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Caspases in retinal ganglion cell death and axon regeneration
Chloe N Thomas1, Martin Berry1, Ann Logan1, Richard J Blanch1,2,3 and Zubair Ahmed1,3

Retinal ganglion cells (RGC) are terminally differentiated CNS neurons that possess limited endogenous regenerative capacity after
injury and thus RGC death causes permanent visual loss. RGC die by caspase-dependent mechanisms, including apoptosis, during
development, after ocular injury and in progressive degenerative diseases of the eye and optic nerve, such as glaucoma, anterior
ischemic optic neuropathy, diabetic retinopathy and multiple sclerosis. Inhibition of caspases through genetic or pharmacological
approaches can arrest the apoptotic cascade and protect a proportion of RGC. Novel findings have also highlighted a pyroptotic
role of inflammatory caspases in RGC death. In this review, we discuss the molecular signalling mechanisms of apoptotic and
inflammatory caspase responses in RGC specifically, their involvement in RGC degeneration and explore their potential as
therapeutic targets.
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BULLET POINTS
● Caspase-mediated cell death can occur in normal physiology
and pathology.

● Retinal ganglion cells undergo caspase-mediated apoptosis.
● Pyroptosis, a specialised form of inflammatory programmed cell
death, mediated by inflammatory caspases, can occur in retinal
ganglion cells.

● Inhibition of caspases with pharmacological or genetic inhibi-
tors promotes retinal ganglion cell survival.

INTRODUCTION
Retinal ganglion cells (RGCs) in the ganglion cell layer (GCL) of the
inner retina form axons of the optic nerve (ON), which partially
decussate at the optic chiasm, project in the optic tract and
synapse in the lateral geniculate nucleus (LGN) as well as the
superior colliculus, pretectal nucleus and hypothalamus. Optic
radiations relay visual information from the LGN to the visual
cortex.1 The neural retina is an outgrowth of the central nervous
system (CNS); consequently after injury, there is limited endogen-
ous axon regeneration and lost RGCs are not replaced, leading to
irreversible visual loss.
Caspases, a family of cysteine aspartate proteases, have roles in

neuronal pruning during development, inducing RGC death
(through apoptosis and pyroptosis) after trauma and disease
and promoting RGC axon regeneration. Such processes are
attenuated by endogenous and pharmacological inhibitors as
well as gene knockdown using short interfering RNA (siRNA) to
both understand signalling mechanisms and develop therapeutics
to prevent RGC death and promote axon regeneration.
Here we review caspases in apoptotic and pyroptotic RGC

death, the novel role of caspases in RGC axon regeneration and
the neuroprotective success of caspase-targeting interventions.

CASPASES
Caspases are cysteine aspartate proteases that can be divided into
two major phylogenic subfamilies, either interleukin (IL)-1β-
converting enzyme (inflammatory) or mammalian counterparts

of CED-3 (apoptotic) caspases.2,3 Caspases are the main compo-
nents of the apoptotic signalling cascade, although they do also
have other non-apoptotic roles, including inflammation.4,5 Cas-
pases are activated by proximity-induced dimerisation, within
protein complexes, feedback loops and pro-enzyme cleavage.6,7

Apoptotic caspases
Caspases induce apoptosis through initiator and executioner
family members: initiator caspases (caspase-2, -8, -9 and -10)
activate executioner caspases (caspase-3, -6 and -7) through
catalytic cleavage of their activation domain.5,8 Activated execu-
tioner caspases then hydrolyse or cleave proteins leading to
cellular apoptosis.2

Caspases can be activated through the canonical intrinsic or
extrinsic apoptotic pathways (Figure 1). The extrinsic pathway is
activated through ligand-activation of tumour necrosis factor
(TNF) receptor members9 including Fas/CD95 receptor, successive
recruitment of adaptor proteins, such as Fas-associated protein
with death domain (FADD)9,10 and subsequently pro-caspase-8.11

Interactions between Fas/CD95, FADD and caspase-8 form the
death-induced signalling complex (DISC)9,12 and initiate caspase-8
activation,11,12 which sequentially cleaves and activates execu-
tioner caspase-3, -6 and -7.5 Additionally, caspase-8 can cleave the
B-cell lymphoma (Bcl)-2 protein family member BH3 interacting
domain death agonist (Bid) into truncated Bid (tBid), which
stimulates mitochondrial outer membrane permeabilisation
(MOMP), releasing apoptogenic factors,13 including Cytochrome C,
apoptotic protease activating factor 1 (Apaf-1), second
mitochondria-derived activator of caspase/direct inhibitor of
apoptosis-binding protein with low pI (Smac/DIABLO), high-
temperature requirement (Htr) A2 (also known as Omi),
endonuclease-G and apoptosis-inducing factor.14,15

The intrinsic pathway is mitochondria-dependent and
activated by intracellular insults, including DNA damage and loss
of extracellular membrane integrity, causing MOMP.13

Mitochondrial-derived Cytochrome C complexes with Apaf-1,
recruits and activates pro-caspase-9 in a protein complex termed
the apoptosome,16,17 allowing successive activation of
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downstream executioner caspases.16 TNF cell surface death
receptors and different intracellular complexes also mediate cell
death (Figure 1). After TNF-R stimulation, receptor interacting
protein kinase (RIPK) 1, TNF-R1-associated death domain protein
(TRADD), TNF-R associated factor (TRAF 2/5) and cellular inhibitor
of apoptosis (cIAP 1/2) are recruited and form membrane-
associated complex I.18 TNF-R primarily drives inflammatory gene
transcription through the nuclear factor kappa-light-chain-
enhancer of B cells (NF-κB) pathway. Reduced pro-survival signals
at the TNF-R (for example, loss of IAPs), dissociates complex I
causing RIPK1, TRADD, FADD and caspase-8 to form complex IIa,
which initiates apoptosis by caspase-8 auto-activation.19 Caspase-
8 also represses necroptosis (regulated necrosis; mediated by
RIPK1 and RIPK3), thus, if caspase-8 is compromised or inhibited,
for example, through mammalian inhibitors (CrmA and cFLIPs),
pharmacological inhibition (e.g., z-VAD-fmk or z-IETD-fmk) or gene
loss, then necroptosis ensues.20 Necroptosis activation requires
RIPK1, RIPK3 and mixed lineage kinase domain-like protein (MLKL),
which form complex IIb.21 X-linked IAP (XIAP) directly inhibits
caspase-3, -7 and -922 and inhibition of cIAPs and XIAP causes
complex II (the 'ripoptosome'; (RIPK1-RIPK3-FADD-caspase-8-

cFLIP),23,24 which drives caspase-8-mediated apoptosis or
caspase-independent necroptosis without the need for receptor
ligation.
Caspase-8 also acts as a non-enzymatic scaffold in the assembly

of a pro-inflammatory 'FADDosome' (caspase-8-FADD-RIPK1)
complex, inducing NF-κB-dependent inflammation.25

Uniquely, caspase-2 can act as both an initiator and an
executioner caspase, depending on the apoptotic stimuli and
does not fit into either the classically described intrinsic or
extrinsic apoptotic pathways (Figure 2)26,27; its structure resembles
that of an initiator caspase due to its caspase recruitment domain
but can act as an executioner caspase in response to multiple
triggers, including DNA damage, heat shock, endoplasmic
reticulum and oxidative stress.28–32 DNA damage induces PIDDo-
some formation: a protein complex that consists of adaptor
protein RIP-associated ICH-1 homologous protein with a death
domain (RAIDD)33 and p53-induced protein with a death domain
(PIDD),30,34,35 which recruit and activate pro-caspase-2. Caspase-2
can also be activated at the DISC. Caspase-2 can also mediate
apoptosis directly from the mitochondrial compartment.36
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Figure 1. Apoptotic caspases in the canonical intrinsic and extrinsic pathways. Death receptor activation mediates the extrinsic pathway. Fas-R
and TRAIL-R recruit FADD9,10 and pro-caspase-8,11 forming the DISC,9,12 leading to proximity-induced caspase-8 activation11,12 and
downstream activation of executioner caspase-3, -6 and -7.5 Caspase-8 can also activate the intrinsic pathway through truncating BH3-
interacting domain death agonist (Bid) into tBid, which then promotes Bak and Bax mitochondrial membrane insertion, increasing MOMP and
releasing apoptogenic factors,13 including Apaf-1, Cytochrome C and second mitochondria-derived activator of caspase/direct inhibitor of
apoptosis-binding protein with low pI (Smac/DIABLO).14,15 Cytochrome C, Apaf-1 and pro-caspase-9 form the septameric apoptosome
complex,16,17 which activates caspase-9 and successively downstream executioner caspases. Smac/DIABLO indirectly promotes apoptosis by
opposing XIAP inhibition of caspase-3, -7 and -9.22 Caspase-8 can also form complex I at the TNF receptor, which upregulates the NF-κB
survival inflammatory pathway; however, if survival signals are compromised (for example, IAPs) then complex I dissociates from the receptor
forming complex IIa, which initiates caspase-8-dependent apoptosis.19 Caspase-8 inhibits complex IIb formation and necroptosis and caspase-
8 inhibition (for example, through z-IETD-fmk) induces complex IIb formation, causing necroptosis.20 The ‘ripoptosome’ complex forms after
cellular IAPs (cIAPs) or XIAP inhibition, causing caspase-8-dependent apoptosis and necroptosis.23,24
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Inflammatory caspases
Inflammatory caspases (-1 or -11 in mice and -1, -4 and -5 in
humans) can be activated in the inflammasome protein signalling
complex (Figure 3).4,37,38 Inflammasomes are large multimeric
protein complexes that sense pathogen- and host-derived danger
signals and typically comprise of a Nod-like receptor (NLR),
adaptor protein apoptosis-associated speck-like protein contain-
ing a CARD (ASC) and caspase-1.37–39 The main functions of the
inflammasome are to activate caspase-1 to cleave precursor
cytokines IL-1β and IL-18 into their mature active forms and
induce pyroptosis (a lytic form of cell death). Active caspase-1 also
cleaves gasdermin-D into its cytotoxic N-terminal fragment, which
forms a plasma membrane pore, releasing pro-inflammatory
cytokines.40–42 Inflammasome activation is a two-step process:
initial inflammasome priming is required for transcriptional
upregulation of machinery including Nod-like-receptor pyrin
domain containing 3 (NLRP3) and pro-IL-1β,37,38 followed by the
trigger, such as a pathogen-associated molecular pattern (PAMP)
or a damage-associated molecular pattern (DAMP), which induces
inflammasome assembly and activation.
The canonical NLRP3 inflammasome can be activated by PAMPs

(for example, Staphylococcus aureus) and host-derived DAMPs
(e.g., ATP, phagolysomal rupture, cathepsins release, ion flux,
calcium influx, mitochondrial reactive oxygen species and oxidised
mitochondrial DNA).38,43 Potassium efflux has been proposed as a
universal trigger for NLRP3 activation,44 including P2X7 receptor-
mediated potassium pore opening, pannexin-1 and pore-forming
toxins.44 However, potassium efflux is not a common mechanism
for all activation pathways.45,46

Caspase-11, -4 and -5 can be activated by bacterial lipo-
polysaccharide-induced oligomerisation,40 cleaving gasdermin-D

and indirectly activating the NLRP3 inflammasome via pannexin-1
and potassium efflux.47 NLRP3 inflammasome can also be
activated by caspase-8 – which also directly cleaves IL-1β.48,49

MLKL translocates to the cell membrane and disrupts it, triggering
potassium efflux and assembly of the NLRP3 inflammasome.50

MLKL activation also provides a mechanism for processing and
release of IL-1β independently of gasdermin-D.50

ANTICASPASE TREATMENTS: PHARMACOLOGICAL, GENE
KNOCKDOWN AND SIRNA TECHNIQUES
A number of specific and broad-spectrum caspase inhibitors are
based upon the amino-acid sequence of caspase substrate
cleavage sites, acting as pseudoenzymes for active caspases and
therefore competitive inhibitors. Broad-spectrum inhibitors
include Boc-D-fmk, Q-VD-Oph (inhibits caspase-1, -2, -3, -6, -8
and -9), z-VAD-fmk (inhibits all caspases but caspase-2 very
weakly).51–54 Specific caspase substrate cleavage sites include
WEHD (caspase-1), YVAD (caspase-1), VDVAD (caspase-2), DEVD
(caspase-3), LEVD (caspase-4), VEID (caspase-6), LETD (caspase-6),
IETD (caspase-8 and -10) and LEHD (caspase-9)53,55,56.2,3 Caspase
peptide inhibitors are linked to chemical groups that improve
permeability, efficacy and stability of the compound. Peptides
linked to aldehydes (or nitriles or ketones) are reversible inhibitors
(e.g., Ac-DEVD-CHO) and bind to the catalytic site but do not
irreversibly chemically alter the enzyme, whereas peptides linked
to halmethylketones (chloro or fluoro) (e.g., z-VAD-fmk) bind
irreversibly. The chemical group -fmk is non-specific.56,57

Cross-reactivity with 'off-target' caspases limits interpretation
of many studies using these inhibitors. The sequence DEVD
(caspase-3) also binds to caspase-6, -7, -8 -9 and -10, similarly
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Figure 2. Activation mechanisms of caspase-2. Caspase-2 is activated through DNA damage, upregulation of p53 and formation of the
PIDDosome protein complex, which includes p53-induced protein with death domain (PIDD), RIP-associated ICH-1 homologous protein with
death domain (RAIDD) and pro-caspase-2.30,33–35 Caspase-2 is also activated by endoplasmic reticulum (ER) stress and at the Fas-R within the
DISC, alongside Fas-associated protein with death domain (FADD) and caspase-8.28–32 Active caspase-2 cleaves and activates caspase-3,
cleaves BH3 interacting domain death agonist (Bid; which initiates MOMP and the intrinsic apoptotic pathway) or initiates apoptosis directly.
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VDVAD (caspase-2) binds caspase-3 and -7 and LETD (caspase-6)
binds caspase-3, -8 and -9.55,58,59 VEID has a stronger efficacy
for caspase-3 than its target caspase-6, IETD has a stronger efficacy
for caspase-3 and -6 than its target caspases -8 and -10 and LEHD
has a stronger efficacy for caspase-8 and -10 than their intended
substrate IETD, and LEHD also binds caspase-3 and -6.55,58,59

In addition, z-VAD-fmk also binds other cysteine proteases, such as
calpains and cathepsins.51

Caspase activity can also be modulated by siRNA-mediated
gene knockdown, dominant-negative proteins and conditional
and global gene knockout. RNA interference technology may
cause alternative signalling induced by short RNA species and off-
target effects, thus appropriate controls are still critical.60

CASPASES AND RGC DEATH
Caspase-dependent RGC death occurs after eye and brain injuries,
in retinal and optic nerve degenerative disorders61,62 and during
development.63,64 Common mechanisms of degeneration
between different conditions could lead to broadly translatable
therapeutics. Caspase involvement in RGC death in animal models,
primary cell culture and human postmortem specimens are
highlighted in this section. Relative efficacy of neuroprotection is
shown for direct caspase inhibitors in Table 1 and upstream
indirect inhibitors in Table 2.

Endogenous caspase activity and inhibition in RGC
Development. Caspase-dependent apoptosis is important in
pruning neuronal, including RGC, numbers after normal develop-
mental overproduction,63,65 causing an ~ 50% reduction in RGC

numbers shortly after cell birth, which can be prevented by broad-
spectrum caspase inhibitor, Boc-D-fmk.66,67 Caspase-3 is pivotal in
neuronal developmental apoptosis, with active caspase-3 co-
localising to terminal deoxynucleotidyl transferase dUTP nick end
labelling (TUNEL)-positive RGC in 2–6-day chick embryos,67 and
caspase-3 inhibition, using z-DEVD-fmk, reducing TUNEL-positive
cells by ~ 50% and increasing RGC numbers, axons and GCL
thickness.67 Moreover, BARHL2, a member of the Barh gene family,
which suppresses caspase-3 activation, is essential for develop-
mental preservation of normal complement of RGC subtypes.68

Supporting this, caspase-3 knockout mice express a brain-
specific phenotype with excessive neuronal numbers and cellular
disorganisation, dying at 1–3 weeks of age.3,69 Similarly, caspase-9
knockout results in a selective CNS phenotype, characterised by
severe brain malformations and high perinatal lethality without
gross abnormality of other body parts.70,71 Caspase-2 (NEDD2)
gene expression is elevated during neurogenesis and down-
regulated in the mature brain and retina.72,73 However, caspase-2
knockout mice develop normally and lack overt phenotypic
abnormalities, with minimal CNS or retinal defects. The role of
caspase-2 in RGC neurogenesis is therefore unclear. In more
mature mouse retinae, there are no alterations in caspase-3, -6, -7,
-8 or -9 expression between 6 and 24 weeks.74 However, there was
a reduction in cIAP-1 suggesting a possible role for caspases at this
stage.74

Induced caspase activity and anti-caspase treatment in RGC
Optic neuritis. Multiple sclerosis (MS) is an autoimmune, demye-
linating CNS disease and a major cause of non-traumatic disability
in young adults. Optic neuritis involves ON inflammation and
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which also cleaves gasdermin-D cleavage and indirectly activates the NLRP3 inflammasome via pannexin-1.47
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demyelination and is a common presenting feature of MS75

associated with visual loss. The extent of visual recovery after
acute optic neuritis is influenced by demyelination, axonal loss
and RGC death.76 The experimental autoimmune encephalomye-
litis (EAE) model is the most common MS animal model induced
by myelin oligodendrocyte glycoprotein (MOG) peptide
administration causing autoimmunity, inflammation and
neurodegeneration.77,78 In the EAE rat model cleaved caspase-3
immunolocalised to Fluoro-Gold-labelled RGC suggesting that
RGC die by apoptosis,77 though in the EAE mouse model only full-
length caspase-3 immunostaining is present in the GCL.78 RGC
NADH dehydrogenase (mitochondrial electron transport chain)
overexpression suppresses RGC death, rescuing 88% of RGC and
reducing cleaved caspase-3 immunostaining in Thy1-labelled
RGC.79 Treatment with erythropoietin (EPO) reduces RGC death
and active caspase-3 levels, supporting a critical role for caspase-
3.80 Various regulators upstream of caspase-3 are also neuropro-
tective (Table 2).
In a refined mouse model of MS, the MOGTCR× Thy1CFP

mouse, which develops optic neuritis only, either spontaneously
or following induction with Bordetella pertussis toxin,81 RGC
express active caspase-2 and intravitreal injection of a modified
siRNA against caspase-2 (siCASP2) protects ~ 80% of RGC against
apoptosis and axonal degeneration,81 suggesting a critical role for
caspase-2 in RGC apoptosis after optic neuritis.

Traumatic optic neuropathy. Traumatic optic neuropathy (TON) is
a major cause of visual loss after brain and eye injury. TON can be
either direct – when the ON is crushed or severed – or more
commonly indirect, when brain or ocular injury causes secondary
RGC death or ON injury. Spontaneous recovery occurs in a
minority of patients.82 However, the most common outcome is
permanent blindness, and at present, there is no treatment that

improves outcome.83,84 Direct TON can be caused by penetrating
injury, such as craniofacial fractures, or direct compression from
orbital haemorrhage.85 ON transection (ONT) and ON crush (ONC)
in animal models can be used to study degenerative mechanisms
and evaluate neuroprotective and regenerative therapies.86,87

RGC death after ON injury is progressive and the severity is
dependent upon type of lesion and distance from the eye.88,89

After direct TON, RGC begin to degenerate 5 days after axotomy,90

and 90% die between 7 and 14 days86,89,91,92 through caspase-
dependent apoptosis.93,94 Cleaved caspase-2,91,95,96 -8,61,97

-9,90,98,99 -3,90,100–105 -661 and -7,102,106 as well as inflammatory
caspases -11107 and -1,108 have all been detected in RGC after
crush or axotomy, highlighting the crucial role played by caspases
in axotomy-induced RGC death.
Caspase-3 is activated after RGC axotomy,90,100–105 and z-DEVD-

fmk inhibition reduces RGC death.99,101–103,109,110 However,
z-DEVD-fmk also inhibits caspase-6, -7, -8 -9 and -1055,59 and
neither delayed nor multiple treatments of z-DEVD-fmk improved
the RGC survival.101 Caspase-3 is also indirectly reduced in RGC-
neuroprotective therapies, such as either Rho-associated protein
kinase (ROCK) inhibition111,112 or treatment with the broad-
spectrum histone deacetylase inhibitor, valproic acid.113,114 More-
over, a rabbit fluid percussion injury model of indirect TON
increases cleaved caspase-3 in retinal lysate, where full-length
caspase-3 is localised to RGC and pharmacological inhibition with
z-DEVD-fmk is RGC neuroprotective.115

Caspase-7 gene knockout also protects a limited proportion of
RGC after axotomy106 and pharmacological inhibition of caspase-6
and -8, using z-VEID-fmk and z-IETD-fmk or a dominant-negative
against caspase-6 (CASP6 DN) provides some RGC neuroprotec-
tion and promotes regeneration.61 Although caspase-6 is localised
to RGC and some microglia, regeneration is an indirect effect of
ciliary neurotrophic factor (CNTF) production by retinal glia.96

Table 1. Treatments directly targeting caspases in RGC degenerative disease

Caspase Model Inhibitor Time at the end of
the study (days)

Percentage
surviving RGC
(% untreated)

Percentage
surviving RGC
(% treated)

References

Broad spectrum ONT z-VAD 14 16.8a 34.5a 61

75 min raised IOP Q-VD-OPH 7–21 39–64 63–71 62

Caspase-1 ONC NLRP3− /− 3–28 78–13 89–25 108

NMDA-RGC explants YVAD-fmk 2 18 12 135

Caspase-2 ONC z-VDAD-fmk 15 12.3 60 95,96

ONC siCASP2 21–84 10–7 95–96 91,116

Optic neuritis siCASP2 21 65.5 79.3 81

Caspase-3 ONT z-DEVD-cmk 7–28 10–34.3 24.3–47.4 61,100,101

NMDA-RGC explants DEVD-fmk 2 18 26 135

Caspase-3 and -6 NMDA-RGC explants DQMD-fmk 2 18 41.6 135

Caspase-6 ONT SIMA 13a 13 16.8a 37a 61

ONC CASP6 DN 21 14.2 39.4 96

ONT z-VEID 14 16.8a 48.2a 61

NMDA-RGC explants VEID-fmk 2 18 41.6 135

30 min artery ligation z-VEID-fmk 14 33.9 46.2 161

30 min artery ligation siCASP6 14 30a 48a 161

Caspase-7 ONT CASP7− /− 28 38 76 106

Caspase-8 ONT z-IETD (+/− ) -fmk 14 16.8a 31.5–60.7a 61,97

ONT IETD-CHO 14 NA 33.1 97

NMDA-RGC explants IETD-fmk 2 18 27 135

30 min artery ligation z-IETD-fmk 14 33.9 42.2 161

30 min artery ligation siCASP8 14 30.0a 48.4a 161

Caspase-8 and -9 ONT z-IETD-fmk and z-LEHD-fmk 14 NA 38.7 97

Caspase-9 ONT z-LEHD- (+/− ) fmk 14 16.8a 29.1–34.9a 61,97

NMDA-RGC explants LEHD-fmk 2 18 39 135

Specific pharmacological inhibitors, gene knockdown (i.e., siRNA) or gene knockout (− /− ) treatment are displayed with the percentage of surviving RGC in
untreated and treated retinae. aFor calculations, values for uninjured Fluoro-Gold and RBPMS RGC counts not stated in Shabanzadeh et al.161 and values for
identical animals (Sprague Dawley female adult rats) with Fluoro-Gold and RGC counts per mm2 were used from Weishaupt et al.97
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In addition, combined caspase-8 and -9 inhibition provides
additive survival benefits compared with single inhibition,90,97,102

which may suggest either that both intrinsic and extrinsic
apoptotic pathways are activated following direct optic nerve
injury or that there are increased off-target effects. Inhibition of
caspase-8 can also promote caspase-independent RGC death,
such as necroptosis.20

Recent studies have indicated a pivotal role of caspase-2 in
apoptotic RGC injury.91,95,96,116,117 After ON axotomy and crush,
active caspase-2 is exclusively localised to RGC, and its inhibition
using siRNA provides significant neuroprotection.91,95,96 For
example, intravitreal administration of either siCASP291 or the
pharmacological inhibitor z-VDVAD-fmk95 protect 98% and 60% of
RGC, respectively, for up to 30 days and 495% of RGC are
protected from death for 12 weeks if siCASP2 is injected every 8
days.116 Pharmacological inhibition with z-VDVAD-fmk also
inhibits caspase-3 and -7,59 though activation of these caspases
was not affected. The siCASP2 is being developed by Quark
Pharmaceuticals Inc. and is currently in Phase III clinical trials for
ischaemic optic neuropathy and glaucoma.116

NLRP3-induced neuroinflammation promotes RGC death after
partial ONC.108 NLRP3 expression is upregulated in retinal
microglia and NLRP3 inflammasome activation upregulates retinal
cleaved caspase-1 and IL-1β, which is prevented in NLRP3
knockout mice, in which RGC are protected against axotomy-
induced RGC death.108 The P2X7 ionotropic ATP-gated receptors
are implicated in RGC degeneration; P2X7-mediated potassium
efflux induces NLRP3 inflammasome formation and caspase-1
activation.44 P2X7 receptor-deficient mice displayed delayed RGC
loss and reduced phagocytic microglia at early time points after
RGC axotomy.118 Intravitreal administration of a selective PX27
receptor antagonist A438079 delayed RGC death, suggesting P2X7
receptor antagonism as a potential therapeutic strategy.118

Caspase-11 expression is also upregulated in RGC after ONC and
ONT.107

Primary ocular blast injury. Although direct ON injury results in
rapid RGC degeneration, indirect blast-induced TON is delayed
and progressive. After explosive blast, the sonic blast-wave causes
primary blast injury (PBI), which can cause indirect TON.119,120

Secondary blast injury causes direct and indirect TON, when
explosively propelled fragments impact the eye, head and ON.
Blast injury represents a significant threat to military personnel in
modern warfare causing visual loss.121,122 Multiple studies have
demonstrated increased cleaved caspase-3 in the GCL and ON
between 3 and 72 h after whole animal123,124 and direct local
ocular blast exposures.125 Moreover, caspase-3 activation displays
a cumulative effect after multiple exposures,124 which is compar-
able to repeated exposure in combat, potentially leading to worse
structural and functional visual outcomes.126 Additionally, an
alternative model using trinitrotoluene (TNT) explosives detected
active caspase-3 exclusively in photoreceptors and not RGC.127

Other apoptotic markers, such as Bax, Bcl-xL and Cytochrome C
are also elevated in the retina up to 24 h after blast injury.125 DBA/
2J mice lack ocular regulatory mechanism of immune privilege in
the anterior chamber,128 and are thus used as a closed globe
injury model to approximate features of open globe injury,
without complications of infection.129 In this model, full-length
inflammatory caspase-1 is immunolocalised to the inner nuclear
layer (INL) and GCL in control retinae, but immunostaining
declines after blast injury,129 suggesting caspase-1 cleavage.
However, necroptotic markers RIPK1 and RIPK3 have increased
retinal expression, with RIPK1 localised to outer nuclear layer
(ONL), INL and Müller glia and RIPK3 in the ONL, INL and GCL 3
and 28 days post-ocular PBI.130 These findings suggest potential
activation of necroptotic or pyroptotic death pathways.
Although caspase activation immediately follows blast injury,

RGC death does not occur until later time points,130 with retinal

nerve fibre layer (RNFL) thickness unchanged for 3 months
postblast.131,132 Axonal degeneration at 28 days after ON
demyelination130 suggests that, as in direct TON, ON degeneration
may precede RGC death.133 Research into blast-induced RGC
degeneration is in its infancy. However, roles for apoptotic and
potentially inflammatory caspases in RGC death are apparent.

Excitotoxicity-induced RGC death. Excitatory neurotransmitter
glutamate is linked to retinal degeneration, for example, in
glaucoma, through overactivation of N-methyl-D-aspartate (NMDA)
receptors, calcium overload and subsequent mitochondrial
dysfunction. Excitotoxicity-induced RGC death is caspase depen-
dent; broad-spectrum caspase inhibition preserves GCL cells.134

Intravitreal caspase-3, -6, -8 and -9 inhibitors, DEVD-fmk, VEID-fmk,
IETD-fmk and LEHD-fmk respectively, significantly protect RGC,
but caspase-1 and -4 inhibition, using YVAD-fmk, does not,135

suggesting that excitotoxicity-induced RGC death is apoptotic but
not pyroptotic. The greatest RGC neuroprotection is provided by
DEVD-fmk, which inhibits caspase-3 and also -2, -6, -7, -8, -9 and
-10. The latter, LEHD-fmk (intended for caspase-9), is most specific
for caspase-3 and -8 and also inhibits -6 and -10.58,59,135

The IQACRG amino-acid sequence is conserved in the active site
of caspase-1, -2, -3, -6 and -7 and the synthetic peptide, with
amino-acid sequence IQACRG, acts as an enzymatically inactive
caspase mimetic, thus binds to caspase substrates as a pseudo-
enzyme and protects them from proteolysis by caspases.
Treatment with IQACRG caspase mimetic protects RGC from
excitoxicity-induced death both in vivo and in primary culture.136

Light-induced retinopathy. Light exposure can cause
light-induced retinal damage (LIRD) and blindness,137,138 and a
light-toxicity animal model induces photoreceptor and caspase-
dependent RGC apoptosis.139 Cleaved caspase-3 is elevated in
RGC 6 h after toxic light exposure and reaches a peak after 3
days,140–142 co-localising with increased staining for Ras homo-
logue enriched in the brain (RHEB), cyclic AMP response element
modulator-1 (CREM-1), transcription initiator factor IIB (TFIIB),
pyruvate kinase isozyme type M2 (PKM2), SYF2 pre-mRNA splicing
factor (SYF2) and RNA-binding motif protein, X-linked (RBMX),
which are all involved in cell death pathways.140–145 Nuclear factor
of activated T cells, cytoplasmic 4 (NFATc4) (a component of T-cell
activation and a regulator of the immune response) are also co-
localised with cleaved caspase-3, caspase-8 and Fas-L in RGC,
suggesting that NFATc4 may upregulate Fas-L and participate in
RGC apoptosis.146 Intravitreal mitogen-activated protein kinases/
extracellular signal-regulated kinases (MAPK/ERK) inhibitor
reduces PKM2 and active caspase-3 protein expression, suggest-
ing that light-induced RGC apoptosis is in part dependent on
MAPK/ERK pathway.141 Together, these studies show that RGC
apoptosis is correlated with caspase-3 cleavage but not that RGC
death in LIRD is caspase-3 dependent.

Ischaemic RGC death. Retinal ischaemia is a common cause of
visual impairment and sight loss147 and can be experimentally
induced by clamping or ligation of the ophthalmic artery, raising
intraocular pressure (IOP) or bilateral common carotid artery
occlusion.148–151 The degree of RGC loss after ischaemic injury is
dependent upon the length of ischaemic interval and is
progressive. For example, after 45 min of ligation, ischaemia
induces ~ 50% of RGC to degenerate over a 2-week period,
whereas 120 min induces death of 99% over 3 months.151

Ischaemic RGC degeneration is caspase dependent, evidenced
by neuroprotection with broad-spectrum caspase inhibitors (Q-
VD-OPH and Boc-aspartyl-fmk).62 In Thy1-positive RGC, full-length
caspase-2 expression is increased 1,152 6,153,154 24152,154 and
72 h152 after ischaemia and antisense oligonucleotide inhibitor of
caspase-2 (antisense Nedd-2 oligonucleotide 5′-QGCTCG
GCGCCGCCATTTCCAGL-3′) protected inner retinal thickness at 7
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days.152 Brain-derived neurotrophic factor (BDNF) is also RGC
neuroprotective and reduced caspase-2 expression.153 Full-length
caspase-3 immunolocalised to the GCL 4 h after injury155 and
preinjury intravitreal siRNA caspase-3 injection was RGC
neuroprotective,156 though other studies have found full-length
caspase-3 to be exclusively in the INL and ONL.152 Valproic acid, a
broad-spectrum histone deacetylase inhibitor, protects RGC after
ischaemic reperfusion (I/R) injury caused by raised IOP,113,114,157

reducing cleaved caspase-3 and -12 expression.114,157

Pannexin-1 is a mammalian cell membrane channel-forming
protein that acts as a diffusional pathway for ions and small
molecules. Pannexin-1 facilitates neurotoxicity in the ischaemic
brain and retinal pannexin-1 gene knockout suppresses
inflammasome-mediated caspase-1 activation and IL-1β produc-
tion 3 h after ischaemic injury and reduces RGC degeneration at
14 days.158 Administration of YVAD-fmk (caspase-1, -4 and -5)
protects inner retinal morphology in some, but not all,
studies,152,154,155 leaving the role of caspase-1 in question. P2X
receptor stimulation induces ATP influx, potassium ion efflux and
downstream NLRP3 inflammasome and caspase-1 activation.37,38

During stimulated ischaemia (oxygen/glucose deprivation) of
human organotypic retinal cultures, P2X receptor stimulation
causes RGC death, suggesting possible involvement of NLRP3
inflammasome and caspase-1.159

RGC axon degeneration after central retinal artery occlusion is
mediated by the mitochondrial intrinsic apoptotic pathway160

– cytosolic Bax, a pro-apoptotic Bcl-2 family member, levels are
decreased at 3 and 6 h post injury, whereas mitochondrial Bax
levels are elevated at 3, 6 and 24 h, suggesting that Bax
translocates to the mitochondria.160 In addition, cytosolic Cyto-
chrome C levels are elevated at 3 h post injury but not at 6 and
24 h, and cleaved caspase-9 levels are elevated at 3 h.160

RGC are protected by intravitreal caspase-6 and -8 inhibitors (z-
VEID-fmk and z-IETD-fmk) and siRNA against caspase-6 and -8
(siCASP6 and siCASP8) after I/R injury.161 Two different siRNA were
used for each caspase making off-target effects unlikely. Caspase-6
inhibition may act indirectly by increasing retinal glial CNTF
production.96 Two weeks after ischaemia, z-VEID-fmk (caspase-6,
but also -3 and -7) and z-IETD-fmk (caspase-8 but also -3, -6, and
-10) protect only a small proportion of RGC, whereas both siCASP8
and siCASP6 administration elevate RGC survival by ~ 60%.161 This
suggests that small peptide inhibitors are less effective, as they act
as a competitive inhibitor for the caspase substrates, whereas
siRNA gene knockdown reduces caspase gene expression and
could affect non-apoptotic caspase roles, such as caspase-8 in
complex IIb, 'FADDosome', 'ripoptosome' and inflammasome
formation.20

Glaucoma. Glaucoma is a complex, multifactorial disease affect-
ing460 million people worldwide162 and is associated with raised
IOP causing RGC death. Genetic background163 and age164 are
also associated with disease development. Glaucoma is currently
treated by IOP control; however, there is an unmet clinical need
for a neuroprotective treatment.
Acute severe IOP elevation induces I/R injury, but models use

less severe IOP elevation to simulate glaucoma, include the
photocoagulation laser model,165 injection of hypertonic saline
solution,166 injection of paramagnetic microspheres into the
anterior chamber, suture-pulley compression,167 intracameral
transforming growth factor beta (TGF-β) injection168 and AAV-
TGF-β transfection to induce trabecular meshwork fibrosis.169

Apoptotic caspases -3, -8 and -9 are cleaved in RGC after a
period of elevated IOP166,167,170–176 and inflammatory caspases -1,
-4 and -12 are also upregulated.170

In response to acute elevated IOP, NLRP3 inflammasome and
IL-1β production are induced,177,178 mediated through high-
mobility group box-1 (HMGB1) via the NF-κB pathway.178 HMGB1
promotes NLRP3 and ASC elevation leading to caspase-1

maturation. Caspase-8 acts upstream of the NF-κB HMGB1-
caspase-8 pathway and induces the activation of NLRP3 and IL-1β
production.178 Toll-like receptor 4 (TLR4) activation increases
macrophage caspase-8 expression upregulating IL-1β though the
NF-κB pathway178 and causes RGC death through the extrinsic
pathway. Caspase-8 inhibition, using intravitreal z-IETD-fmk,
reduces RGC death through NLRP1 and NLRP3 downregulation,
though inhibition of a direct effect of caspase-8 (or other
caspases) inhibition on the extrinsic apoptotic pathway is not
excluded. Caspase-8 inhibition completely suppresses retinal IL-1β
expression, but caspase-1 inhibition, using z-YVAD-fmk, does not,
suggesting that caspase-8 regulates IL-1β expression through
caspase-1-dependent and -independent pathways.177

Primary open-angle and normal-tension glaucoma patients
display serum autoantibodies against retinal and ON
antigens.179–182 A 'glaucoma-like' syndrome, without direct
damage to the retina or ON, has been induced using immunisa-
tion of ON homogenate causing RGC degeneration,179,183 with
increased GCL full-length caspase-3 expression at 14 and 22 days
after immunisation.179 However, RGC numbers did not decline
until 22 days after immunisation.179

Diabetic retinopathy. RGC degenerate early in the disease
process in the human diabetic retinopathy (DR) retinae demon-
strated by scanning laser polimetry showing reduced RNFL
thickness in DR patients compared with healthy controls.184–186

TUNEL-positive RGC are increased in diabetic rats and in human
postmortem retinae187 and cleaved caspase-3, caspase-9, Fas and
Bax localise to RGC.188,189

Diabetes mellitus develops in the Akita, insulin gene mutation
(Ins2) mouse, after streptozotocin (STZ; toxic to β cells) adminis-
tration, and in the Otsuka Long-Evans Tokushima fatty rats (OLETF;
develop insulin resistance).190–193 In STZ diabetic mice, retinal
caspase activity (assessed with a variety of non-specific substrates)
is increased 8 weeks after induction and GCL counts are reduced
by 20–25% 14 weeks after induction, with TUNEL positivity and
cleaved caspase-3 in the GCL, suggesting RGC apoptosis.192,194

Caspase-2, -8 and -9 activity (using substrate sequences VDVAD,
IETD and LEHD) transiently increases initially. By 4 months,
caspase-3 activity increases and caspase-1, -3, -4 and -5 activities
remain elevated,194 corroborated by elevated cleaved caspase-8
and -3 levels in whole retinal lysates195 and caspase-3 GCL
immunolocalisation.196 In primary retinal explants exposed to high
glucose media, there are more cleaved caspase-3- and -9-positive
RGC compared with explants in normal glucose media.197

CASPASES AND RGC AXON REGENERATION
In addition to promoting RGC survival, caspases promote RGC
axon regeneration after ON injury. Pharmacological inhibition of
caspase-6 and -8, using z-VEID-fmk and z-IETD-fmk, provide RGC
neuroprotection and promote limited RGC axon regeneration,61

with few axons extending 41000 μm beyond the lesion site.
Similarly, few RGC axons regenerated through the lesion site with
inhibition of caspase-6 by a dominant negative (CASP6 DN)96;
however, combined suppression of caspase-2 and -6 using
siCASP2 and CASP6 DN promoted significant regeneration, with
an average of 195 ± 9 axons growing beyond 1000 μm.96 Although
caspase-6 is localised to RGC and some microglia, the neuropro-
tective and pro-regenerative effects of caspase-6 inhibition are
mediated indirectly by CNTF upregulation in retinal glia and are
blocked by suppression of gp130 and the JAK/STAT pathway.96

These studies reveal a novel non-apoptotic role for caspases and
warrants further investigation.
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CONCLUSION
Postmitotic CNS neurons, including RGC, do not regenerate their
axons after trauma or injury; hence RGC trauma or disease can
lead to permanent visual loss. Understanding the signalling
pathways in RGC injury is vital for the development of therapeutic
interventions, such as pharmacological inhibitors, RNA interfer-
ence technology or gene therapies. Caspases, a family of cysteine
aspartate proteases, mediate RGC death in physiology, such as
during development, as well as trauma and disease, and their
inhibition can prevent RGC death. Caspase-3 is implicated during
RGC developmental pruning, whereas most apoptotic and
inflammatory caspases are implicated in trauma and disease, with
siRNA knockdown of caspase-2 providing the greatest neuropro-
tection after axotomy. Non-apoptotic roles of caspases, such as
inflammatory pyroptotic death or facilitating formation of
necroptotic complexes are also critical in RGC death. Caspases
also have a novel role in RGC axon regeneration; in particular,
caspase-6 inhibition mediates regeneration indirectly through
CNTF upregulation in retinal glia. Understanding the key pathways
for caspase-dependant RGC death is fundamental to the devel-
opment and effective translation of neuroprotective treatments
from preclinical studies to clinical practice.
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