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Chinese medicines have long history in treating cancer. With the growing scientific evidence of biomedical researches and clinical
trials in cancer therapy, they are increasingly accepted as a complementary and alternative treatment. One of the mechanisms is
to induce cancer cell death. Aim. To comprehensively review the publications concerning cancer cell death induced by Chinese
medicines in recent years and provide insights on anticancer drug discovery from Chinese medicines. Materials and Methods.
Chinesemedicines (includingChinesemedicinal herbs, animal parts, andminerals) were used in the study.Thekeywords including
“cancer”, “cell death”, “apoptosis”, “autophagy,” “necrosis,” and “Chinesemedicine” were used in retrieval of related information from
PubMed and other databases.Results.The cell death induced byChinesemedicines is described as apoptotic, autophagic, or necrotic
cell death and other types with an emphasis on their mechanisms of anticancer action.The relationship among different types of cell
death induced by Chinese medicines is critically reviewed and discussed. Conclusions.This review summarizes that CMs treatment
could induce multiple pathways leading to cancer cell death, in which apoptosis is the dominant type. To apply these preclinical
researches to clinic application will be a key issue in the future.

1. Introduction

Cancer is one of the leading causes of death in the world.
GLOBOCAN data revealed that approximately 12.7 million
new cases of cancers have been diagnosed and 7.6 million
deaths were attributed to cancers in 2008 [1]. In these life-
threatening cancers, the causes are diverse and complex
and are only partially understood; the reasons why they are
difficult to cure might be due to the complicated cancer
hallmarks: sustaining proliferative signaling, resisting cell
death, inducing angiogenesis, enabling replicative immortal-
ity, activating invasion and metastasis, evading growth sup-
pressors, irregulating cellular energetic, genome instability,
and mutation as well as tumor-promoting inflammation, and
avoiding immune destruction, among which resisting cell

death is the intracellular or external factors-triggered tumor
action to escape from insult [2].

Cell death has conventionally been divided into three
types: apoptosis (Type I), autophagy (Type II), and necrosis
(Type III) [3, 4]. Apoptosis, Type I programmed cell death
(PCD), is a normal response of a physiological process;
it becomes a pathological trait in many diseases includ-
ing cancers when apoptosis is irregulated. It is also the
major type of cell death induced by most of the frontline
chemotherapeutic agents [3, 5, 6]. In the process of apoptotic
cell death, cells have altered morphology such as blebbing,
cell shrinkage, nuclear fragmentation, and chromatin con-
densation. Morphological features of Type II cell death are
different from those of apoptosis, in which formation of
autophagosome and cytolysis of autophagosome-lysosome
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fusion involve the degradation of the components in cancer
cells through the lysosomal machinery [7]. Type III cell death
is a necrotic process whose typical characteristics of necrosis
include disruption of plasma membrane and induction of
inflammation that have been conventionally regarded as an
accidental, uncontrolled cell death. However, recent studies
found that necrosis could be under control as it shared
the same stimuli (cytokines, pathogens, ischemia, heat, and
irradiation), signaling pathways (death receptors, kinase cas-
cades, and mitochondrial), and protective mechanisms (Bcl-
2/Bcl-x, heat shock protein) as apoptosis [5, 8]. Besides these
three types of cell death, several other cell death pathways
have been elucidated [4, 9–12]. Since these distinct cell deaths
have different subroutines, the Nomenclature Committee on
Cell Death (NCCD) has proposed a set of recommendations
to define cell deaths based on the biochemical and functional
condensation in 2012 [9].

Since many of the clinical anticancer drugs are originally
from natural sources, such as vinca alkaloids and taxanes, up
to date, some studies have focused on the herbal medicinal
products, especially Chinese medicines (CMs, including
plants, animals, and minerals) [13–18]. Natural products
are important sources of anticancer lead molecules. Many
successful anticancer drugs come from natural products.
More are still under clinical trials.The aim is to develop novel
anticancer drugs derived from natural products, especially
from CMs. More critical systematic studies on cellular and
molecular therapeutic principle of anticancer natural prod-
ucts from CMs in cancer cell deaths need to be conducted.

In this review, we retrieved the relevant publications from
PubMed and other databases to summarize the actions of
CMs involved in inducing cancer cell death in vitro and
in vivo. Besides clinical applications, other novel cell death
pathways and the relevance of CMs in these fields are also
discussed here.

2. CMs Induce Cancer
Cell Death and Their Underlying
Mechanisms

2.1. CMs Induce Apoptotic Death in Human Cancer Cells.
Both intrinsic and extrinsic pathways involve activation of
apoptosis by CMs in human cancer cells. The CM-initiated
apoptotic cell death is mainly dependent on the activation of
caspase cascade. There are two types of apoptotic caspases:
initiator (apical) caspases and effector (executioner) caspases.
Initiator caspases (e.g., CASP2, CASP8, CASP9, and CASP10)
cleave inactive proforms of effector caspases, thereby activat-
ing them. Initially, caspases are cysteine-aspartic proteases or
cysteine-dependent aspartate-directed proteases in inactive
forms.They are cleaved by interacting special molecules such
as Apaf-1 (apoptotic protease-activating factor-1), Fas/CD95,
or tumor necrosis factor 𝛼 (TNF𝛼) when apoptosis is induced
in cells [9, 132]. Extrinsic apoptosis depends on caspase
activation, while intrinsic apoptosis is either in caspase-
dependent or -independentmanner [9, 133]. CMs can activate
cancer cell death extrinsically, intrinsically, or both; therefore
the mechanisms of CMs inducing cancer apoptotic cell death

have been more diversified. Table 1 summarizes the general
information ofCMs inducing apoptotic cell death.The typical
examples are in Table 1 and Figure 1.

2.1.1. CMs Induce Apoptosis Intrinsically. CMs-induced
intrinsic apoptosis mainly requires the activation of caspases.
CMs can also induce apoptotic cell death by caspase-
independent manner because some types of cancer cells
can ablate the expression of caspases. In addition, even in
caspase-proficient cancer cells, CMs treatment can activate
all types of intrinsic apoptosis, eventually leading to potent
cancer cell death.

Ursolic acid (UA) is an active ingredient in several CMs,
such as Oldenlandia diffusa (Willd.) Roxb. (Chinese name:
Baihuasheshecao), Ligustrum lucidum W.T.Aiton (Chinese
name: Nuzhen), and Eriobotrya japonica (Thunb.) Lindl.
(Chinese name: Pipa). Previous studies showed that UA
could induce cancer cell death by enabling the caspase-
dependent pathway. It was reported that UA activated
caspase-3 and caspase-9 in human prostate cancer cells,
RC-58T/h/SA#4 [32]. UA binding with oleanolic acid could
elevate the caspase-3 activity in human liver cancer cells,
Huh7, HepG2, Hep3B, and HA22T [35]. Its antitumor
effect was also observed in xenograft model. The results
of positron-emission tomography-computed tomography
(PET-CT) imaging indicated that proliferation of tumor cells
declined after UA treatment in vivo [34, 134]. Generally, the
mechanism of CMs to cause intrinsic cell death in cancer is
caspase-dependent. CMs induced the release of cytochrome
c from mitochondria [23], which facilitated the activation
of apoptotic protease-activating factor-1 (Apaf-1) and forms
Apaf-1 apoptosome that bound to caspase-9 through CARD-
CARD (caspase recruitment domain) interactions to form
a holoenzyme complex [135, 136]. The complex cleaved
caspase-3 to produce a caspase cascade resulting in cell
death [94, 136].Themechanisms of some representative CMs
inducing cancer intrinsic cell death are illustrated in Figure 1.

Apart from caspase-dependent cell death, CMs could
initiate apoptosis in both caspase-dependent and caspase-
independent manners. The main biochemical pathway of
caspase-independent cell apoptosis was elucidated as the
results of release of mitochondrial intermembrane space
(IMS) proteins and inhibition of respiratory chain. In this
context, apoptosis-inducing factor (AIF) and endonuclease
G (Endo G) relocated to the nucleus and mediate large-
scale DNA fragmentation. The serine protease, a high tem-
perature requirement protein A2 (HTRA2), cleaved many
cellular substrates including cytoskeletal proteins as well
[9]. Gypenosides (Gyp), derived from Gynostemma penta-
phyllum (Thunb.) Makino (Chinese name: Jiaogulan), could
suppress the growth of WEHI-3 cells in vitro and in vivo
through caspase-dependent and -independent apoptosis.
Gyp inhibited Bcl-2, increased Bax, and induced the release
of cytochrome c and depolarization of mitochondrial mem-
brane potential (Δ𝜓) and stimulated the activities of caspase-
3 and caspase-8, suggesting that Gyp triggered caspase-
dependent cell death. Gyp also induced the generation
of ROS and stimulated the release of AIF and Endo G,



BioMed Research International 3

Table 1: Pure compounds and fractions of CMs inducing cancer cell death and the pathways.

Compounds Resource/Chinese name Cell death pathway
Artemisinins Artemisia annua L./qinghao Apoptosis, necrosis [19–21].

Tanshinone IIA;
cryptotanshinone Salvia miltiorrhiza Bunge/Danshen

Tanshinone IIA: apoptosis
[22, 23]; autophagy [24];
cryptotanshinone: apoptosis [25]

Pseudolaric acid B Pseudolarix kaempferi Gordon/Jinqiansong Autophagy [26]; apoptosis
[27, 28]

Ursolic acid

Oldenlandia diffusa (Willd.) Roxb./Baihuasheshecao;

Ligustrum lucidumW.T.Aiton/N ̈𝜐zhen; Eriobotrya
japonica (Thunb.) Lindl./Pipa

Autophagy [29, 30]; apoptosis
[31–35]

Triptolide Tripterygium wilfordiiHook. f./Leigongteng
Both apoptosis and autophagy
[36]; autophagy [37]; apoptosis
[38]

Oridonin Rabdosia rubescens (Hemsl.) Hara/Donglingcao
Autophagy [39, 40]; both
autophagy and apoptosis
[39, 41, 42]; apoptosis [43, 44]

𝛽-Elemene;
curcumol Curcuma wenyujin Y.H.Chen and C.Ling/Ezhu 𝛽-Elemene: apoptosis [45–49]

Curcumol: apoptosis [50]

Rp1, Rg3, Rh2, Rk1, Rg5,
etc. Panax ginseng C.A.Mey./Renshen

Extracts: apoptosis [51–55];
Rg3: apoptosis (via decrease of
Pim-3 and pBad; NF-𝜅B
inactivation)[56, 57];
Rh2: apoptosis and
paraptosis-like cell death
[42, 58, 59]; apoptosis [60];
Rp1: paraptosis [61]; apoptosis
[62];
KG-135 with etoposide (formula
of Rk1, Rg3 and Rg5): apoptosis
[63]

Polyphyllin D Paris polyphylla Sm./Chong Lou Apoptosis [64, 65]

Gypenosides Gynostemma pentaphyllum (Thunb.)
Makino/Jiaogulan Apoptosis [66]

Baicalin; wogonin;
oroxylin A; baicalein Scutellaria baicalensis Georgi./Huangqin Apoptosis [67–75]

Hesperidin Citrus reticulate Blanco./Chenpi Apoptosis [76–78]
Glycyrrhizin;
18𝛽-glycyrrhetinic acid Glycyrrhiza glabra L./Gancao Apoptosis [79–81]

Eugenol Areca catechu L./Binlang Apoptosis [82]
1S-1-acetoxyeugenol
acetate Alpinia conchigera Griff./Jiebianshanjiang Apoptosis (via NF-𝜅B

inactivation)[83]

Catechins
(-(epicatechin-3-gallate
(EGCG)), polyphenols

Camellia sinensis (L.) Kuntze/Cha

EGCG: autophagy
[42, 58, 59, 84]; apoptosis
[74, 75]; anoikis [85]; parthanatos
[86];
catechin: apoptosis [87];
polyphenols (GrTP): apoptosis
[88–90]

Cryptocaryone Cryptocarya concinnaHance/Tunan Apoptosis [91]
Curcumin Curcuma longa L./Jianghuang Apoptosis [92, 93]
Emodin Rheum palmatum L./Dahuang Apoptosis [45–48, 94].

Aloe emodin Rheum palmatum L./Dahuang;
Polygonum cuspidatum Siebold & Zucc./Huzhang Apoptosis [95, 96]

Silibinin Silybum marianum (L.) Gaertn./Shuifeiji Apoptosis [97–100];
autophagy [46, 101]
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Table 1: Continued.

Compounds Resource/Chinese name Cell death pathway
Gambogic acid Garcinia hamburgy Hook. f./Tenghuang Apoptosis [102–104]

Shikonin Lithospermum erythrorhizon Siebold & Zucc./Zicao Apoptosis [105];
necroptosis [106, 107]

Berberine Coptischinensis Franch/Huanglian
Apoptosis [108, 109];
autophagy [110, 111]; necrosis
[112]; anoikis [113]

Camptothecin Camptotheca acuminate Decne./Xishu Apoptosis [114]
Tetrandrine;
fangchinoline Stephania tetrandra S. Moore/Fangji Tetrandrine: apoptosis [50, 115];

fangchinoline: autophagy [34]

Matrine;
oxymatrine Sophora flavescens Ait./Kushen

Matrine: apoptosis [116, 117];
autophagy [118–120];
oxymatrine: apoptosis [121]

Herbal extracts Zanthoxylum ailanthoides Siebold & Zucc./Shizhuyu Apoptosis [122]
Pharicin A Isodon amethystoides (Benth.) H. Hara,/Xiangchacai Mitotic catastrophe [123]

Casticin Vitex rotundifolia L.f./Manjing Mitotic catastrophe and
apoptosis [124]

Selenium-rich amino
acids silkworm pupas/Chanyong Apoptosis [125]

Arsenic trioxide Pishuang
Necrosis [126]; apoptosis
[45–48, 127–130];
autophagy [131]

resulting in caspase-independent cell death [66]. Silibinin
(from Shuifeiji, silybummarinaum (L) Gaenrt) was reported
to stimulate the release of HTRA2 and AIF in bladder
carcinoma cell line 5637 as well as cytochrome c and activate
caspase-3. Thus silibinin could induce bladder cell death in
both caspase-dependent and -independent manners [100]
(Figure 1, Table 1).

There are some relationships between CMs and intrinsic
death stimuli, for example, Scutellaria, one of the most
popular CM herbal remedies, used in China and several
oriental countries for treatment of inflammation, bacterial,
and viral infections, and it has been shown to possess
anticancer activities in vitro and in vivo in mouse tumor
models [137, 138]. The bioactive components of Scutellaria
were confirmed to be flavonoids [138, 139]. Chrysin is a
natural flavone commonly found in honey that has been
shown to be an antioxidant and anticancer agent [140].
Several studies showed that Chrysin and Apigenin could
potentiate the cytotoxicity of anticancer drugs by depleting
cellularGSH, an important factor in antioxidant defense [141–
143]. A 50–70% depletion of intracellular GSH was observed
in prostate cancer PC-3 cells after 24 h of exposure to 25𝜇M
Chrysin or Apigenin [141, 144].

2.1.2. CMs Induce Apoptosis Extrinsically. Since extrinsic
apoptosis of cancer cells is initiated by binding of death recep-
tors and their ligands, the death receptors may function as
signaling gateway in which Fas/CD95 ligands (FasL/CD95L)
and some cytokines such as TNF𝛼 and TNF superfamily
member 10 (TNFSF10, also known as TRAIL) play great
roles in inducing apoptosis. These lethal cytokines activate
Fas-associated protein with a “death domain” (FADD) and

thereby activate caspase-8/10, caspase-3, caspase-6/7 to a cas-
cade apoptosis response. Matrine, an alkaloid purified from
Sophora flavescens Ait. (Chinese name: Kushen), induces
the apoptosis of gastric carcinoma cells SGC-7901. A study
using MTT assay showed that matrine inhibited SGC-7901
cells proliferation in dose- and time-dependent manners.
Furthermore, the levels of both Fas and FasL were found
to be upregulated after matrine treatment, which resulted
in apoptotic cell death by the activation of caspase-3 [116].
Other CMs involved in the induction of extrinsic apoptosis
included oridonin (from Donglingcao, Rabdosia rubescens
(Hemsl.) Hara) [44], polyphenols from green tea [88, 89],
and glycyrrhizin (from gancao, Glycyrrhiza glabra L.) [81], as
listed in Table 1.

2.1.3. CMs Induce Both Intrinsic and Extrinsic Apoptosis.
Some of CMs exhibit a complex nature by inducing both
intrinsic and extrinsic apoptosis. Kim et al. found that UA
induced the expression of Fas and cleavage of caspase-3 and
caspase-8 as well as caspase-9 and decreased its Δ𝜓. Other
effects, such as Bax upregulation, Bcl-2 downregulation, and
the release of cytochrome c to the cytosol frommitochondria,
were caused by UA treatment [31] (Figure 1, Table 1).

2.2. CMs Induce Autophagic Cancer Cell Death. Autophagic
cell death is characterized with a massive cytoplasmic vac-
uolization resulting in physiological cell death, which is
particularly induced when cells are deficient in essential
apoptotic modulators such as Bcl-2 family and caspases.
Some of the CMs induce autophagy via several signaling
pathways that mediates the downregulation of mammalian
target of rapamycin (mTOR) and upregulation of Beclin-1
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Figure 1: Schematic diagram of the mechanisms of CMs-induced cancer apoptosis. ACE: 1S-1-acetoxyeugenol acetate; AE: aloe emodin;
ART: artemisinins; ATO: arsenic trioxide; BAI: baicalin; BL: baicalein; BER: berberine; CAM: camptothecin; CAT: catechins; CRP:
cryptocaryone; CRY: cryptotanshinone; CUR: curcumin; CUL: curcumol; EL: 𝛽-elemene; EGCG: (-)epicatechin-3-gallate and polyphenols;
EMO: Emodin; ES: extract of shizhuyu; EUG: eugenol; GA: gambogic acid; GC: gancao;GS:Ginseng;GY: gypenosides,HES: hesperidin;HET:
hesperetin; MAT: matrine; OR: oridonin; ORA: oroxylin A; OX: oxymatrine; PD: polyphyllin D; PAB: pseudolaric acid B; SHI: shikonin; SIL:
silibinin; SRA: selenium-rich amino acids; TAN: tanshinone IIA; TET: tetrandrine; TH: total huangqin glucosides; TRI: triptolide; UA: ursolic
acid; WO: wogonin.

[4, 5, 12] (Figure 2). We previously reported that fangchino-
line (isolated from Fangji, Stephenia tetrandra S Moore) trig-
gered autophagy in a dose-dependent manner on two human
hepatocellular carcinoma cell lines, HepG2 and PLC/PRF/5.
Blocking fangchinoline-induced autophagy process would
alter the pathway of cell death leading to apoptosis; thus cell
death was an irreversible process induced by fangchinoline
[34]. Cheng et al. reported that the exposure of murine
fibrosarcoma L929 cells to oridonin led to the release of
cytochrome c, translocation of Bax, and generation of ROS.
Additionally, oridonin induced autophagy in L929 cells
through p38 andNK-𝜅B pathways. Autophagy occurred after
oridonin treatment and blocking autophagy caused apoptosis
[39, 40]. These observations suggested that autophagic cell
death governed the cell fate upon CMs treatment. General
information of CMs inducing autophagic cell death is sum-
marized in Table 1. Figure 2 further illustrates the mecha-
nisms of some representative CMs inducing autophagic cell
death.

2.3. CMs Induce Necrotic Cancer Cell Death. Necrosis is
classified as nonprogrammed cell death in the absence of
morphological traits of apoptosis or autophagy. This phe-
nomenon gives rise to “uncontrolled” cell death, loss of ATP,

and membrane pumps [4]. In contrast to these features,
recent study showed that necrosis exhibited its regulated
characteristic, in other words, necroptosis [9]. This process
involved alkylating DNA damage, excitotoxins, and ligation
of death receptors under some conditions, which depended
on the serine/threonine kinase activity of RIP1, target of a
new cytoprotective agent, necrostatins. Others that affected
the execution of necroptosis were named cyclophilin D, poly
(ADP-ribose) polymerase 1 (PARP-1), and AIF [145]. Several
researches on CMs have focused on the study of necrosis or
necroptosis. Shikonin, a component extracted from Lithos-
permum erythrorhizon Siebold & Zucc. (Zicao), has been
found to induce necrotic cell death in MCF-7 and HEK293.
Han et al. reported that cell death pathway of shikonin-
treated cells was different from either apoptosis or autophagic
cell death in which loss of plasma membrane integrity was
one of the morphology of necrotic cell death, but loss of Δ𝜓
and elevation of ROS did not critically contribute to cell death
due to the protection by necrostatin-1 [106, 107]. ROS and
Ca2+ elevated permeability transition pore complex- (PTPC-
) dependent mitochondrial permeability transition (which
was also induced by RIP1), while necrostatin-1 specifically
prevented the cells from necroptosis. In summary, shikonin
could induce cancer cells into necroptosis.
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Figure 2: Schematic diagram of the mechanisms of the CMs for cancer autophagy death. AE: aloe emodin; ATO: arsenic trioxide; BER:
berberine, EGCG: (-)epicatechin-3-gallate and polyphenols; FA: fangchinoline; OR: oridonin; PAB: pseudolaric acid BSIL: silibinin; TRI:
triptolide; UA: ursolic acid.

Arsenic trioxide, another popular CM (Chinese name:
Pishuang), also induced necrosis in the dose of 1mg/kg
accompanied by a sharp decrease of proliferation index
in HCC cells [126]. Mercer et al. reported that treatment
of artesunate (50 𝜇m, 48 h), an artemisinin from Artemisia
annua L. (Chinese name: Qinghao), induced 24 ± 9% of
necrotic/late apoptotic in HeLa cells and 67 ± 21% necrotic
in HeLa 𝜌0 cells. These data suggested that induced necrosis
was associated with low levels of ATP and defective apoptotic
mechanisms in some cancer lines [21]. Table 1 shows general
information of CMs-induced necrotic cell death. Figure 3
illustrates the mechanisms of some representative CMs-
induced necrotic cell death.

3. Discussion

As one of the typical cancer hallmarks, cell death has attracted
great attention in recent years and the study of this biological
process with intervention of CMs will explore a novel way to
treat cancers clinically. However, many CMs have not been
approved for clinical use yet. To further investigate the effi-
cacy and toxicity of CMs, further researches and clinical trials
are necessary. In addition, a lot of CMs have been directly

used as composite formula in cancer clinics according to
Chinese medicine’s theories for centuries. However, limited
composite formula-induced anticancer action via cell death
pathway is known and only few researches have been con-
ducted from in vitro study, for example, Huang-lian-jie-du-
tang (Japanese name: oren-gedoku-to) induced apoptotic cell
death in humanmyeloma cells [146], HepG2, and PLC/PRF/5
cells [147]. More studies on composite Chinese medicine
formula with good quality control would be needed at the
molecular and cellular level.

As mentioned above, CM may exhibit integrated or
additive anticancer effect through two or more subpathways.
Triptolide (from Leigongteng, Tripterygium wilfordii Hook.
f.) could induce both caspase-dependent and -independent
apoptotic cell death by activating caspase-3, caspase-8, and
caspase-9 and Bax but decreasing Bcl-2 [36–38, 113, 148–152].
These studies indicated that CMs might function on multiple
modes in cancer cells which need further studies [12, 153]
(Figure 1). With regard to cell deaths, through integrated
or additive effect, we have conducted a study to explore
how berberine (from Huanglian, Coptis chinensis Franch)
induced cell death in human liver cancer cells, HepG2,
and MHCC97-L. We found that the chemical induced both
apoptosis and autophagy, in which autophagy accounts for
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Figure 3: Schematic diagram of the mechanisms of CMs for cancer necrotic/necroptotic death. ART: artemisinins; ATO: arsenic trioxide;
BER: berberine; SHI: shikonin.

30% of berberine-induced HepG2 cell death, while apoptosis
was responsible for the most contribution to liver cancer
cell death. With regard to the underlying mechanism of
berberine-induced autophagic and apoptotic cell death, our
data demonstrated it could induce Bax activation, forma-
tion of PTPC, reduction of Δ𝜓, and release of cytochrome
c and Beclin-1 [111]. Similar to apoptosis, autophagy and
necrosis/necroptosis affect PTPC, ROS, Ca2+, Bcl-2, Bax,
AIF, PARP, and other cytokines during programmed cell
death; it was reported that berberine induced necrosis in
B16 cells [112]. But it is unknown whether berberine can
induce programmed necrosis in HepG2. The cross talk
among the three cell death pathways may lead to therapeutic
implications. For instance, the selective inhibition of necrosis
or apoptotic cell deathmay defend inflammation and thereby
reduce subsequent tissue damage. Besides, it may serve as a
novel therapeutic strategy by inducing necrotic cell death on
apoptosis resistant cancer cells [109, 145].

The effectiveness of cancer chemotherapy significantly
depends on apoptosis in cancer cells, while the significance of
autophagy and necrosis in cancer therapy needs to be further
clarified. Several reports showed that some CMs induced
autophagy and inhibited cell apoptosis [30, 37, 45–48]. In
contrast, some may induce autophagy leading to apoptosis
[36, 41, 111]. In this context, autophagy might act as a house-
keeper which eliminated abnormal proteins and recycles
materials during cell starvation [7, 154]. Cell death pathway
could switch to apoptosis or necrosis by inhibiting autophagy
[4, 9]. However, themolecularmechanism between apoptosis
and programmed necrosis (or necroptosis) is still unclear.

In addition to the above three types of cell death, there are
other new types of cell death. Ginsenoside Rh2 (From Ren-
shen) exhibited significant effects on cell death in colorectal
cancer cells, HCT116 and SW480. Besides inducing apoptosis
through activation of p53 pathway, Ginsenoside Rh2 also
increased visible cytoplasmic vacuolization in HCT116 cells,
which were blocked by cycloheximide (CHX), a protein
synthesis inhibitor. Due to the characteristic of paraptosis as
visible cytoplasmic vacuolization without disruption of the
cell membrane [155, 156], Ginsenoside Rh2 was proposed as a
paraptosis-like cell death inducer [42, 58, 59]. Berberine and a
modifiedChinese formula,YiGuan Jian,might induce cancer
cell anoikis [113, 149, 157]. Pharicin A (from Xiangchacai,
Isodon amethystoides (Benth.) H. Hara) [123] and casticin
(from Manjing, Vitex rotundifolia L.f.) [124] initiated mitotic
catastrophe in cancer. Apart from the above-mentioned cell
death, several other cell death pathways such as cornification,
entosis, netosis, parthanatos, and pyroptosis have also been
discussed elsewhere [4, 9–12]. However, to the best of our
knowledge, none of the CMs is found to be involved in these
novel pathways.

In summary, this paper reviewed 45 pure compounds
and extracts from CMs which can induce different cancer
cell death and the underlying mechanisms. The overview of
the flow chart is shown in Figure 4. Apparently, cell death is
not only one mechanism of all these pure compounds and
extracts for cancer therapy, but also via other mechanisms
such as antiproliferation, anti-invasion, anti-angiogenesis,
and anti-inflammation [15]. Since the natural sources of CMs
are raw or processed materials focusing on low- or nontoxic
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Figure 4: The overview of the flow chart for this review paper. The paper reviewed 45 pure compounds and extracts from CMs which can
induce different cancer cell death.

dosages, while all these CMs in this review are pure single
compounds or extracts which induce cell death by cytotoxic
dosage, we should pay attention to careful explanation of the
results of all these CMs. Basically, CM practitioners do not
use pure compounds to treat diseases, but CM practitioners
begin to integrate traditional use with results derived from
modern research including characteristics of CMs inducing
cell death for cancer therapy in recent years. For example,
berberine, a main active compound of huanglian, is not
directly used in CM clinical practice, but the various effects of
berberine in cancer cell models will bring some new insight
into clinical usage of huanglian when CM practitioners use
huanglian combined with other herbs to treat cancer Tang
et al., [158]. Usually, huanglian was used in low dosage 2–
5 g to treat diseases, while high dosage of huanglian at 15–
30 g was also suggested for use in recent years because we
found that berberine could inhibit cancer cell migration in
low dosage, while berberine could induce cell death in high
dosage with safety Tang et al., [15, 111, 158]. For the high
dosage of huanglian, it needs further validation by clinical
study.On the other hand, limited composite formula-induced
anticancer action via cell death pathway is known and only
few researches have been conducted from in vitro study;more
studies on composite Chinese medicine formula with good
quality control would be needed at themolecular and cellular
level and clinical studies.

4. Conclusions

This review showed that CMs treatment could induce
multiple cancer cell death pathways including apoptosis,
autophagy, necrosis, and other kinds of cell death, in which
apoptosis is the most dominant type. How to apply these
preclinical researches to clinical application will be a key
issue in the future. The summary about CMs inducing cell
death in this systematic review may offer insight into future

development of cancer drug discovery fromCMs and clinical
application of CMs in cancer treatment.
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