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Abstract: Potato is the largest non-cereal food crop in the world. Timely estimation of end-of-season
tuber production using in-season information can inform sustainable agricultural management
decisions that increase productivity while reducing impacts on the environment. Recently, unmanned
aerial vehicles (UAVs) have become increasingly popular in precision agriculture due to their
flexibility in data acquisition and improved spatial and spectral resolutions. In addition, compared
with natural color and multispectral imagery, hyperspectral data can provide higher spectral fidelity
which is important for modelling crop traits. In this study, we conducted end-of-season potato
tuber yield and tuber set predictions using in-season UAV-based hyperspectral images and machine
learning. Specifically, six mainstream machine learning models, i.e., ordinary least square (OLS),
ridge regression, partial least square regression (PLSR), support vector regression (SVR), random
forest (RF), and adaptive boosting (AdaBoost), were developed and compared across potato research
plots with different irrigation rates at the University of Wisconsin Hancock Agricultural Research
Station. Our results showed that the tuber set could be better predicted than the tuber yield, and using
the multi-temporal hyperspectral data improved the model performance. Ridge achieved the best
performance for predicting tuber yield (R? = 0.63) while Ridge and PLSR had similar performance for
predicting tuber set (R? = 0.69). Our study demonstrated that hyperspectral imagery and machine
learning have good potential to help potato growers efficiently manage their irrigation practices.

Keywords: hyperspectral imaging; machine learning; tuber yield; tuber set; unmanned aerial vehicles

1. Introduction

Potato (Solanum tuberosum L.) is an important staple food crop, and improving potato
production is of great importance for ensuring food security for the increasing world population [1].
As a shallow-rooted crop, potato is often grown in soils with low to medium water-holding capacities,
and it is extremely sensitive to water stress [2,3]. Therefore, irrigation is required for profitable tuber
yield and quality. So far, no tools have been available for the potato growers to predict their final
production using in-season information that is easily collectable. Thus, timely estimation of tuber
production during the growing season is necessary to improve irrigation efficiency, reduce the potential
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of yield loss caused by water stress, and minimize the impacts of irrigation on the groundwater
table [4].

Unlike the traditional yield assessment method, the advanced remote sensing technique is based
on a non-destructive and efficient approach which has great potential for estimating the crop production
and monitoring the growth status over the growing season. In the past few decades, satellite data
have been broadly used in crop yield prediction with various spatial and spectral resolution [5-7],
but their adoption in precision farming is hampered by the nonnegligible cloud contamination and
the poor spatial resolution [8]. Recently, the development of sensors promoted the application of
unmanned aerial vehicles (UAVs) in precision agriculture [9-11]. A few studies have used them for
potato growth monitoring and trait estimation. For example, UAV-based RGB imagery was used for
potato identification [12] and emergence estimation [13]. The leaf chlorophyll content of potato was
estimated using multispectral data [14].

Compared with other imaging modalities, such as natural color and multispectral imagey,
hyperspectral imagery consists of hundreds of spectral bands, arranged in a narrower bandwidth,
and is thus capable of providing more detailed spectral information which is of great importance for
estimating complex plant traits, such as yield [15]. For example, the grain yield of paddy fields was
predicted in the northern part of Vientiane in Laos, and the booting stage was found to be the best
prediction time using hyperspectral data [16]. Also, wheat yield was successfully estimated using
190 hyperspectral narrow bands acquired from a UAV platform before harvest in Minnesota [17].
Through comparative experiments, hyperspectral imagery was validated to be more effective than
RGB imagery in modeling the variability in winter barley yield [18]. Though successful, most studies
have concentrated on cereal crops, and it is essential to exploit the potential of applying hyperspectral
imaging to model tuber production in potatoes.

In general, biophysical crop simulation models and statistical machine learning models are
the two main types of approaches for crop yield prediction. The simulation models forecast crop
productivity by combining crop growth information including the physiological characteristics of
plants, nutrient cycling, and environmental factors [19]. Over the past few decades, several simulation
models have been developed for potato, such as POMOD [20], AQUACROP [21], APSIM-Potato [22],
PotatoSoilWat [23], and LINTUL-Potato [24]. Although powerful, they typically require extensive
crop-specific data as inputs, such as crop variety, management, and soil conditions, which are often
difficult to obtain. Moreover, it can also be challenging to calibrate these mechanistic models due to
the uncertainty of input data and the complexity of the physiological processes [25]. On the other
hand, data-driven machine learning methods aim to model the empirical relationship between the
input variables and the crop productivity. Unlike the crop simulation models, these approaches are
not directly based on the physiological mechanisms of plant growth, and thus can forecast the crop
production without depending on the specific factors for individual crops. For example, Gomez et al.
developed machine learning models for in-season potato yield prediction in Spain, using multispectral
satellite images [26].

This study was designed to perform in-season prediction of end-of-season tuber production
under four different irrigation treatments, using UAV-based hyperspectral images and machine
learning. Specifically, six mainstream machine learning models, i.e., ordinary least squares (OLS),
ridge regression, partial least square regression (PLSR), SVR, RF, and adaptive boosting (AdaBoost),
were built and compared for modeling two important potato traits, tuber yield, and tuber set (the total
number of tubers produced per unit). The specific objectives included (1) investigating the potential of
using hyperspectral images for potato yield and tuber set prediction, (2) comparing different model
performances for each trait prediction, and (3) evaluating the model adaptability under different
irrigation treatments.
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2. Materials and Methods

2.1. Experimental Design and Field Data Collection

The field experiments were conducted at the University of Wisconsin Hancock Agricultural
Research Station (HARS) under a Variable Rate Irrigation (VRI) system in Hancock, WI, USA (Figure 1)
in the 2019 growing season. Wisconsin is located in the Great Lakes region which is in the north-central
part of the United States, and Hancock is located in central Wisconsin. In 2019, Hancock experienced
a typical humid continental climate with an average 23 °C daytime temperature and 12 °C nighttime
temperature during the growing season from late April to early September [27]. The monthly total
precipitation was the highest at 18 cm in July and the lowest at 7 cm in August.
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Figure 1. Experimental site location. T1, T2, T3 and T4 represent four irrigation rates: 50%, 75%, 100%
and 125% of actual crop evapotranspiration (ET.).

For the field trials, six potato varieties were evaluated under four irrigation treatments.
Planting occurred on May 1st, and harvesting took place on September 24th. Both planting and
harvesting were conducted using customized machines. The experimental design was a split plot
design with four replications, with the whole plot as the irrigation treatment and the sub-plot as six
different potato varieties. The size of each sub-plot was 7.6 m long and 1.8 m wide, and there were
50 plants in each sub-plot. The four irrigation rates included 50% of ET. (under-irrigation), 75% of
ET. (under-irrigation), 100% of ET. (standard irrigation), and 125% of ET. (over-irrigation). ET refers
to the actual crop evapotranspiration (ET), which is calculated by potential ET X ground cover %.
Potential ET was obtained daily from the UW Extension Ag Weather Mailer, and ground cover was
determined by the CANOPEO app published by the Oklahoma State University [28]. ET. was adjusted
before ground cover reached 80%. Once 80% cover was reached, ET. = potential ET. At the final
harvest, tuber yield was measured by weighing each individual tuber from every sub-plot, and tuber
set was counted as the total number of tubers in each sub-plot. The detailed tuber yield and tuber set
statistics (minium value (Min.), mean value (Mean), maximum value (Max.) and standard diviation
(STD)) for each irrigation treatment are shown in Tables 1 and 2, respectively, and lower production
was observed when the field was under-irrigated.

Table 1. Tuber yield statistics under four irrigation treatments.

Irrigation Rate Min. Mean Max. STD
8 (ton/ha) (ton/ha) (ton/ha) (ton/ha)
50% of ET. 42.92 50.57 59.89 4.32
75% of ET, 42.33 51.15 61.43 5.53
100% of ET. 42.62 52.62 61.70 5.09

125% of ET, 43.51 52.63 62.09 4.76
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Table 2. Tuber set statistics under four irrigation treatments.

Irrigation Rate Min. Mean Max. STD
(pes/plot)  (pes/plot)  (pcs/plot) (pcs/plot)
50% of ET, 530 650 819 85
75% of ET. 499 647 853 92
100% of ET, 537 653 786 81
125% of ET, 514 657 807 96

2.2. UAV-Based Hyperspectral Image Acquisition and Preprocessing

The hyperspectral data were acquired by a Headwall nano-hyperspec imager that offers 273 spectral
bands ranging from 400 nm to 1000 nm with a bandwidth at 2.2 nm. A lightweight navigation system
was deployed on a hyperspectral camera to directly provide the absolute location of the camera
for data geo-referencing. The camera was mounted on a DJI Matrice 600 Pro (DJI Technology Co.,
Shenzhen, China) UAV platform with a three-axis gimbal stabilizer. The UAV flights were conducted
on August 6th and 15th in 2019 under low wind speed and clear sky conditions. Those dates were
picked because they were during the tuber maturation stage, suggesting more accurate prediction as
they were close to the final harvest date compared to timings early in the growing season. The flight
mission was conducted at a height of 40 m with a speed of 5 m/s, resulting in a 2.5 cm ground sampling
distance (GSD).

After the data acquisition, two main preprocessing operations were needed. For the geometric
correction, SpectralView software (Headwall photonics, Inc., Boston, MA, USA) was employed to
orthorectify the raw hyperspectral data based on the GNSS/INS data. For the radiometric correction,
the raw digital numbers (DN) in the hyperspectral images were first converted to radiance and then
radiometrically calibrated to reflectance using the reference panels with 56%, 32%, and 11% reflectivity.
After geometric and radiometric correction, the background (e.g., shadow and soil) in each sub-plot
needed to be removed. In this study, an NIR band at 800 nm wavelength was selected as a threshold,
and the reflectance value of the pixels below 45% was regarded as the background. The preprocessed
data were extracted from each split-plot, and the mean spectrum of each split-plot was used to represent
the plot spectral information.

2.3. Model Development and Performance Evaluation

In this study, we developed models to predict tuber yield and tuber set using the hyperspectral
data acquired at different times. Each sub-plot was considered a data sample. The dependent variable
was the yield (or tuber set) acquired from the end-of-season harvest. The spectral data acquired
from the two flights were used both independently and then combined as the independent variables.
Six mainstream machine learning methods were explored in this study, and a brief introduction of
these algorithms is presented below.

OLS is a commonly used linear regression algorithm that aims to minimize the sum of squared
errors between the observed and predicted values. However, it is subjected to overfitting with a large
number of input features, since penalties on the coefficients are lacking. To overcome this issue,
Ridge was proposed by adding an L2 norm regularization based on the original least square loss
function in OLS to avoid large coefficients and thus help reduce overfitting [29]. The PLSR is a statistical
method that projects both the predicted and the observed variables to a new space and finds a linear
regression model in the new space. The projection helps reduce the dimensionality of the input data,
and it is achieved by using a technique similar to principal components analysis [30]. SVR is an effective
supervised learning approach with good generalization capability. In SVR, the first step is to map
the input variables from the original dimensional space to a high-dimensional feature space through
a kernel function [31]. Second, a linear model is constructed in the new feature space to fit the data.
The kernel function can be either linear or non-linear depending on the input variables, and a radial
basis function (RBF) kernel was adopted in this study. RF is one of the ensemble learning algorithms
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which consists of a large number of individual decision trees [32,33]. The final result is obtained by
averaging the predictions from all individual trees. AdaBoost is another ensemble learning method
that uses the boosting strategy to generate each individual tree in a sequential way, and the weighted
average method is used to obtain the final prediction [34].

We implemented all the machine learning algorithms in Python. To validate the robustness of the
developed models, we adopted a four-fold cross validation strategy for both tuber yield and tuber set
predictions. Specifically, all the input variables were randomly and evenly divided into four subsets.
In each round, one of the four subsets was used as the test set while the remaining three subsets were
treated as the training set. The coefficient of determination (R?) and root mean square error (RMSE)
metrics were used for evaluating the model performance in each round. The final prediction accuracies
were obtained by averaging the results from the four rounds.

3. Results and Discussion

3.1. Model Comparison and Performance

The six machine learning models described in Section 2 were trained independently for modeling
the tuber yield and tuber set using the single-day data acquired on August 6th and August 15th and
also the combined data of the two days, and their accuracies are reported in Tables 3 and 4, respectively.
In general, the combined data improved the model performance compared with single-day data,
which was likely because the combined data included more growth information of potato during
the tuber-bulking period. Therefore, the following analysis was based on the results from using the
two-day combined data.

Table 3. The performance of the six machine learning models for tuber yield prediction.

Model Metrics Aug. 6 + Aug. 15 Aug. 6 Aug. 15
OLS R2 0.13 (0.26) —051(079)  —0.45(0.67)
RMSE 453 (0.33) 5.85 (1.22) 5.81 (1.42)

Ridge R2 0.63 (0.03) 0.58 (0.12) 0.55 (0.07)
RMSE 3.03 (0.29) 3.21(0.57) 3.33(0.31)

PLSR R2 0.53 (0.04) 0.37 (0.09) 0.53 (0.06)
RMSE 3.40 (0.24) 3.92 (0.25) 3.40 (0.29)

SVR R? 0.57 (0.03) 039 (0.11) 0.52 (0.03)
RMSE 3.28 (0.28) 3.90 (0.57) 3.47 (0.32)

RE R2 0.51 (0.10) 0.45 (0.03) 043 (0.13)
RMSE 3.46 (0.28) 3.70 (0.41) 3.73(0.30)

R2 0.45 (0.08) 0.46 (0.06) 0.38 (0.14)

AdaBoost RMSE 3.66 (0.29) 3.66 (0.49) 3.87 (0.42)

Table 4. The performance of the six machine learning models for tuber set prediction.

Model Metrics Aug. 6 + Aug. 15 Aug. 6 Aug. 15
oL R2 0.03 (0.30) 2,99 (0.86) 0.49 (1.39)
RMSE 85.27 (14.09) 17501 (24.09)  96.71 (40.59)

Ridge R 0.69 (0.10) 0.61 (0.09) 0.61 (0.12)
RMSE 48.15 (6.72) 54.77 (7.36) 54.50 (6.69)

PLSR R 0.69 (0.07) 0.61 (0.11) 0.57 (0.15)
RMSE 48.81 (4.40) 54.96 (8.70) 56.44 (8.34)

VR R 0.67 (0.05) 0.55 (0.06) 0.60 (0.06)
RMSE 50.65 (5.04) 58.66 (4.87) 55.80 (4.29)

RE R 0.60 (0.08) 0.45 (0.13) 0.59 (0.06)
RMSE 55.62 (6.39) 64.71 (8.09) 56.34 (5.20)

R2 0.66 (0.08) 0.45 (0.27) 0.56 (0.02)

AdaBoost RMSE 50.97 (7.93) 6331 (15.37) 58.28 (3.04)

For the tuber yield, the Ridge approach achieved the best performance with an R? of 0.63, while the
other five models had R? less than 0.60. For the tuber set, similar prediction accuracies were obtained



Sensors 2020, 20, 5293 60f 13

by Ridge and PLSR, achieving an R? of 0.69, followed by SVR and AdaBoost. Also, we found that OLS
performed the worst and obtained much lower accuracies than others. This is mainly because OLS is
a simple linear model and lacks penalties for the coefficients, thus causing overfitting when there is
a large number of input variables. Besides, we also noticed that the tuber set could be better predicted
than the tuber yield. This is primarily because the tuber set is closely related to the aboveground
stems which can be directly measured by the spectral data [35], whereas there is no clear relationship
between aboveground biomass and tuber growth underground. In addition, the agreement between
the observed and the predicted tuber yield for each model is shown in Figure 2, and similar scatter
plots for tuber set are shown in Figure 3. Among the six models, the best agreement was found for the
Ridge model for tuber yield (Figure 2b). Ridge and PLSR showed better agreement than other models
for the tuber set, (Figure 3b,c). In contrast, the worst agreement was observed for OLS for both tuber
yield (Figure 2a) and tuber set (Figure 3a).

We further analyzed the model performance based on the characteristics of the six models.
Ridge regression shrinks the coefficients by introducing squared regularization term [36] and
hence effectively reduces the sensitivity to outliers and negative effects of multi-collinearity [37].
The superiority of ridge regression in using high dimensional data was observed in this study and
also in several other studies on hyperspectral-based crop yield prediction [38,39]. PLSR and SVR are
commonly used algorithms for processing high dimensional inputs, and they have distinct principles.
Specifically, PLSR searches for a group of low-dimensional latent vectors and performs regression
based on these components [40], while SVR projects the inputs into a higher dimensional space and
constructs a linear model for regression [41]. They were second only to Ridge in tuber yield and tuber
set prediction. Both RF and Adaboost are tree-based ensemble learning techniques, and they are
widely used in the field of crop yield prediction [5,42]. However, in this study, they were found to be
inferior to Ridge, PLSR, and SVR in dealing with a small sample size with high dimensional features.
Although OLS is intuitively understandable and computationally efficient, it failed to process complex
high dimensional data. As OLS performed the worst among all the approaches for both yield and
tuber set prediction, we excluded it from the following analysis.
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Figure 2. The scatter plots of observed vs. predicted tuber yield from (a) OLS, (b) Ridge, (c) PLSR,
(d) SVR, (e) RF, and (f) AdaBoost.
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Figure 3. The scatter plots of observed vs. predicted tuber set from (a) OLS, (b) Ridge, (c) PLSR,
(d) SVR, (e) RF, and (f) AdaBoost.

3.2. Model Adaptability Under Different Irrigation Treatments

Besides the overall performance, the model adaptability under the four irrigation treatments was
also evaluated. For this purpose, the prediction accuracy for each treatment was reported for tuber
yield in Table 5 and tuber set in Table 6. Generally, the best prediction accuracy was obtained in the
100% ET, treatment, followed by 125% ET., and the lowest accuracy was observed in the 50% ET.
treatment. For the tuber yield, the Ridge model performed the best for most treatments except for
125% ET.. For the tuber set, PLSR had a better performance for under-irrigation rates, with an R? of
0.55 and 0.72 for 50% ET. and 75% ET, respectively, and the Ridge model achieved better performance
for the standard and over-irrigation rates, achieving an R? of 0.82 and 0.76, respectively. Finally,
the detailed tuber yield and tuber set modeling performance for each treatment are shown in scatter
plots in Figures 4 and 5. It is clear to see the best agreement was achieved in the 100% ET. treatment
in both tuber yield and tuber set prediction across all approaches. Additionally, strong and stable

agreement was demonstrated in Ridge for tuber yield and tuber set modeling.

Table 5.

irrigation treatments.

Model Metrics  50% of ET.  75% of ET, 100% of ET, 125% of ET,
Ridge R2 0.46 0.56 0.79 0.65
RMSE 3.16 3.68 2.36 2.82
PLSR R? 0.25 0.49 0.69 0.61
RMSE 3.73 3.95 2.84 2.98
SVR R? 0.21 0.52 0.76 0.66
RMSE 3.83 3.85 2.51 2.79
RF R? 0.16 0.41 0.72 0.68
RMSE 3.96 4.26 2.71 2.68
AdaBoost R? 0.01 0.35 0.71 0.63
RMSE 4.30 4.45 2.75 2.89

Performance of five machine learning models in tuber yield prediction under four
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Table 6.

irrigation treatments.

Model Metrics  50% of ET.  75% of ET, 100% of ET, 125% of ET,
Ridge R? 0.51 0.69 0.82 0.76
RMSE 59.21 51.17 34.28 46.48
PLSR R2 0.55 0.72 0.79 0.71
RMSE 57.09 48.39 37.34 51.21
SVR R2 0.52 0.70 0.75 0.70
RMSE 58.68 50.79 40.63 52.17
RF R? 0.50 0.57 0.71 0.64
RMSE 60.23 60.69 43.89 57.55
AdaBoost R? 0.47 0.65 0.77 0.74
RMSE 61.65 54.59 38.78 49.15
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Performance of five machine learning models in tuber set prediction under four

Figure 4. Scatter plots of observed vs. predicted yield from (a) Ridge, (b) PLSR, (c) SVR, (d) RF and
(e) AdaBoost for groups with four different irrigation treatments: (1-4) 50% of ET, 75% of ET., 100% of

ET,, and 125% of ET..
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Figure 5. Scatter plots of observed vs. predicted tuber set from (a) Ridge, (b) PLSR, (c) SVR, (d) RF,
and (e) AdaBoost for groups with four different irrigation treatments: (1-4) 50% of ET,, 75% of ET.,
100% of ET,, and 125% of ET..

3.3. Analysis of Feature Importance

To explore which hyperspectral band is important for predicting the tuber yield and tuber set,
we computed the feature importance using the Gini index which has been widely adopted in tree-based
models (Random Forest and AdaBoost) [43-45].

From Figure 6al,b1, we can find that the values of feature importance around 780 nm and 950 nm
were extremely higher than others. For tuber set, the most important wavelength was different from
that predicting tuber yield (Figure 6a2,b2). Specifically, the bands around 720 nm, 500 nm, and 550 nm
were more significant than other spectral bands. A similar pattern was observed that the red edge is
important for both tuber yield and tuber set prediction, which is consistent with previous research
where the red edge was included in the vegetation indices and successfully predicted crop yield [42].
In this study, all the spectral bands were used for model development. In future work, we will
investigate the band selection method to further enhance the prediction performance.
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Figure 6. Feature importance of RF for (al) tuber yield; (a2) tuber set; Feature importance of AdaBoost
for (b1) tuber yield and (b2) tuber set.

4. Conclusions

In this study, we explored six mainstream machine learning models, OLS, Ridge, PLSR, SVR,
RE, and AdaBoost, for potato tuber yield and tuber set predictions using UAV-based hyperspectral
imagery. The spectral data acquired on August 6th and 15th were combined for the model development,
and the prediction accuracy was much better than using the single-day data. Using the combined data,
the Ridge model performed best among all six models in tuber yield modeling, and Ridge and PLSR
outperformed other models in tuber set modeling. Additionally, we evaluated the model performance
under four irrigation treatments including two under-irrigation rates (50% of ET. and 75% of ET.),
a standard irrigation rate (100% of ET.), and an over-irrigation rate (125% of ET.), and again, Ridge
achieved the best performance in tuber yield prediction for most treatments, and Ridge and PLSR
performed better in tuber set prediction than other models across treatments.

Unlike other crops, potatoes are stem tubers which are situated beneath the surface of the ground
throughout the growing season. Using the UAV remote sensing, we acquired potato hyperspectral
data by imaging the surface of leaves which are directly connected to the belowground potato
tubers through nutrient transportation within the stems [46]. The results of this study demonstrated
the feasibility and potential of using in-season hyperspectral imagery and the machine learning
technique for predicting end-of-season tuber yield and tuber set. The advanced sensing and prediction
methods can also potentially be applied to other tuber crops, such as sweet potatoes, cassavas,
and yams, which grow underground like potatoes. To further improve the prediction performance,
new research is underway to acquire time series hyperspectral images at each growth stage of the
potato crop, consecutively measured soil moisture content at different soil depths throughout the
growing season, and weather factors such as daily average temperature, precipitation, solar radiation,
and wind speed to be incorporated into the modeling process. Precisely and timely estimation of potato
production using in-season information can help potato growers optimize their irrigation management
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to achieve long-term water use sustainability while reducing the risk of yield and quality loss caused
by water stress.
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