
R E S E A R CH A R T I C L E

Brain signatures based on structural MRI: Classification for
MCI, PMCI, and AD

Venkateswarlu Gonuguntla1 | Ehwa Yang1 | Yi Guan2 | Bang-Bon Koo2 |

Jae-Hun Kim3

1Medical Science Research Institute, Samsung

Medical Center, Seoul, South Korea

2Department of Anatomy and Neurobiology,

Boston University School of Medicine, Boston,

Massachusetts, USA

3Department of Radiology, Samsung Medical

Center, Sungkyunkwan University School of

Medicine, Seoul, South Korea

Correspondence

Jae-Hun Kim, Department of Radiology,

Samsung Medical Center, Sungkyunkwan

University School of Medicine, Seoul,

South Korea.

Email: jaehun.kim78@gmail.com

Funding information

This research was supported by a grant from

the Korea Health Technology R&D Project

through the Korea Health Industry

Development Institute (KHIDI) which is funded

by the Ministry of Health and the Welfare

Republic of Korea (grant number:

HU21C0222), and by Future Medicine 2030

Project of the Samsung Medical Center

[#SMX1220101]. This research was also

supported by a Department of Defense

CDMRP W81XWH2010236 (Koo BB &

Guan Yi).

Abstract

Structural MRI (sMRI) provides valuable information for understanding neurodegen-

erative illnesses such as Alzheimer’s Disease (AD) since it detects the brain’s cerebral
atrophy. The development of brain networks utilizing single imaging data—sMRI is an

understudied area that has the potential to provide a network neuroscientific view-

point on the brain. In this paper, we proposed a framework for constructing a brain

network utilizing sMRI data, followed by the extraction of signature networks and

important regions of interest (ROIs). To construct a brain network using sMRI, nodes

are defined as regions described by the brain atlas, and edge weights are determined

using a distance measure called the Sorensen distance between probability distribu-

tions of gray matter tissue probability maps. The brain signatures identified are based

on the changes in the networks of disease and control subjects. To validate the pro-

posed methodology, we first identified the brain signatures and critical ROIs associ-

ated with mild cognitive impairment (MCI), progressive MCI (PMCI), and Alzheimer’s
disease (AD) with 60 reference subjects (15 each of control, MCI, PMCI, and AD).

Then, 200 examination subjects (50 each of control, MCI, PMCI, and AD) were

selected to evaluate the identified signature patterns. Results demonstrate that the

proposed framework is capable of extracting brain signatures and has a number of

potential applications in the disciplines of brain mapping, brain communication, and

brain network-based applications.

K E YWORD S
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1 | INTRODUCTION

Structural MRI (sMRI) is a non-invasive clinical imaging technique that

is frequently used to examine the anatomy and disease of the brain

(Frisoni et al., 2010; Vemuri & Jack, 2010). Recently, researchers have

concentrated on the network modifications associated with neurode-

generative illnesses such as Alzheimer’s Disease (AD). It is a subjective

disease that typically begins with moderate cognitive impairment

(MCI). Individual network modifications may enable the identification

of people who progress from MCI to AD, and an understanding of

these changes throughout the transition may aid in delaying the con-

version from MCI to AD. Several studies over the last decade have

identified some underlying brain network patterns associated with

disease using one or more neuroimaging modalities such as diffusion
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magnetic resonance imaging (dMRI), functional magnetic resonance

imaging (fMRI), structural magnetic resonance imaging (sMRI), electro-

encephalography (EEG), and positron emission tomography (PET)

(Apostolova & Thompson, 2007; Brier et al., 2014; Dai et al., 2019;

Filippi & Agosta, 2011; Filippi et al., 2020; Hojjati et al., 2018; Li

et al., 2019). The majority of currently available strategies for finding

disease-related brain networks combine data from numerous partici-

pants to generate a single network. This limits our ability to compre-

hend an individual subject and the network changes in their brain

anatomy. Additionally, the construction of a network matrix for an

individual is a difficult task due to other limitations associated with

the use of each modality (e.g., building a network matrix based on cor-

relation methods is more efficient when using EEG and fMRI data, but

is inefficient when using sMRI and PET data, which have only one

time point (Jiang et al., 2017). Also, comparing different brain regions

within an individual using sMRI requires an adequate mapping of

voxels to regions.

To address these concerns, works such as (Beheshti et al., 2017;

Tijms et al., 2012) divided the brain into uniform cubes and defined a

network as the correlations between the cubes. As a result, it is diffi-

cult to map the functional areas of the brain. In order to get around

this problem, (Kong et al., 2015) devised a method for identifying indi-

vidual brain networks, and then the metrics of those networks could

be used to look at the individual variances of more complex network

structures. In this investigation, the Kullback-Leibler (KL) divergence

method was used to generate the entire network matrix, and the

binary network was constructed using various threshold levels, which

has the limitation of mapping an individual to the best network con-

nections. A method based on principal component analysis (PCA) and

mutual information (MI) was suggested in (Jiang et al., 2017). PCA was

used to extract the deeper features at each node, and MI of principal

components (PCs) was used to determine the weight of the edges

between each pair of nodes. The importance of PCs was not evident

in this research, and more importantly, PCA analysis can only be per-

formed on numerous participants.

To overcome the complexity limitations of the KL method as

described in (Kong et al., 2015) and the use of multiple subjects to find

PCs as described in (Jiang et al., 2017), we propose to use the

Sorensen similarity measure between probability distributions of gray

matter tissue probability maps (TPMs) to construct an individual brain

network. The construction of a unique brain network in relation to the

sMRI enables direct interpretation of the regions and their similari-

ties/dissimilarities. The proposed approach is less complex and allows

to form ROI-based structural connectivity from an individual sMRI.

Also, it prepares the groundwork for a study focused on a single sub-

ject. Further, identifying condition-related brain signatures from these

brain networks may provide a neuroscientific network perspective on

brain analysis, as brain signatures may easily distinguish between con-

ditions and provide a deeper knowledge of the brain.

In this work, we provided a methodology for constructing an indi-

vidual brain network only based on sMRI data, followed by the identi-

fication of brain signatures based on sMRI-related brain networks.

The brain networks are constructed utilizing the gray matter TPMs of

60 subjects (15 each of control, MCI, progressive MCI (PMCI), and

AD) sMRI, employing atlas-based regions as nodes and the Sorensen

distance measure between probability distributions of regions as

edges. The brain signature of each condition is then identified by com-

paring the disorder’s networks to those of normal subjects (in this

paper, term condition refers to MCI, PMCI, or AD). Additionally, signif-

icant ROIs associated with each condition are found. Finally,

200 examination subjects were used to investigate the identified brain

signatures (50 each of control, MCI, PMCI, and AD).

This paper is structured as follows. Section 2 discusses the data

preparation process, the methodologies for finding brain signatures,

and the critical ROIs of related sMRI. Section 3 summarizes the find-

ings, while Section 4 discusses and concludes the work with recom-

mendations for future work.

2 | MATERIALS AND METHODS

The objectives of this study are to create an individual brain network

using sMRI data and to discover brain signatures and important ROIs

associated with any condition using the formulated brain networks.

The proposed framework for extracting brain signatures is summa-

rized in Figure 1. As shown in Figure 1, stage A involves the use of

Freesurfer (FreeSurfer, 2012) to extract the brain from an MRI and

then is transformed to MNI standard space (MNI152 T1 1mm brain)

(Collins et al., 1995; Mazziotta et al., 2001). The MR images were then

segmented and smoothed to reveal gray matter TPMs. In step B,

regions based on the human brain atlas were employed to deduce the

connection matrix/brain network from gray matter TPMs. Stage C

describes a threshold selection approach for extracting brain signa-

tures. Stage D describes the detection of brain signatures, ROIs, and

the merging/fusion of brain signatures into a single network for usage

in applications. Finally, in stage E, the detected brain signatures are

used to categorize examination subjects as part of the framework’s
evaluation. The following subsections A-E discuss the methodologies

for identifying brain signatures and their application.

2.1 | Participants

Data used in the preparation of this article were obtained from the

Alzheimer’s Disease Neuroimaging Initiative (ADNI) database (adni.

loni.usc.edu). The ADNI was launched in 2003 as a public-private part-

nership, led by Principal Investigator Michael W. Weiner, MD. The pri-

mary goal of ADNI has been to test whether serial magnetic

resonance imaging (MRI), positron emission tomography (PET), other

biological markers, and clinical and neuropsychological assessment

can be combined to measure the progression of mild cognitive impair-

ment (MCI) and early Alzheimer’s disease (AD).

A total of 260 subjects were employed in this investigation, and

the subjects included in this study are listed in Table 1. The ADNI Sub-

ject IDs and Image Data IDs for the reference subjects (60) and exami-

nation subjects (200) indicated in Table 1 are available online at
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https://surfer.nmr.mgh.harvard.edu/fswiki/AdnidevtestV6 and

https://github.com/christiansalvatore/Salvatore-200Longitudinal,

respectively. The inclusion criteria are as described in (Salvatore

et al., 2018). The criteria for control subjects are: Mini Mental State

Examination (MMSE) scores between 24 and 30; Clinical Dementia

Rating (CDR) of zero; absence of depression, MCI, and dementia. For

MCI, patients had to have an MMSE score of 24-30 on the CDR, no

other cognitive symptoms of impairment, and no signs of dementia.

For AD, MMSE scores of 20 to 26; a CDR of 0.5 or 1.0; and the

criteria for the probable AD are as per Alzheimer’s Disease and

Related Disorders Association’s.

2.2 | MRI and gray matter tissue probability maps

For the analysis purpose, among the subjects described in Table 1, all

examination subjects used sMRI images of the stable diagnosis (time-

zero point) as specified in (Salvatore et al., 2018), while reference sub-

jects utilized images at all accessible time points. All images were

obtained at 1.5 T using a T1-weighted sequence in accordance with

the ADNI standard. All MR images were corrected for 3D gradwarp

and B1 non-uniformity. Following that, brain extraction from sMRI

images was performed using Freesurfer. The extracted brain is then

transformed into a standard Montreal Neurological Institute (MNI)

space using the fsl-flirt, fsl-fnirt, and warping procedures (FSL is a tool

for analyzing fMRI, MRI, and DTI brain imaging data; see (Jenkinson

et al., 2012; Smith et al., 2004; Woolrich et al., 2009). Finally, using

fsl-fast segmentation, the transformed extracted brain was segmented

into gray matter TPM. The following section describes how an individ-

ual brain network is constructed using gray matter TPM.

2.3 | Brain network from individual sMRI

The brain network’s construction is critical for the network-based

analysis of the brain. The constructed brain networks can be used in

any application that makes use of brain networks (Bullmore &

Sporns, 2009; Rubinov & Sporns, 2010; Sporns, 2013). To convert the

gray matter TPM from sMRI to a brain network, the nodes and edges

must be properly defined. In this work, nodes indicate brain regions,

and edges reflect the distance between nodes in terms of the distribu-

tion of gray matter TPMs. To begin, we utilized 161 (75 for each

hemisphere and Vermis 1 2, Vermis 3, Vermis 4 5, Vermis 6, Vermis

7, Vermis 8, Vermis 9, Vermis 10, VTA, LC, Raphe) cortical and subcor-

tical ROIs from the widely used automated anatomical labeling atlas

3 (AAL3) as nodes (Rolls et al., 2020).

To define the edges between brain regions, several distance/

similarity measures available in the literature (Cha, 2007; Pastore &

Calcagnì, 2019) were used and identified the edges between brain

regions (Beheshti et al., 2017; Jiang et al., 2017; Kong et al., 2015;

Tijms et al., 2012). In this study, we identify the edges between the

distributions of gray matter TPM in ROIs using the Sorensen distance

dissimilarity measure (Sorensen, 1948). Sorensen distance dissimilarity

is based on the absolute difference between distributions and is a

widely used measure of dissimilarity because it is less complex, retains

F IGURE 1 Identification of brain signature networks from sMRI—workflow diagram

TABLE 1 Subjects considered in this study

Group Control MCI PMCI AD

Reference subjects (60) 15 15 15 15

Examination subjects (200) 50 50 50 50
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sensitivity in more heterogeneous data, and gives less weight to out-

liers (McCune et al., 2002). Between two distributions p and q, the

Sorensen distance dissimilarity measure dsor is defined as follows:

dsor ¼

PN

i¼1
pi�qij j

PN

i¼1
piþqið Þ

ð1Þ

where p and q denote two probability distributions. dsor is in the

range of [0 1], where 0 indicates identical distributions—denotes no

dissimilarity, and 1 indicates the highest dissimilarity. The distribution

of each ROI is determined for each subject using kernel density esti-

mation from gray matter TPM. Then, the dsor values of all pairs of

brain regions result in a 161 � 161 matrix that is referred to as the

brain network. The matrix of dimension 161 � 161 of each subject is

referred to as the subject’s Sorensen matrix (SM). Extraction of signifi-

cant patterns or brain signatures from the brain network enables us to

represent any condition or task-related sMRI using a network connec-

tion, providing new insights into the brain. To accomplish this, it is

necessary to examine the right selection of the threshold. The follow-

ing section discusses how to choose a threshold for extracting brain

signatures.

2.4 | Network threshold

The topic of network threshold selection remains unsolved in neuro-

science. We previously developed strategies for determining the

threshold based on the network’s efficiency and energy consumption

(Gonuguntla et al., 2020; Gonuguntla & Kim, 2020). In general, these

strategies are applicable to any modality. To determine the threshold,

the following approach is used as described in (Gonuguntla &

Kim, 2020). To begin, a differential brain network (DBN) is identified

using the following equation based on the dissimilarities between the

condition and the control subject:

DBNdisease ¼ <SMdisease > � <SEcontrol > ð2Þ

where <SMdisease> is the element-wise mean of the SMs of the

disease subject and <SMcontrol> is the element-wise mean of the SMs

of the control subject. DBNdisease for MCI, PMCI, and AD can all be

performed using (2). Because the DBNdisease is based on the relative

change with control subjects, it gives information about the condi-

tion’s direct variations when compared to control participants. As a

result, DBNdisease is chosen for analysis. Then, the top few edges with

the highest changes were chosen to represent the condition and its

associated brain network. To identify these edges with the highest

differences, the following disease-related network threshold (DRNT)

selection procedure is used:

1. arrange all DBNdisease values in descending order (the arranged

values represent the edges of the network)

2. formulate the network with M selected edges (M indicates the top

M edges that were arranged in descending order)

3. for M = 1 to n C2, evaluate the global cost-efficiency (GCE)

GCE¼GE�cost ð3Þ

where, GE is the global efficiency (the average inverse shortest

path length in the network (Bullmore & Sporns, 2009; Dimitriadis

et al., 2017; Rubinov & Sporns, 2010) and the cost is the ratio of the

total weight of the selected network edges to the total weight of the

fully connected network edges. For instance, if the network is formu-

lated using top ’M' edges then, GE can be computed as

GE¼ 1
n n�1ð Þ

X

i≠ j � G

1
dij

and cost as

cost¼ eS
eT

where dij is the shortest path length between nodes i and j in the net-

work (G), n is the total number of nodes in the network, eS is the total

weight of the selected network edges, and eT is the total weight of

the fully connected network edges. Thus, GCE for every “M” can be

computed using (3).

4. finally, identify “M” corresponds to the maximum value in (3)

The DRNT of MCI, PMCI, and AD can be identified using the pro-

cedure outlined above. The network threshold is defined in each con-

dition as the number of pairs that result in optimal GCE. The next

sections explain the extraction of brain signatures and their fusion

network for usage in applications.

2.5 | Brain signatures and important ROIs

The optimal number of pairs selected via GCE results in the formation

of a brain signature, which is referred to as the representation of the

condition-related sMRI with its signature network. These networks

serve as the foundation for understanding the brain in terms of net-

works and can be applied to any network-based application. The sig-

nature networks are analyzed to identify the top few nodes with the

highest degree as significant ROIs. All of the detected signature net-

works can be combined to produce a single network for use in classifi-

cation applications. To demonstrate, the fusion network of the

identified brain signatures is constructed as a (a) common network—a

network composed of common edges that appeared in all

conditions—and a (b) full network—a network composed of all edges

that appear in all conditions. These fusion networks could serve as the

foundation for a variety of applications involving brain networks. The

examination of the resulting common network could provide a
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backbone structure for the condition, and the entire network could be

used for classification purposes. The following part demonstrates the

use of the identified brain signature by classifying examination

patients into control, MCI, PMCI, and AD groups using the fusion net-

work’s Sorensen distance dissimilarity measures as features.

2.6 | Application

In this study, we demonstrate the application of brain signature net-

works by classifying 200 examination subjects into control, MCI,

PMCI, and AD. The classification results with fusion network as fea-

tures at stable diagnosis are achieved using support vector machines

(SVMs) as classifiers with a one-against-one strategy.

3 | RESULTS

The brain networks of each subject’s sMRI provided in Table 1 were

identified using the proposed framework for identifying the individual

brain network associated with sMRI. The identification of brain signa-

tures and fusion networks is carried out using the methods outlined in

Sections 2.3 and 2.4 (only 60 reference subjects were used to identify

the brain signatures and fusion networks). Finally, the 200 examination

subjects are classified using the identified brain signatures as a dem-

onstration of the suggested approach. In the illustrations of the brain

network maps and brain signatures, nodes 1–75 correspond to the

left hemisphere, nodes 87–161 (arranged in reverse order to maintain

symmetry with the left hemisphere) to the right hemisphere, and

nodes 76–86 correspond to Vermis 1 2, Vermis 3, Vermis 4 5, Vermis

6, Vermis 7, Vermis 8, Vermis 9, Vermis 10, VTA, LC, Raphe. Addition-

ally, the appendix contains anatomical descriptions and labeling for all

ROIs analyzed of the subjects presented in Table 4. The next

section illustrates the outcomes produced by employing the provided

methods.

3.1 | MRI and gray matter tissue probability maps

The gray matter TPMs of all subjects were detected using the proce-

dure outlined in Section 2.1. To begin, the brain was extracted using

freesurfer and then translated to MNI space using fsl non-linear regis-

tration. Then, using fsl-fast segmentation, these transformed images

were segmented into gray matter TPMs. During the fsl main segmen-

tation phase, the MRF beta value was set to 0.5 to provide spatial

smoothing and the bias field was smoothed using a 10mm full-width

at half-maximum (FWHM). To illustrate the gray matter TPMs directly,

a representative gray matter TPM from a randomly selected sMRI is

shown in Figure 2. These gray matter TPMs have been extensively

employed in group studies of brain structure and network analysis

(Koikkalainen et al., 2016; Li et al., 2011; Rimkus et al., 2019). Given

that the current study is focusing on the construction of an individual

brain network associated with sMRI, the following section details the

conceptual transformation of these TPMs into brain networks.

3.2 | Brain network from individual sMRI

To form a brain network that corresponds to sMRI, the nodes and

edges of each gray matter TPM are specified as outlined in Section 2.2.

Using all reference subjects and at each voxel location, we tested for

the null hypothesis that the TPMs come from a distribution with a

mean of 0. If the lower limit of the confidence interval (CI) is less than

or equal to 0, the voxel location is considered insignificant and is

removed from the analysis. The remaining voxel values were then

used to identify 161 ROIs, dubbed nodes, based on the AAL3 brain

F IGURE 2 Gray matter tissue
probability map illustration. The
brighter the color, the greater the
probability that the voxel is gray
matter, while the darker the color,
the lesser the probability that the
voxel is gray matter
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atlas. For ROI, the distribution is calculated using the gray matter’s
TPM (161 ROIs in total). Finally, an SM of size 161 � 161 is formed

for each subject using (1) and is referred to as the brain network asso-

ciated with sMRI.

The differences in the brain networks of each disease when com-

pared to controls serve as the foundation for the development of

brain signatures. To illustrate the differences between each condition

and control subjects, Figure 3 shows the average maps of the brain

networks and the dissimilarities identified by employing (2) for all con-

ditions. Additionally, the difference values for each condition are

shown in Figure 3 (bottom panel) as histogram function. To visualize

the difference values in each condition, Figure 4 shows some selected

pairings illustrating the positive and negative differences of one sub-

ject per each condition. The subplots in rows correspond to subjects

with control, MCI, PMCI, and AD (from top to bottom). Each pair’s
Sorensen distance dissimilarity is also shown in the figure at the top

of each subplot. The yellow shaded regions indicate that the selected

pairs have a lower similarity score when compared to the control sub-

ject, and vice versa for the cyan blue colored pairs. The same phenom-

enon was found across multiple pairs and subjects. Only selected pairs

of one subject per condition are given for demonstration purposes.

These distinctions serve as the foundation for forming the brain signa-

tures associated with any condition.

To aid in visualizing the differences between MCI, PMCI, and AD

subjects when compared to controls, the kernel density estimation of

all the differences for all conditions is provided in Figure 5. From

Figure 3 (bottom panel) and Figure 5, in comparison to control

participants, we can identify various positive and negative differences

in MCI, PMCI, and AD. Also, these differences are greatest in AD and

are smallest in MCI. These variances are attributed to the dissimilar-

ities in the distributions of the respective regions, which demonstrates

the structural disturbances in diseased people when compared to nor-

mal subjects. Thus, it enables us to identify the regions corresponding

to structural disruptions in the diseased subject (e.g., visually identi-

fied regions are generally similar to those identified by previous brain

network studies (Bassett et al., 2008; Chen et al., 2008; Gong

et al., 2009; He et al., 2007; Khundrakpam et al., 2013; Sanz-Arigita

et al., 2010; Spulber et al., 2013) and their analysis in detail was car-

ried out in the subsequent sections). Additionally, the extraction of

significant patterns/signature networks and their network analysis

enables us to depict the condition using a network connection, which

provides new insights into the brain’s associated conditions. The fol-

lowing section discusses how the threshold for identifying brain signa-

tures was determined and how it was analyzed.

3.3 | Network threshold

To set the threshold, all the DBNdisease values for each condition are

identified using (2) and are orderly arranged. The large differences

present in each condition are a result of the structural disruptions

prevalent in that condition when compared to normal subjects. Thus,

by expressing brain signatures using these connections, we can gain a

better understanding of the relevant condition. To most accurately
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F IGURE 3 The average brain networks in each condition (top) and the differences in dissimilarities between regions in each condition when
compared to control subjects (bottom). The dissimilarities identified with (2) as a histogram for all conditions are depicted in the bottom panel’s
final sub-figure

2850 GONUGUNTLA ET AL.



depict the condition using its signature network, the GE of DBN for-

mulated with the highest differential pairs is used as the basis. The

GCE is then plotted against the number of connections using the pro-

cess given in Section 2.3. Figure 6 depicts the analysis of GCE vs. the

number of connections using positive and negative differences. As a

threshold, the “M” values that correspond to the optimal GCE

are used.

Considering the negative differences, the thresholds (M) for MCI,

PMCI, and AD are 881, 1001, and 1217, respectively. The thresholds

determined utilizing positive differences for the conditions MCI,

PMCI, and AD are 492, 587, and 681, respectively. The obtained

thresholds are shown in Figure 6 and are the DRNT. Employing the

identified DRNT for positive and negative differences forms the brain

signatures. Using negative differences, the number of connections

required to construct an AD-related signature network is the most,

while the number required to form an MCI-related signature network

is the smallest. A similar phenomenon is observed when positive dif-

ferences are used. This demonstrates that as compared to control

subjects, the dissimilarities are greatest in AD subjects and lowest in

MCI subjects. The next sections discuss the representation of the con-

ditions, their signature networks, and their fusion networks for use in

applications.

3.4 | Brain signatures and important ROIs

With threshold levels identified of each condition, the brain signatures

obtained utilizing both positive and negative differences are depicted

in Figure 7. All connections are binary in nature, and the color repre-

sentation indicates the node location from 1 to 161. The color repre-

sentation is solely for the purpose of visualizing the ROI numbers. The

signature networks were formed using a proportion of connections

between 4% and 10%, and the ROIs containing the largest dissimilar-

ities for each condition are displayed as densely connected nodes. In

Figure 7, the left side figures correspond to the brain signatures of

MCI, PMCI, and AD associated with the use of negative differences,

whereas the right side figures relate to the signature networks associ-

ated with MCI, PMCI, and AD associated with the use of positive

F IGURE 4 Selected pairs of one subject per condition demonstrating negative and positive differences in comparison to control participants;
the ROIs, labels, and related node numbers were also included in the figure at the top

-0.3 -0.2 -0.1 0 0.1 0.2
0
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6

8

10

12

14
kernel density estimation of all differences

MCI-Control
PMCI-Control
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F IGURE 5 Estimation of the kernel density of all differences
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differences. In all scenarios, we see a high degree of interhemispheric

connectivity and a low degree of intra-hemispheric connectivity,

which is consistent with recent research (Beheshti et al., 2017; Jiang

et al., 2017; Kong et al., 2015; Tijms et al., 2012).

Given that the disease often progresses from MCI to PMCI to

AD, we identified the common network that exists across conditions

in order to comprehend the backbone structure associated with dis-

similarities. The fusion of signature networks may be advantageous in

a variety of applications (especially to understand the disease progres-

sion). As a result, we constructed the fusion networks by combining

all the signature networks across conditions. The fusion networks

(common network and network of signature networks merged)
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F IGURE 6 Using negative differences to find the disease-related brain network threshold (left) and positive differences to find the disease-
related brain network threshold (right)

F IGURE 7 Disease-related differential brain networks obtained using the threshold levels identified; (a), (b), and (c) are the networks of MCI,
PMCI, and AD of using negative differences; (d), (e), and (f) are the networks of MCI, PMCI, and AD of using positive differences (all connections
are binary in nature, and the color representation indicates the node location from 1 [red] to 161 [yellow])
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constructed utilizing negative and positive differences are depicted in

Figure 8. The number of connections in a common network con-

structed using negative differences is more than the number of connec-

tions in a network constructed using positive differences. Also,

interhemispheric interactions are prevalent. These patterns may contain

information about the course of the disease and may be the key to

understand it. As the disease progresses, the brain’s disruptions

become more severe. To highlight these disruptions in the brain as the

disease progresses, the signature networks of MCI, PMCI, and AD with

the exclusion of common network are illustrated in Figure 9. The top

triangular matrix relates to the signature networks found via the use of

negative differences, while the bottom triangular matrix corresponds to

the signature networks identified through the use of positive

differences. It is noticed that disruptions spread throughout the brain

and that the number of disruptions increases as the disease advances.

Additionally, identifying important ROIs associated with each

condition will aid in the understanding of the disease. To find the

important regions corresponding to all conditions, the degree of each

condition’s node is identified. The highest degree nodes (ROIs) are

considered significant since they account for a large number of dissim-

ilarities with other ROIs. To find a significant number of significant

ROIs, the ROIs are first sorted by degree of presence. Then, the nor-

malized cumulative connections are compared to the ordered

arranged ROIs. The ratio of the cumulative connections sum of the

selected ROIs to the overall number of connections is used to find the

normalized cumulative connections for each condition.

F IGURE 8 Common network patterns and combined network patterns obtained of using the fusion of all conditions; (a) and (b) are the

combined networks of using positive and negative differences respectively; (c) and (d) are the common networks of using positive and negative
differences respectively (all connections are binary in nature, and the color representation indicates the node location from 1 [red] to
161 [yellow])
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Degree Vs orderly arranged ROIs; and normalized cumulative

connections Vs orderly arranged ROIs; of all conditions are shown in

Figure 10. We can observe that the top few ROIs have a greater

degree and are more involved in the condition-specific dissimilarity.

Disruptions in these locations may be the cause of the associated dis-

ease. The analysis of normalized cumulative connections Vs the

ordered ROIs reveals that the top 20 ROIs identified (out of 161) for

each condition account for 50% of the dissimilarities (as illustrated in

Figure 10, top 20 ROIs account for 50% of total connections). As a

result, we identified the top 20 ROIs for each condition as significant

ROIs (the network associated with each condition can be seen in 7).

Also, these maximum dissimilarity displayed ROIs with other ROIs for

each condition is reported in Table. 2. The ROIs identified for all con-

ditions are consistent with those identified in previous research

(Koikkalainen et al., 2016; Li et al., 2011; Rimkus et al., 2019;

Whitwell, 2009) (ex., ROIs identified correspond to MCI, PMCI, and

AD of using negative differences are thalamus and hippocampus; ROIs

identified of using positive differences are presented in several ROIs

F IGURE 9 Highly disrupted networks with the progression of the disease excluding common network (In the figure, the signature networks
of MCI, PMCI, and AD are presented from left to right). All highlighted are binary, with yellow corresponds to negative differences and the blue
color corresponds to positive differences
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such as MCI — parietal, frontal, and temporal locations; PMCI—tempo-

ral, frontal, and AD—temporal, frontal, and occipital). To show the dis-

ruption of the identified important ROIs, one individual per condition

of the selected ROIs from the identified ROIs and their gray matter

TPMs histogram is demonstrated in Figure 11. In the ROIs designated

as significant ROIs, we can observe the disruption of the gray matter

TPM as the disease advances. Overall, the shown network analysis of

brain signatures demonstrates that the proposed methodologies may

bring various new insights into disease understanding, and these

signature networks may be useful for clinical analysis and a variety of

other network-based applications.

3.5 | Application

To demonstrate the use of signature networks in applications and to

evaluate the identified brain signatures, the 200 examination subjects

(50 each of control, MCI, PMCI, and AD) at the time of diagnosis are

TABLE 2 ROIs displaying the highest dissimilarities with other ROIs (refer appendix—Table 4 for anatomical descriptions and labeling of
all ROIs)

Using negative differences Using positive differences

MCI PMCI AD MCI PMCI AD

Thal_PuA_L Thal_LP_R Thal_PuI_L Parietal_Inf_R Thal_IL_R Occipital_Mid_R

Red_N_R Thal_MGN_L Thal_MGN_L Parietal_Sup_R Temporal_Pole_Sup_R SupraMarginal_R

Thal_MGN_R Thal_PuI_L Thal_PuA_L Precuneus_R Temporal_Pole_Mid_R Parietal_Inf_R

Thal_PuL_R Thal_AV_R Thal_LGN_L Thal_IL_R Thal_MDl_L Temporal_Sup_R

Thal_VPL_R Thal_PuI_R Thal_VA_L Vermis_9 Temporal_Sup_R Temporal_Mid_R

Thal_PuM_R Thal_VA_L Thal_VPL_R Cerebelum_Crus2_L Thal_MDm_R Occipital_Inf_R

Thal_PuI_L Thal_LGN_L Thal_LP_R Frontal_Sup_2_L Vermis_4_5 Precuneus_L

Thal_LGN_L Thal_PuA_L Raphe Precuneus_L Cerebelum_6_R Caudate_R

Thal_AV_R Thal_VPL_R Thal_PuM_R Frontal_Mid_2_R Vermis_9 Temporal_Pole_Sup_R

Thal_PuI_R Red_N_L Thal_PuL_L Cerebelum_6_R LC Angular_R

Thal_IL_L Amygdala_L Thal_PuI_R Supp_Motor_Area_R Frontal_Mid_2_R Temporal_Pole_Sup_L

Thal_PuA_R Thal_LP_L Thal_VPL_L Frontal_Sup_2_R Frontal_Inf_Orb_2_R ACC_sub_R

Thal_PuM_L Thal_PuL_L Thal_AV_R LC Cingulate_Post_L Frontal_Inf_Oper_R

Thal_LGN_R Hippocampus_L Thal_VL_L Temporal_Pole_Sup_L Cerebelum_3_R Angular_L

Hippocampus_R Vent_Str_R Thal_IL_L Raphe Thal_PuA_R Occipital_Mid_L

Cerebelum_7b_L Thal_AV_L Amygdala_L Angular_R Frontal_Mid_2_L SupraMarginal_L

Vermis_6 Hippocampus_R SN_pc_R Temporal_Sup_R Frontal_Inf_Tri_R Rolandic_Oper_R

Vent_Str_R SN_pc_R Hippocampus_L Temporal_Pole_Sup_R Frontal_Sup_Medial_L Vermis_9

Precentral_R Cerebelum_7b_L Thal_LGN_R Amygdala_L Cerebelum_4_5_R Temporal_Sup_L

Olfactory_R OFClat_L Caudate_L Cerebelum_7b_R Frontal_Inf_Oper_L Frontal_Inf_Tri_L
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F IGURE 11 Histogram of gray matter TPMs from one subject’s identified and selected significant ROIs for each condition. AD, Alzheimer’s
disease; CN, control subject; MCI, mild cognitive impairment; PMCI, progressive MCI
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considered for classification using the brain signatures identified in

this study. The identical ROIs created for reference subjects are used

to form the brain networks associated with examination subjects (also,

the excluded voxel locations are the same as described for reference

subjects). To visualize the differences, the kernel density estimation of

all the differences for all examination subjects is shown in Figure 12.

The reference data’s control individuals are used to determine the dif-

ferences. The differences displayed in Figure 12 of all conditions dis-

played similar observations made for reference subjects. PMCI and

AD, in comparison to MCI, have a greater range of differences. The

signature networks identified through the use of data from reference

subjects are then used to form the features of examination subjects’

data. The fusion network, or the pattern of all the brain signatures

combined, is used to classify subjects as control, MCI, PMCI, or AD.

Prior to obtaining the classification results for examination sub-

jects, we would like to show the behavior of all examination subjects

in order to highlight how the identified brain signatures are relevant

for classification. To do this, the mean of Sorensen distance dissimilar-

ity of the brain signature networks of all subjects and all conditions

for examination subjects is determined and presented in Figure 13.

The standard deviation identified of mean networks for all subjects is

also depicted in the figure as an error bar. As illustrated in the figure,

there are significant differences in the average signature networks.

This difference level may be critical in discriminating the subject. Thus,

the identified brain signatures can be used for classification and are

selected as an example to demonstrate the use of brain signatures.

For evaluation purposes, the combined network’s (fusion network

obtained of using reference subjects) Sorensen distance dissimilarities

as features of each examination subject were considered for classifi-

cation into control, MCI, PMCI, and AD. Due to the fact that the refer-

ence subjects were utilized solely to generate the brain signatures,

2=3 of the examination subjects are chosen for training and the

remaining 1=3 for testing. PCA is used to retain enough components

to account for 95% of the variation. Classification of a) Control

vs. MCI b) Control vs. PMCI c) MCI vs. PMCI d) control vs. AD and e)

All four classes (Control, MCI, PMCI, and AD) is accomplished using

SVMs with threefold cross-validation and a one-against-one strategy.

The classification accuracies obtained by employing Sorensen distance

dissimilarities as features in fusion networks (combined network of all

the brain signatures) are summarized in Table 3. Classification accu-

racy of 78.4% (4 classes) was obtained when subjects were classified

as control, MCI, PMCI, or AD. And an average of 84.7% (2 classes)

accuracy in identifying individuals as control vs. (MCI, PMCI, AD).

Classification accuracy of 83.9% for MCI vs. PMCI highlights the early

identification of PMCI using the proposed approach. The results indi-

cate that the brain signatures identified can be employed in

applications.

4 | DISCUSSION AND CONCLUSIONS

Previously, gray matter and white matter tracts were used to study

structural network changes associated with a variety of illnesses. The

majority of research had trouble investigating an individual because

these networks were constructed utilizing correlations between
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F IGURE 12 Kernel density estimation of all differences for
examination subjects (to find the difference values, the control group
of reference subjects is used)
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F IGURE 13 Mean of network features for examination subjects
of all conditions—error bar shows the standard deviation

TABLE 3 Classification of MCI, PMCI, and AD (reference subjects
are excluded from the classification analysis as they were utilized
solely to generate the brain signatures)

Control

vs.
MCI

Control

vs.
PMCI

MCI

vs.
PMCI

Control

vs.
AD

All
(4 classes)

Accuracy

(%)

83.7 85.3 83.9 85.3 78.4
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TABLE 4 Anatomical description and labels of all nodes (LH—Left hemisphere and RH—Right hemisphere)

Anatomical description

Label Node number

LH RH LH RH

Precentral gyrus Precentral_L Precentral_R 1 161

Superior frontal gyrus, dorsolateral Frontal_Sup_2_L Frontal_Sup_2_R 2 160

Middle frontal gyrus Frontal_Mid_2_L Frontal_Mid_2_R 3 159

Inferior frontal gyrus, opercular part Frontal_Inf_Oper_L Frontal_Inf_Oper_R 4 158

Inferior frontal gyrus, triangular part Frontal_Inf_Tri_L Frontal_Inf_Tri_R 5 157

IFG pars orbitalis Frontal_Inf_Orb_2_L Frontal_Inf_Orb_2_R 6 156

Rolandic operculum Rolandic_Oper_L Rolandic_Oper_R 7 155

Supplementary motor area Supp_Motor_Area_L Supp_Motor_Area_R 8 154

Olfactory cortex Olfactory_L Olfactory_R 9 153

Superior frontal gyrus, medial Frontal_Sup_Medial_L Frontal_Sup_Medial_R 10 152

Superior frontal gyrus, medial orbital Frontal_Med_Orb_L Frontal_Med_Orb_R 11 151

Gyrus rectus Rectus_L Rectus_R 12 150

Medial orbital gyrus OFCmed_L OFCmed_R 13 149

Anterior orbital gyrus OFCant_L OFCant_R 14 148

Posterior orbital gyrus OFCpost_L OFCpost_R 15 147

Lateral orbital gyrus OFClat_L OFClat_R 16 146

Insula Insula_L Insula_R 17 145

Middle cingulate & paracingulate gyri Cingulate_Mid_L Cingulate_Mid_R 18 144

Posterior cingulate gyrus Cingulate_Post_L Cingulate_Post_R 19 143

Hippocampus Hippocampus_L Hippocampus_R 20 142

Parahippocampal gyrus ParaHippocampal_L ParaHippocampal_R 21 141

Amygdala Amygdala_L Amygdala_R 22 140

Calcarine fissure and surrounding cortex Calcarine_L Calcarine_R 23 139

Cuneus Cuneus_L Cuneus_R 24 138

Lingual gyrus Lingual_L Lingual_R 25 137

Superior occipital gyrus Occipital_Sup_L Occipital_Sup_R 26 136

Middle occipital gyrus Occipital_Mid_L Occipital_Mid_R 27 135

Inferior occipital gyrus Occipital_Inf_L Occipital_Inf_R 28 134

Fusiform gyrus Fusiform_L Fusiform_R 29 133

Postcentral gyrus Postcentral_L Postcentral_R 30 132

Superior parietal gyrus inferior parietal gyrus, excluding Parietal_Sup_L Parietal_Sup_R 31 131

Supramarginal and angular gyri Parietal_Inf_L Parietal_Inf_R 32 130

SupraMarginal gyrus SupraMarginal_L SupraMarginal_R 33 129

Angular gyrus Angular_L Angular_R 34 128

Precuneus Precuneus_L Precuneus_R 35 127

Paracentral lobule Paracentral_Lobule_L Paracentral_Lobule_R 36 126

Caudate nucleus Caudate_L Caudate_R 37 125

Lenticular nucleus, putamen Putamen_L Putamen_R 38 124

Lenticular nucleus, pallidum Pallidum_L Pallidum_R 39 123

Heschl’s gyrus Heschl_L Heschl_R 40 122

Superior temporal gyrus Temporal_Sup_L Temporal_Sup_R 41 121

Temporal pole: Superior temporal gyrus Temporal_Pole_Sup_L Temporal_Pole_Sup_R 42 120

Middle temporal gyrus Temporal_Mid_L Temporal_Mid_R 43 119

Temporal pole: Middle temporal gyrus Temporal_Pole_Mid_L Temporal_Pole_Mid_R 44 118

Inferior temporal gyrus Temporal_Inf_L Temporal_Inf_R 45 117

(Continues)
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averaged ROIs of thickness or volume from multiple subjects. We pro-

vided a framework for deriving an individual network from sMRI and

methods for identifying the brain signatures and significant ROIs in

this work. The proposed methods were successful in identifying indi-

vidual networks based on sMRI data and in forming brain signature

networks and significant ROIs associated with any condition. These

TABLE 4 (Continued)

Anatomical description

Label Node number

LH RH LH RH

Crus I of cerebellar hemisphere Cerebelum_Crus1_L Cerebelum_Crus1_R 46 116

Crus II of cerebellar hemisphere Cerebelum_Crus2_L Cerebelum_Crus2_R 47 115

Lobule III of cerebellar hemisphere Cerebelum_3_L Cerebelum_3_R 48 114

Lobule IV, V of cerebellar hemisphere Cerebelum_4_5_L Cerebelum_4_5_R 49 113

Lobule VI of cerebellar hemisphere Cerebelum_6_L Cerebelum_6_R 50 112

Lobule VIIB of cerebellar hemisphere Cerebelum_7b_L Cerebelum_7b_R 51 111

Lobule VIII of cerebellar hemisphere Cerebelum_8_L Cerebelum_8_R 52 110

Lobule IX of cerebellar hemisphere Cerebelum_9_L Cerebelum_9_R 53 109

Lobule X of cerebellar hemisphere Cerebelum_10_L Cerebellum_10_R 54 108

Thalamus, Anteroventral nucleus Thal_AV_L Thal_AV_R 55 107

Lateral posterior Thal_LP_L Thal_LP_R 56 106

Ventral anterior Thal_VA_L Thal_VA_R 57 105

Ventral lateral Thal_VL_L Thal_VL_R 58 104

Ventral posterolateral Thal_VPL_L Thal_VPL_R 59 103

Intralaminar Thal_IL_L Thal_IL_R 60 102

Mediodorsal medial magnocellular Thal_MDm_L Thal_MDm_R 61 101

Mediodorsal lateral parvocellular Thal_MDl_L Thal_MDl_R 62 100

Lateral geniculate Thal_LGN_L Thal_LGN_R 63 99

Medial geniculate Thal_MGN_L Thal_MGN_R 64 98

Pulvinar anterior Thal_PuA_L Thal_PuA_R 65 97

Pulvinar medial Thal_PuM_L Thal_PuM_R 66 96

Pulvinar lateral Thal_PuL_L Thal_PuL_R 67 95

Pulvinar inferior Thal_PuI_L Thal_PuI_R 68 94

Anterior cingulate cortex, subgenual ACC_sub_L ACC_sub_R 69 93

Anterior cingulate cortex, pregenual ACC_pre_L ACC_pre_R 70 92

Anterior cingulate cortex, supracallosal ACC_sup_L ACC_sup_R 71 91

Ventral striatum Vent_Str_L Vent_Str_R 72 90

Substantia nigra, pars compacta SN_pc_L SN_pc_R 73 89

Substantia nigra, pars reticulata SN_pr_L SN_pr_R 74 88

Red nucleus Red_N_L Red_N_R 75 87

Lobule I, II of vermis Vermis_1_2 76

Lobule III of vermis Vermis_3 77

Lobule IV, V of vermis Vermis_4_5 78

Lobule VI of vermis Vermis_6 79

Lobule VII of vermis Vermis_7 80

Lobule VIII of vermis Vermis_8 81

Lobule IX of vermis Vermis_9 82

Lobule X of vermis Vermis_10 83

Ventral tegmental area VTA 84

Locus coeruleus LC 85

Raphe nucleus, dorsal and median Raphe 86
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findings indicate that analyzing an individual’s defined signature net-

works may provide critical information for recognizing brain abnor-

malities. Additionally, by analyzing these brain signatures using graph

theory, one can examine the brain from a network neuroscientific

perspective.

To form the connectivity, we utilized the Sorensen distance

between the TPMs distributions of the defined ROIs. Numerous other

techniques, such as those discussed in (Cha, 2007), can be used to

determine the weights of edges. All of these measurements are indi-

rect indicators of connectivity representation, and identifying brain

signatures associated with these methods could serve as a comple-

ment to anatomical connectivity. The Sorensen distance metric is cho-

sen because it is simpler and avoids division by zeros. The proposed

approach for generating brain signatures is based on differential net-

works, and the thresholds are determined based on the importance of

those differences in terms of global efficiency. The threshold selection

method can be used to depict any brain activity with optimal connec-

tions. The integrated networks of all the conditions can be utilized to

discriminate between many diseases or a disease at different time

points (the study of the network changes at several time points could

help understand the disease progression). The proposed methodolo-

gies also enable us to better comprehend illness progression

(an increase of dissimilarities observed with the disease progression

for both reference subjects and examination subjects), and the addi-

tion of patterns at various time points may enable us to gain a better

understanding of the condition.

In this paper, we considered the fusion network as simple shared

patterns (common networks) or integrated (combined) networks of all

the conditions identified. Further observation of signature networks

(as in Figure7) reveals that the common patterns have only a few con-

nections (as depicted in Figure 8). This illustrates how distinctive each

condition is. The same can be also observed in the ROIs identified of

each condition (shown in Table 2, they have several distinctive ROIs

due to the distinctive nature of the signature networks). This helps us

to understand the analysis of the identified significant networks

through their individual contributions (ex. classified MCI vs. PMCI

with an accuracy of 83.9% as they have distinctive patterns; classifica-

tion of control vs. PMCI and control vs. AD indicate that the identifi-

cation of PMCI and AD is comparatively easy as they display

distinctive nature in their signature networks).

Fusion networks can be also obtained by forming the specificity

loss that balances the contribution and commonality loss that con-

siders the similarity of each selected network. The combination of

fusion network (contains the rich information of all the selected condi-

tions) and graph convolution network improves disease classification

accuracy while also providing insight into the underlying connectivity

in the brain. Fusion networks involving multiple conditions or diseases

may be difficult to implement. So, optimal fusion network formation

with graph fusion network algorithms for disease quantification will

be considered in future analysis. There is a lot of potential in using

common patterns as disease markers which could be challenging

as well.

Several significant ROIs associated with MCI, PMCI, and AD were

identified in this study. It was observed that the ROIs found using

negative differences corresponded to regions of the brain that are

critical for information processing. Positive differences identified ROIs

associated with memory, attention, and a variety of functional and

learning capacities. These findings demonstrate that abnormalities in

the brain were particularly severe in disease-related regions, and the

identified regions and patterns can be employed in a variety of appli-

cations (ex. the constructed brain signatures can be used as a basis in

the analysis of extracting deep features from sMRI using graph convo-

lution approach). Comparable classification accuracy with the identi-

fied brain signature networks demonstrates the suggested

methodology’s promise in the fields of brain mapping, brain communi-

cation, and any other application involving brain networks. The pro-

posed approaches were validated using sMRI data from controls, MCI,

PMCI, and AD subjects. Additionally, the framework can be used to

research a variety of other neurological and mental disorders. The

future investigation will also focus on the individual network changes

associated with illness development utilizing graph metrics. Only

260 subjects were considered in this study (60 for forming the brain

signatures and 200 for the evaluation procedure), as the primary

objective of this work is to build a framework for recognizing brain

signatures using sMRI. Future research will include a greater number

of subjects and will focus on improving the accuracy as well. Overall,

the proposed methodologies may contribute unique insights to our

understanding of the brain’s basic structures, and we expect that this

contribution will be of interest to the neuroscientific community.
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