumatic SCI often occurs during
acute or chronic diseases (for example, tumors, infections, disc
herniation, or vertebral fracture-dislocations), causing spinal
cord compression to produce primary and secondary injuries.
SCI not only affects the quality of life of patients but also poses
a heavy burden on their families. Therefore, it is essential to
prevent the occurrence of SCI; for unpreventable SCI, it is critical
to develop effective treatments (Ahuja et al., 2017).

A central concept in managing any SCI patient has been
‘‘time is the spine’’ (Ahuja et al., 2017). SCI is characterized by
the progressive loss of neurologic function within a few hours.
Therefore, it is essential to rapidly diagnose patients and provide
neuroprotective interventions in the acute injury stage. Because
of these treatments including hemodynamics (Ryken et al.,
2013), hormonal therapy (Hurlbert et al., 2015), and surgical
decompression (Ramakonar and Fehlings, 2021), long-term
functional recovery is improved in patients. Management of
patients with SCI is complex and involves multiple stages of
care, often lasting several years after the initial injury. Thus, later
rehabilitation is also an integral part of the treatment process
(Gómara-Toldrà et al., 2014; van der Scheer et al., 2021).

However, these treatments are not adequate for long-term
functional recovery in SCI patients. In recent years, variousmajor
breakthroughs have been made in cell therapy to protect and
regenerate the damaged spinal cord via various mechanisms such
as immune regulation, paracrine signaling, extracellular matrix
(ECM) modification, and lost cell replacement. Among them,
the most commonly studied and promising cell types include
induced pluripotent stem cells (iPSC), mesenchymal stem cells
(MSCs), neural stem cells (NSCs), oligodendrocyte progenitor
cells (OPCs), Schwann cells (SCs), and olfactory ensheathing
cells (OECs; Harrop et al., 2012; Shao et al., 2019; Ahuja et al.,
2020). Nevertheless, many recent studies have shown that the
cell therapy has many disadvantages, such as tumorigenicity,
low survival rate, and immune rejection. Because of these
disadvantages, the clinical application of cell therapy is limited
(Feng et al., 2021; Liu J. et al., 2021).

The remarkable effect of cell therapy can be attributed
to its dominant paracrine effect. Exosomes, an intercellular
communication tool, affect normal and pathological conditions.
In recent years, the role of exosomes in various diseases and
their therapeutic potential have attracted much attention. The
same is true for exosomal noncoding RNAs (ncRNAs), which do
not encode proteins but affect transcriptional and translational
processes by targeting specific mRNAs. Their diverse functions
have attracted much interest (Colombo et al., 2014; Quinzaños-
Fresnedo and Sahagún-Olmos, 2015; Shi et al., 2018; Dutta
et al., 2021). The types of source cells can influence the
heterogeneity of exosomes, which have different contents and
specific markers from varied cell sources. For example, ERBB2 is
specifically expressed in breast cancer cell-derived exosomes,

and TSPAN8 is a specific marker of epithelial cell-derived
exosomes. The inherent biology and the microenvironment of
the cells can also give exosomes distinct functions such as
uptake by specific cells and tropism to certain organs (Kalluri
and LeBleu, 2020). Especially, exosomal miRNAs have attracted
substantial attention because of their various functions in the
context of SCI treatment. They vary widely with different
cell sources (Cho et al., 2019). For example, neuron-derived
exosomes were enriched for miRNA-383, whereas glial cells-
derived exosomes were not (Pomper et al., 2020). It is noteworthy
that a study directly compared the efficacy of human pluripotent
stem cells (hPSCs)-derived and MSCs-derived exosomes in
an animal model of ischemic stroke. Results showed that
hPSCs-derived exosomes weremore effective thanMSCs-derived
(Webb et al., 2018).

MSCs-derived exosomes are the most widely studied to date
in the treatment of SCI. However, no studies have directly
compared the efficacy of exosomes from different cell sources
in the treatment of SCI (Dutta et al., 2021). Therefore, it
is essential to directly compare the therapeutic potential of
exosomes from varied cell sources in the treatment of SCI. This
review focuses on the mechanism of action and therapeutic
potential of exosomes and exosomal ncRNAs from different cell
sources in the treatment of SCI. This review also discusses the
future opportunities and challenges, proposing that exosomes
and exosomal ncRNAs from different cell sources might be
promising tools for the treatment of SCI.

PATHOPHYSIOLOGICAL PROCESS OF SCI

According to its pathological process, traumatic SCI has a
complex pathophysiological process, and it can be broadly
classified into primary and secondary injuries. The primary
damage can immediately cause mechanical destruction and
dislocation of the spine, causing spinal cord compression
or transection. Subsequently, the primary injury leads to
a continuous cascade of secondary injuries, causing further
damage to the spinal cord and neurological dysfunction. Then,
this injury causes damage to myelin, axons, and neurons.
Moreover, it also disrupts the blood-spinal cord barrier. The
primary damage is often irreversible, while the secondary injury
usually causes more severe damage than the primary injury
(Tator, 1995; McDonald and Sadowsky, 2002; Ahuja et al., 2017).

SCI is divided into five stages depending on the
pathophysiological process and the time of injury: hyperacute
phase (0–2 h), acute phase (2–48 h), subacute phase (2–14 days),
intermediate phase (2 weeks to 6 months), and chronic phase
(>6 months; Rowland et al., 2008). In the hyperacute phase
(0–2 h), it is characterized by traumatic axons, hemorrhagic
necrosis of gray matter, and microglial activation releasing
proinflammatory cytokines. The proinflammatory cytokines
TNFα and IL-1β can be immediately released by the microglial
after injury (Donnelly and Popovich, 2008). In the acute phase
(2–48 h), it is characterized by vasogenic and cytotoxic edema,
persistent hemorrhage and necrosis of glutamate-mediated
excitotoxicity, disruption of blood-spinal cord barrier (BSCB)
permeability, early demyelination, axonal swelling, and neuronal
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death. The BSCB can remain disrupted even at 28 days after SCI
and spread along the entire length of the cord (Whetstone et al.,
2003). The complex network of tight junction (TJ) proteins,
which are the major protein component of the BSCB, can
be modulated by inflammatory cytokines (Lee et al., 2012;
Kumar et al., 2017). In the subacute phase (2–14 days), it is
characterized by persistent edema, thrombosis, and vasospasm
aggravate ischemia. A continual inflammatory cell infiltration
causes further cell death, forming cavities. In addition, reactive
astrocytes act as a barrier to prevent damage from aggravating
but secrete some inhibitory ECM molecules around the lesion.
Chondroitin sulfate proteoglycans (CSPGs), which are a key
component of the ECM, can inhibit axon regeneration through
binding to their major cognate receptor, Protein Tyrosine
Phosphatase Sigma (PTPσ; Sakamoto et al., 2019). Therefore,
blocking the combination of them can effectively promote
axonal regeneration. In the intermediate phase (2 weeks to
6 months), the axons continue to degenerate, and reactive
astrocyte scars mature, becoming an effective regenerative
inhibitor, and the cysts merge to limit axonal regeneration and
cell migration. The scars have two distinct components after
SCI: the lesion core, which primarily includes macrophages and
fibroblasts, is generally considered as the fibrotic scar, and the
lesion border, which is predominantly composed of microglia,
reactive astrocytes, and NG2+ oligodendrocyte progenitor
cells, is commonly regarded as a glial scar (Bradbury and
Burnside, 2019; Tran et al., 2021). In the traditional concept,
the glial scar is considered to exert a detrimental function for
neurological recovery, which not only secretes some inhibitory
extracellular matrix molecules, cytokines, and oxidative stress
products but also inhibits axonal regeneration as a chemical
barrier (Silver and Miller, 2004). However, many studies have
confirmed that glial scar plays a vital role in neuroprotection.
It can limit the spread of inflammation at the injury site to
the surrounding injury as a barrier. And it can also secrete
neurotrophic factors (nerve growth factor and fibroblast
growth factor) and extracellular matrix proteins (laminin and
fibronectin; Lukovic et al., 2015). Therefore, an increasing
number of studies are focusing on the beneficial function of
the glial scar for neurological recovery. In the chronic phase
(>6 months), the Wallerian degeneration process of severed
axons continues, and the severed axons and their cell bodies
may take years to be completely removed (Ehlers, 2004).
Unfortunately, neurological dysfunction and neuropathic
pain will be caused by the formation of syringomyelia
(Todor et al., 2000). Therefore, therapeutic strategies aim
to improve axonal degeneration and demyelination by drug or
cell transplantation.

THE ROLE OF EXOSOMES AND
EXOSOMAL ncRNAs FROM DIFFERENT
CELL SOURCES IN THE TREATMENT OF
SCI

Exosomes are small extracellular vesicles (EVs) of 40–150 nm,
endosome-derived, secreted by most cells. They have been

isolated from many biological fluids, including blood, urine,
semen, and cerebrospinal fluid (Kalra et al., 2016). During
the formation of exosomes, the first phase is the early
invagination of the endosome membrane allows intracellular
components to be engulfed in early sorting endosomes (ESE),
with the participation of mitochondria, Golgi apparatus, and the
endoplasmic reticulum (Hessvik and Llorente, 2018). Then, the
ESEs can mature into the late sorting endosomes (LSEs) with
the participation of the endosomal-sorting complex necessary
for transport (ESCRT) proteins (Vietri et al., 2020). Eventually,
the LSEs generate multivesicular bodies (MVBs) after the
selective integration of substances. The MVBs contain several
vesicular intraluminal vesicles (ILVs; van Niel et al., 2018).
Then, MVBs fuse with the plasma membrane and then release
ILVs as exosomes into the extracellular space. Also, they
can fuse with lysosomes or autophagosomes to be degraded
(Thery et al., 2002; Colombo et al., 2014; van Niel et al.,
2018; Jeppesen et al., 2019; Figure 1) Moreover, exosomes can
be taken up by recipient cells through phagocytosis, direct
fusion, endocytosis, and ligand-receptor interactions. Then, the
contents of the exosomes can be deposited into the cytoplasm
(Kalluri and LeBleu, 2020).

Because exosomes are derived from endosomes, these
substances, including the proteins involved in MVB formation
(Alix and TSG101), membrane transport and fusion (annexins,
GTPases), adhesion (integrins), tetraspanins (CD9, CD63,
CD81), antigen presentation [major histocompatibility complex
(MHC) class molecules], heat shock proteins (HSP70, HSP90),
and other related proteins, are commonly used to identify
exosomes regardless of the cell type of origin. In addition
to proteins, exosomes are rich in specific lipids, mainly
containing ceramide, cholesterol, and sphingolipids. And the
lipids contribute to the formation and structural stability of
exosomes (Mashouri et al., 2019). Exosomes also contain surface
polysaccharides and glycans, mainly containing mannose, α-2,6-
sialic acid, and polyglactin. They present at the plasmamembrane
of exosomes, contributing to the docking and attachment of
these exosomes to recipient cells, especially the Glypican 1
(Melo et al., 2015). Exosomes have been reported to carry
DNA and RNAs, including mRNAs and some ncRNAs (Lotvall
et al., 2014; Kalra et al., 2016; Thery et al., 2018; Figure 2)
Although the ability of exosomes to contain DNA remains
controversial, there have been many pieces of research showing
that they are used for identification (Thakur et al., 2014;
Hagey et al., 2021). Exosomal RNAs are secreted to regulate
intercellular communication; and miRNAs, in particular, play a
vital role in various biological mechanisms (Treiber et al., 2019).
However, the composition and function of exosomes remain to
be fully elucidated.

Around 98% of all the genomic output is ncRNAs in the
data from genome-wide transcriptional analysis in humans
(Mattick, 2001). According to the size of ncRNAs, ncRNAs
are mainly divided into two groups: long ncRNAs with
more than 200 nucleotides and small ncRNAs with no more
than 200 nucleotides (Mercer et al., 2009). Interestingly,
although ncRNAs do not code for proteins, they have diverse
functions in physiology and development of the organisms
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FIGURE 1 | The processes of exosomes formation, secretion and fusion. Early invagination of the endosome membrane allows intracellular components to be
engulfed in vesicular intraluminal vesicles (ILVs). Then, the late endosomes become multivesicular bodies (MVBs) after the selective integration of substances by early
endosomes. MVBs can either fuse with the plasma membrane and then release ILVs as exosomes into the extracellular space or fuse with lysosomes or
autophagosomes to be degraded.

(Amaral and Mattick, 2008). For this reason, an increasing
number of studies have shown that many ncRNAs, particularly
noncoding small RNAs (microRNAs), long ncRNAs (lncRNAs),
and circular RNAs (circRNAs) become differentially expressed
after SCI. In the treatment of SCI, these ncRNAs regulate
the translation and transcription mainly by targeting specific
mRNAs to affect neuronal survival, axonal regeneration, and
glial cell phenotype (Zhou et al., 2016; Bie et al., 2021).
MicroRNAs (miRNAs) are 20–24 nucleotide RNA molecules
with the function of regulating the protein expression levels by
affecting mRNA. Their pivotal role in SCI can be attributed
to individual miRNAs that can target the translation of many
mRNAs (Bhalala et al., 2013). There are two modes of action
for miRNAs binding to the 3’-untranslated region (3’-UTR)
of target mRNA. One is that the perfect binding of miRNAs
to targets induces mRNA degradation, and the other is that
imperfect binding of miRNAs to targets represses translation
(Shahzad et al., 2021). The two modes of action will prevent
protein accumulation by an unknown mechanism. Furthermore,

lncRNAs will act as endogenous RNA to compete for miRNAs
binding to regulate gene expression. lncRNAs are defined as
thousands of RNA transcripts of more than 200 nucleotides
in length without protein-coding potential, which has attracted
much attention in various fields (Shi et al., 2018). A study showed
that the effect of miR-203 andmiR-101, which can down-regulate
the expression of BARD1 protein, can be counteracted by a novel
lncRNA (BARD1 9’L). These findings subvert our perception
of the biological function of ncRNAs, from thinking that
they are nonfunctional transcriptional junk to gaining insight
into their involvement in the pathogenesis of various diseases
(Lee, 2012). It is reported that the exosomes play a role in
intercellular communication. The attachment of RNA-induced
silencing complexes (RISCs) to the ESCRT components makes
the ncRNAs recruit to the exosomes (Sato-Kuwabara et al.,
2015) and the ncRNAs, which are one of the enriched cargo
in exosomes, can be exported outside cells to target specific
mRNAs. Ceramide-dependent machinery controls the release
of exosomal ncRNAs (Kosaka et al., 2010). For this reason, an
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FIGURE 2 | The structure of exosomes. Exosomes express the proteins involved in MVB formation (Alix and TSG101), membrane transport and fusion (annexins,
GTPases), adhesion (integrins), tetraspanins (CD9, CD63, CD81), antigen presentation [major histocompatibility complex (MHC) class molecules], and heat shock
proteins (HSP70, HSP90). Exosomes derived from MSCs carry a complex cargo, including nucleic acids, proteins, lipids, and enzymes.

increasing number of studies are focusing on the role of the
exosomal ncRNAs as potential therapeutic strategies in SCI (Pant
et al., 2021). Exosomes derived from different cells exhibit their
functions, both in vivo or in vitro, and in healthy or disease
states (Lotvall et al., 2014; Thery et al., 2018). Their differential
expression in diverse states can be used as a particular biomarker,
provide new therapeutic targets for diseases, and even used as a
therapeutic approach to replace or assist cell therapy (Chen et al.,
2017). Therefore, we summarize the respective roles of exosomes
and exosomal ncRNAs obtained from different cell sources in
SCI treatment with great confidence for their promotion of
functional recovery after SCI (Figure 3).

MSCs Sources
In the treatment of SCI, the beneficial effects of MSC transplants
have been demonstrated in different experimental studies. There
are many sources of MSCs, such as bone marrow-derived
MSCs, adipose-derivedMSCs, and umbilical cord-derivedMSCs.
Among them, bone marrow-derived MSCs are widely studied as
well as MSC-derived exosomes (Liau et al., 2020; Ren et al., 2020;

Andrzejewska et al., 2021). It has been reported that BMSCs-Exos
effectively promotes the formation of capillaries and improves
the migration of human umbilical vein endothelial cells
(HUVECs) in vitro. In the GLU-induced excitotoxicity model,
the number of TUNEL-positive neuronal cells was significantly
reduced after the treatment of BMSCs-Exos, indicating that
BMSCs-Exos have neuroprotective function. In an SCI rat
model intravenously injected with BMSCs-Exos, the lesion
area became smaller, and CSPG deposition was significantly
reduced, indicating that it inhibited glial scar formation. The
expression levels of inflammatory markers including TNF-α, IL-
1β, and IL-6 significantly decreased, indicating the alleviation
of the inflammatory response. The degree of NF200 staining
reduction at the injury site was significantly lower than that
in the untreated group, indicating that it promoted axonal
regeneration and neuronal survival. The number of C3-positive
reactive astrocytes was significantly reduced, indicating that
BMSCs-Exos inhibited the activation of A1 neurotoxic reactive
astrocytes (Liu et al., 2019). Moreover, some studies have shown
that BMSCs-Exos effectively inhibited pericyte apoptosis and
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FIGURE 3 | The functions of exosomes in SCI repair. Exosomes from different cell sources can inhibit A1 astrocyte activation and olfactory ensheathing cell
apoptosis, as well as induce axonal regeneration, mediate microglia and macrophage polarization, and protect the BSCB from SCI.

maintained BSCB integrity by regulating NOD1-related signaling
pathways in vitro. Therefore, the pericyte level is increased,
thereby enhancing the functional recovery after SCI (Zhou et al.,
2022). After the treatment of BMSCs-Exos, the expression levels
of autophagy-related proteins LC3B and Beclin-1 were increased.
Also, the formation of autophagosomes was promoted. Besides,
the expression level of caspase-3 cleaved by proapoptotic
proteins was significantly decreased, while the expression of
antiapoptotic protein Bcl-2 was upregulated. These results show
that BMSCs-Exos can reduce neuronal apoptosis and promote
the recovery of functional behavior in SCI rats by promoting
autophagy, thus providing a new target for the treatment of SCI
(Gu et al., 2020). Studies have shown that the complementary
levels such as C6, C4 binding protein α, and complement
factor H increase after SCI. Otherwise, BMSCs-Exos treatment
can effectively attenuate the increasing trend of complementary
levels. BMSCs-Exos can also bind to microglia at the injury site
and inhibit the nuclear factor kappa-B (NF-κB) activated by SCI,
thus exerting a protective effect (Zhao et al., 2019).

Studies have shown that the intravenous injection of
human placental stem cell-derived exosomes (hpMSCs-Exos)
significantly increased the expression of neural stem/progenitor

cell markers in the spinal cord. The proliferation ability of
nerve progenitor cells (NPCs) also increases, indicating that
hpMSCs-Exos can promote endogenous NPC and neurogenesis
activation and promote the recovery of motor and autonomic
function after SCI (Zhou et al., 2021). Essentially, hpMSCs-Exos
promoted vessel formation and migration of HUVECs in vitro,
but also significantly increased the vessel number, vessel
volume fraction, and vascular connectivity in a rat model
of SCI (Zhang et al., 2020). The experimental results of
other studies have shown that human Wharton’s jelly stem
cell-derived extracellular vesicles (WJMSCs-EVs) can inhibit
neuroinflammation after SCI, reduce cell death, and thus
restore the motor function. WJMSCs-EVs can also decrease the
GFAP expression, prevent glial scar formation, and promote
regeneration by stimulating NPC (Noori et al., 2021). In
in vivo and in vitro experiments, human umbilical cord
stem cell-derived exosomes (hucMSCs-Exos) inhibited the
secretion of their proinflammatory factors and promoted
the production of anti-inflammatory factors by promoting
the polarization of M1 macrophages to M2 macrophages.
Ultimately, hucMSCs-Exos plays a role in controlling the
inflammatory response (Sun et al., 2018). Recently, it has
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been shown that epidural adipose-derived exosomes (EF-
MSCs-Exos) injected into the tail vein of SCI rats can
improve their neurological recovery and reduce the lesion
volume in SCI rats. Besides, EF-MSCs-Exos can inhibit the
activation of NLRP3 inflammasome and reduce the expression of
proinflammatory factors. In addition, EF-MSCs-Exos treatment
can also reduce the expression level of proapoptotic protein Bax
and upregulate the expression level of antiapoptotic protein Bcl-2
(Huang et al., 2020a).

Recently, it has been demonstrated that miRNAs discovery
in exosomes can be exported outside cells and affect gene
expression in distant cells (Colombo et al., 2014). Therefore,
exosomes derived from miRNA mimics or antisense miRNAs-
modified cells can overexpress or inhibit miRNAs in exosomes,
thereby being used to treat SCI (Bhalala et al., 2013). Because
exosomes and exosomal miRNAs fromMSCs are themost widely
studied to date, we summarize the existing studies on the use of
MSC-derived exosomes and exosomal miRNAs for the treatment
of SCI as follows (Table 1). Recent studies have also shown
that the expression of lncRNAs changes after SCI, and lncRNAs
might play a crucial role in the pathological process of SCI,
unlike miRNAs, and lncRNAs have their specific characteristics
(Yu et al., 2015). Recently, a study showed that lncRNA-
Gm37494 expression was upregulated in exosomes (Exos)
produced by adipose-derived stem cells (ADSCs) under hypoxia.
After overexpressing in ADSCs-Exos by transfection with
lncRNA-Gm37494, lncRNA-Gm37494 inhibited BV2 microglia
polarization to M1 type and promote their polarization to
M2 type by inhibiting miR-130b-3p and promoting PPARγ

expression, ultimately achieving the purpose of repairing
SCI (Shao et al., 2020).

NSCs/NPCs Sources
NSCs/NPCs exhibit nerve regeneration and neuroprotective
effects; the transplantation of such cells into damaged tissue
sites is a promising SCI therapy. Similarly, a large number of
preclinical studies and some clinical studies have shown its
unique advantages (Csobonyeiova et al., 2019). Nonetheless,
NSCs/NPCs also suffer from the same problems as others, such
as tumorigenicity and immune rejection. Fortunately, the neural
stem/progenitor cell-derived exosomes (NSCs/NPCs-Exos)
discovered in recent years can overcome these disadvantages
of stem cell transplantation and might play the same role
to a certain extent. At present, NSCs/NPCs-Exos have been
gradually studied in nerve-related diseases such as stroke
and brain injury, but they still need to be developed for
SCI treatment (Vogel et al., 2018). Only some studies have
evaluated NSCs/NPCs-Exos for the treatment of SCI. It has
been demonstrated that NSCs-Exos can significantly reduce
the extent of SCI and promote functional recovery and
microglial activation in rats. More importantly, NSCs-Exos
treatments increased the expression levels of autophagy-
related proteins LC3B and Beclin-1. Also, they could
promote the formation of autophagosomes. Furthermore,
the expression level of caspase-3 cleaved by proapoptotic
proteins clearly decreased, while the expression of antiapoptotic
protein Bcl-2 was upregulated. These results indicate that

NSCs-Exos reduced neuronal apoptosis and benefited the
recovery of functional behavior in SCI rats by improving
autophagy (Rong et al., 2019). It has also been shown that
NSCs-Exos can promote the migration, proliferation, and
angiogenesis of spinal cord microvascular endothelial cells
(SCMECs) after trauma in vitro. SCMECs can also increase
the microvessel density, spinal canal shrinkage, and motor
function recovery in the rat models of SCI. Moreover, this study
further showed that NSCs-Exos exhibited proangiogenic
effects on SCMECs by transferring vascular endothelial
growth factor A (VEGF-A) and enhancing microvascular
regeneration and tissue healing (Zhong et al., 2020). Recently,
a study showed that miR-29b expression was upregulated in
exosomes (Exos) produced by human neuroepithelial stem
cells (HNESCs). After overexpressing in HNESCs-Exos by
transfection with miR-29b, miR-29b subsequently suppressed
the apoptosis of neuron cells by down-regulating the expression
of PTEN/caspase-3, ultimately achieving the purpose of
repairing SCI (Kang et al., 2020). Furthermore, another study
showed that miR-219a-2–3p expression was upregulated
in exosomes (Exos) produced by neural stem cells (NSCs).
After overexpressing in NSCs-Exos by transfection with
miR-219a-2–3p, miR-219a-2–3p attenuated apoptosis and
neuroinflammation by down-regulating the expression of
YY1/NF-κB, ultimately achieving the purpose of repairing SCI
(Ma et al., 2019).

Other Cell Sources
Nerve regeneration is related to various cells in the tissue
microenvironment, and different types of cells in diverse states
produce the corresponding effects on the target recipient cells.
For example, SCs cannot only migrate to the damaged tissue
area to become a key component of nerve regeneration but
also secrete signaling molecules to attract macrophages, activate
local MSC, and interact with other cell types (Min et al.,
2021). SC-derived exosomes obtained from the skin (SKP-SCs-
Exos) have also been studied; they can regulate cell growth
and death signaling pathways mediated by Akt/mTOR/p70S6K.
SKP-SCs-Exos can enhance the recovery of neuronal viability
and axonal regeneration in the in vivo and in vitro models
(Wu et al., 2020). It has also been shown that SC-derived
exosomes (SCDEs) obtained from the sciatic nerve can reduce
the deposition of chondroitin sulfate proteoglycans (CSPGs)
deposition by increasing Toll-like receptor 2 (TLR2) expression
on astrocytes through the NF-κB/PI3K signaling pathway,
thereby promoting the functional recovery in mice after SCI
(Pan et al., 2021). Recently, it has been demonstrated that
peripheral macrophages (PMs) can effectively improve the
microenvironment of the lesion site, and they are a pivotal
factor in promoting the repair after SCI (Tsarouchas et al.,
2018). Then, the mechanism of peripheral macrophage-derived
exosomes (PMs-Exos) in the treatment of SCI has also been
elucidated. PMs-Exos can activate microglial autophagy and
enhance the polarization of anti-inflammatory microglia (M2)
by inhibiting the PI3K/AKT/mTOR signaling pathway, thus
playing a meaningful role in the anti-inflammation process
of SCI repair (Zhang B. et al., 2021). Transplantation of
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TABLE 1 | Studies about MSC-derived exosomes and exosomal miRNAs in the treatment of SCI.

Study Animal Exosomal
miRNAs

Exosomes
source

The route of
administration

Mechanism of action Biological function

Zhang M. et al.
(2021)

SD rat MiR-181c BMSC Tail vein injection Upregulation of miR-181c
inhibits the target gene
PTEN which in turn inhibits
the NF-κB signaling
pathway and decreases the
expression of microglial
pro-inflammatory cytokines
(TNF-α and IL-1β)

Reduce apoptosis and
inflammation

Zhang A. et al.
(2021)

SD rat MiR-338–5p BMSC Tail vein and
intrathecal injection

Upregulation of
miR-338–5p represses
target gene Cnr1 to
regulate active
Rap1 expression, activates
PI3K/Akt pathway,
attenuates Bax and
caspase-3 expression, and
up-regulates Bcl-2
expression

Reduce apoptosis and
promote neuronal
survival

Xiao et al. (2021) SD rat MiR-29b-3p HucMSC Tail vein injection Upregulation of
miR-29b-3p inhibits the
PTEN axis while activating
the Akt/mTOR pathway

Promote autophagy
and axonal
regeneration

Wang Y. et al.
(2021)

SD rat MiR-199a-
3p/145–5p

HucMSC Tail vein injection Upregulation of
miR-199a-3p and
miR-145–5p inhibit Cblb
and Cbl, respectively, which
in turn activate Akt and Erk
in NGF/TrkA downstream
pathways

Promote neuronal
differentiation, reduce
injury, and promote
functional recovery

Jia et al. (2021) SD rat MiR-381 BMSC Tail vein injection Upregulation of miR-381
inhibits the BRD4-WNT5A
axis while inhibiting
RhoA/Rho-kinase activity

Reduce apoptosis in
dorsal root ganglia
(DRG)

Chen et al. (2021) SD rat MiR-26a BMSC Tail vein injection Upregulation of miR-26a
inhibits the PTEN axis while
activating the Akt/mTOR
pathway

Reduce glial scar
formation and promote
axonal regeneration

Chang et al. (2021) SD rat MiR-125a BMSC Intrathecal injection Upregulation of miR-125a
inhibits the expression of
target gene IRF5

Inhibition of
macrophage
polarization to M1 type
and secretion of
proinflammatory
cytokines

Liu et al. (2020) Mice MiR-216a-5p BMSC Tail vein injection Upregulation of
miR-216a-5p inhibits
TLR4/NF-κB and activates
the PI3K/AKT signaling
pathway

Promote the microglial
transition from M1 to
M2 type

Li R. et al. (2020) SD rat MiR-124–3p BMSC Tail vein injection Upregulation of
miR-124–3p inhibits the
expression of the target
gene Ern1

Promote macrophage
polarization to M2 type

Li C. et al. (2020) SD rat MiR-544 BMSC Tail vein injection Upregulation of miR-544
suppresses the expression
of proinflammatory
cytokines (IL-1a, TNF-a,
IL-17B, and IL-36b)

Promote neuronal
survival and suppresses
inflammatory responses

Huang et al.
(2020b)

SD rat MiR-126 BMSC Tail vein injection Upregulation of miR-126
inhibits the expression of
SPRED1 and PIK3R2

Promote angiogenesis
and neurogenesis and
reduces apoptosis

(Continued)
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TABLE 1 | Continued

Study Animal Exosomal
miRNAs

Exosomes
source

The route of
administration

Mechanism of action Biological function

Zhou et al. (2019) Wistar rat MiR-21–5p BMSC Tail vein injection Upregulation of miR-21–5p
inhibits the expression of
target gene Fasl

Reduce apoptosis

Yu et al. (2019) SD rat MiR-29b BMSC Tail vein injection Upregulation of miR-29b
promotes the expression of
NF200, GAP-43, and
inhibits the expression of
GFAP

Promote neuronal
regeneration and
reduce injury

Kang et al. (2019) SD rat MiR-21 BMSC Tail vein injection Upregulation of miR-21
inhibits the expression of
PTEN and PDCD4

Inhibition of cell death

Li et al. (2018) SD rat MiR-133b BMSC Tail vein injection Upregulation of miR-133b
inhibits the expression of
the target gene RhoA and
promotes the expression of
ERK1/2, CREB, and STAT3

Inhibit neuronal cell
death and enhance
axonal regeneration

Ren et al. (2019) SD rat MiR-133b ADSC - Upregulation of miR-133b
inhibits the expression of
the target gene RhoA and
promotes the expression of
CREB, STAT3, NF, GAP-43,
GFAP, and MBP

Inhibit neuronal cell
death and enhance
axonal regeneration
and neuronal survival

OECs also has its unique advantages in SCI treatment, and it
has a strong growth force. Particularly, it provides a suitable
microenvironment and strong migration characteristics for
axonal growth (Kato et al., 2000). HOECs-Exos can stimulate
NPC proliferation to promote nerve regeneration in the in vitro
models and improve NPC cytotoxicity during oxidative stress.
Otherwise, the in vivo therapeutic effect in SCI rat model
remains to be studied (Tu and Hsueh, 2020). Pericytes, a vital
part of the neurovascular unit, have the same characteristics as
stem cells. Moreover, pericytes interact with endothelial cells
and maintain the stability of endothelial barrier. Treatment
with pericyte-derived exosomes can promote blood flow and
endothelial function to protect BSCB. Moreover, pericyte-
derived exosomes can improve the functional and behavioral
recovery after SCI by reducing the apoptotic response, and
they can be cocultured with endothelial cells under hypoxic
conditions in vitro can also reduce their permeability and play
a protective role (Yuan et al., 2019). Recently, a study showed
that miR-421-3p expression was upregulated in exosomes (Exos)
produced by M2 bone marrow-derived macrophages (BMDMs).
After overexpressing in BMDMs-Exos by transfection with
miR-421-3p, miR-421-3p enhanced protective autophagy in
neuronal cells by inhibiting the expression of mTOR protein,
ultimately achieving the purpose of repairing SCI (Wang et al.,
2020).

THE SEPARATION AND CONCENTRATION
METHODS OF EACH CELL-DERIVED
EXOSOMES IN THE TREATMENT OF SCI

MSCs-Exos were separated and concentrated by
ultracentrifugation and differential centrifugation in many

studies (Huang et al., 2017, 2020a; Lankford et al., 2018;
Wang et al., 2018; Guo et al., 2019; Ji et al., 2019; Kang
et al., 2019; Li et al., 2019; Li C. et al., 2020; Li et al., 2021;
Chen et al., 2021; Cheng et al., 2021; Han et al., 2021; Jia
et al., 2021; Jiang and Zhang, 2021; Liu W. Z. et al., 2021;
Liu et al., 2022; Nakazaki et al., 2021; Nie and Jiang, 2021;
Noori et al., 2021; Sheng et al., 2021; Xiao et al., 2021; Xin
et al., 2021; Zhang A. et al., 2021; Liang et al., 2022; Zhou
et al., 2022) and by precipitation kits/polymer (PEG or others)
in some studies (Li et al., 2018; Ren et al., 2019; Xu et al.,
2019; Yu et al., 2019; Zhao et al., 2019; Fan et al., 2021;
Jia et al., 2021a,b; Kang and Guo, 2022). To achieve better
specificity of MSCs-Exos separation, many researchers isolated
MSCs-Exos using ultrafiltration-centrifugation combined
with density-gradient ultracentrifugation (Liu et al., 2020;
Shao et al., 2020; Chang et al., 2021; Luo et al., 2021; Huang
et al., 2022). Furthermore, some researchers used one or
more techniques following the ultracentrifugation, such
as density-gradient ultracentrifugation (Liu et al., 2019),
size-exclusion chromatography (Li L. et al., 2020), and
magnetic sorting (Kim et al., 2018). NSCs-Exos were separated
and concentrated by ultracentrifugation (Ma et al., 2019),
ultrafiltration-centrifugation (Zhong et al., 2020), and by kits
methods (Kang et al., 2020). To achieve better specificity of
NSCs-Exos separation, some researchers isolated NSCs-Exos
using ultrafiltration-centrifugation combined with density-
gradient ultracentrifugation (Rong et al., 2019). SKP-SCs-Exos
were separated and concentrated by kits methods (Wu et al.,
2020). SC-Exos (Pan et al., 2021), HOECs-Exos (Tu and Hsueh,
2020), and PMs-Exos (Zhang B. et al., 2021) were separated
and concentrated by ultracentrifugation. BMDMs-Exos were
separated and concentrated by ultracentrifugation and kits
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methods (Wang et al., 2020). There are no specific separation
and concentration methods for exosomes from different
cell sources. However, as reviewed in the 2018 guidelines,
different isolation methods have their advantages and
disadvantages (Thery et al., 2018). For example, the
ultracentrifugation method has intermediate recovery and
intermediate specificity. The kit method has high recovery
but low specificity. Moreover, ultrafiltration-centrifugation
combined with density-gradient ultracentrifugation has low
recovery but high specificity. Although there are no high
recovery and high specificity exosome isolation methods,
dendritic cells (DCs)-derived exosomes have been applied in
clinical trials to treat patients with malignant melanoma and
non-small cell lung carcinoma and achieved some efficacy
(Nikfarjam et al., 2020).

PROSPECTS

Traditional drugs have numerous disadvantages: poor water
solubility, rapid in vivo clearance, poor biocompatibility,
unsatisfactory in vivo distribution, and low permeability. New
drug carriers are being continuously developed to optimize
and improve the bioavailability to solve these problems. In
recent years, exosomes have also been developed for drug
loading, which can improve the stability of drugs and exhibit
natural targeting ability based on donor cells. Because it is
a nanomolecule with cell surface substances, it can readily
and selectively penetrate biological barriers (Batrakova and
Kim, 2015; Antimisiaris et al., 2018). At present, there
are two main methods of exosomes transplantation in the
treatment of SCI (Table 1), including intrathecal injection
and tail vein injection. Moreover, a meta-analysis showed that
intrathecal therapy seems to be more effective than tail vein
injection therapy (Yi and Wang, 2021). Interestingly, a study
showed that exosomes could also be used to treat SCI by
intranasal injection. More specifically, intranasal exosomes led
to significant locomotor recovery as compared to the intrathecal
exosomes group (Shahzad et al., 2021). However, so far, there
is no uniform standard for the isolation methods of exosomes.
Exosomes are obtained using different isolation methods with
different purities and specificities. At present, the most used
isolation method for exosomes is ultracentrifugation, but the
purity of obtained exosomes is low. Therefore, the isolation
methods of exosomes still should be developed to obtain a
higher purity and specificity. For questions regarding exosome
preservation and transport, refer to the 2018 International
Association for Extracellular Vesicles statement (Gardiner
et al., 2016; Thery et al., 2018). When exosomes are used
as drugs or carriers for treatments, the dosage, timing, and
administration route are still not known. Therefore, it is
essential to assess their half-life and in vivo distribution
characteristics in advance (Smyth et al., 2015; Yi and Wang,
2021). Regarding the content and function of exosomes, as
mentioned earlier, the results obtained from different cell sources
and culture conditions are different, and the diversity in their
therapeutic effects remains to be studied. Specific exosomes
can be selected according to their studies. Moreover, more

exosomes obtained from cell sources and culture conditions can
be sought.

Currently, in the field of treatment of SCI, most studies
on exosomal ncRNAs focused on miRNAs, lncRNAs, and
circRNAs. In the future, more RNAs should be developed, such
as rRNA, tRNA, and piRNA (Chandran et al., 2017; Jogia and
Ruitenberg, 2020). For the targeted therapy of ncRNAs, the
biological regulatory pathway is very complex, and a single
targeted axis might play only a limited role. Therefore, to
clarify the regulatory network, multicellular, multitarget, and
multipathway validation is one of the directions to elucidate
the specific regulatory mechanism for future research (Li X.
et al., 2020; Wang W. Z. et al., 2021). Nevertheless, ncRNA-
targeted therapy has many disadvantages. For example, it is
easy to miss the target. Even it has a low transfection efficiency
and a short half-life. What’s worse, it is difficult to overcome
the limitations of blood-spinal cord barrier (Shahzad et al.,
2021). Fortunately, targeting and half-life can be improved by
the carrier delivery of drugs such as viruses, siRNAs, lipids,
polyethylene glycol, and exosomes (Guo et al., 2019; Xu et al.,
2019; Li L. et al., 2020; Segel et al., 2021). What’s more, as
mentioned earlier, many studies have achieved some results
using ncRNAs in combination with exosomes for the treatment
of SCI. Because exosomes have the ability to penetrate the
BSCB, they can deliver ncRNAs to the lesioned area of SCI to
enhance efficacy (Ding et al., 2019). Moreover, exosomes have
a lower risk of tumorigenicity, toxic effects, and autoimmune
responses (Lai et al., 2013). However, the clinical application
of exosomes remains problematic. It has been shown that the
amount of exosomes produced by cellular secretion is small
(Katsuda et al., 2013), and it is hard to meet clinical needs.
Therefore, regulating exosomes release is particularly important.
It is reported that the pH of the microenvironment has a role
in the secretion of exosomes (Parolini et al., 2009). Regulating
the pH of the microenvironment may result in increased
exosomes production. Furthermore, most studies have focused
on the mechanism of miRNAs in combination with exosomes
for the treatment of SCI, and only a few studies have used
other RNAs.

CONCLUSION

In summary, the treatment of SCI is still a huge concern,
and no effective methods are available to promote neurological
recovery. SCI is the result of multiple factors, hindering
the development of rehabilitation because of its complexity.
Therefore, understanding the pathomechanism will facilitate
better treatment of SCI. As a mediator of intercellular
communication, exosomes are advantageous in treating SCI.
Exosomal ncRNAs have also been shown to contribute to
nerve regeneration. Exosomes derived from different cells play
very much the same role, and exosomal ncRNAs such as
miRNAs, lncRNAs, and circRNAs have tremendous therapeutic
potential in SCI. We must optimize and enrich exosomes and
exosomal ncRNAs of various cellular sources and combine both
of them effectively to improve their therapeutic efficacy in
SCI. Then, more studies are needed to elucidate the specific
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mechanism of action of exosomes and exosomal ncRNAs
from different cell sources in SCI. These searches provide a
comprehensive theoretical basis for the clinical translation of
exosomes and exosomal ncRNAs from different cell sources in
SCI treatment and provide great hope for the clinical treatment
of SCI.
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